

 Navigation

 	
 index

 	
 next |

 	Python Workshop 0.0.0 documentation

Python Workshop in Hsinchu

Official web page:
http://python-workshops-in-hsinchu.readthedocs.org/en/latest/

Collaboration repository:
https://bitbucket.org/yungyuc/pyhug_workshop

Contents:

	Basic: Run Python (90 minutes)
	Synopsis

	Preparation

	Expressions

	Data containers

	Control flows and basic algorithms

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Yung-Yu Chen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Python Workshop 0.0.0 documentation

Basic: Run Python (90 minutes)

Synopsis

In this class, we will take you to explore the wonderful world of Python.

Contents

	Basic: Run Python (90 minutes)
	Synopsis

	Preparation
	Use Anaconda to install Python 2.7

	Install ipython notebook

	Expressions
	Types

	Operators

	Data containers
	tuple

	list [http://docs.python.org/library/functions.html#list]

	dict [http://docs.python.org/library/stdtypes.html#dict]

	Control flows and basic algorithms
	Conditions and loops
	if-else blocks

	while blocks

	for blocks

	Functions and methods
	Functions

	Methods

	User defined data structures

Preparation

Use Anaconda to install Python 2.7

working

Install ipython notebook

working

Expressions

Expressions are literal values or variables combined with operators
such a s +, -, * and /, also, parentheses () can be
used for grouping.

Types

The very basic types in Python are numbers and strings. Numbers
could be integers, floats and complex numbers. Strings could be normal
(ascii) strings and Unicode strings.

The equal sign (=) is used to assign a value to a variable.
Variables should be used after initialized, otherwise you will get an
error.

integers
answer= 42
negOne = -1

#floats
weight = 129.3

strings
msg = "Hello"
helloInChinese = u'你好'

There are different ways to initialize a string, ' ... ' (single
quote), " ... " (double quote), and """ ... """ or
''' ... ''' (triple quote).

There’s no difference between single quote and double quote, if you need
a real double quote character (') in your string, you can use a
double quoted string.

msg = "Hi, I'm Jack."
msg = 'This is "magic" !'

Triple quoted strings are used to represent multiple-lined strings.

"""
TWO roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth
"""

Operators

Let’s play some operators with numbers. Note, Python will convert from
integer to floats implicitly when you try to make a binary operator work
on an integer and a float. Addition to + - * /, we have % for
modulo, ** for power.

2 + 2
50 - 5*6
(50 - 5.0*6) / 4
8 / 5.0
17 / 3 # int / int -> int
17 / 3.0 # int / float -> float
17 % 3 # the % operator returns the remainder of the division
5 * 3 + 2 # result * divisor + remainder
5 ** 2 # 5 squared
2 ** 7 # 2 to the power of 7

Now we can replace literal values with variables.

width = 20
height = 5 * 9
width * height
900

Common strings-operators are * (repetition), + (concatenation)
and [] (subscription). You must use * with an integer and a
string, use + with both sides string. The first character has index
0. Python is different from other languages, there’s no “character
type”, a single character is just a string in size one.

>>> 'a' * 10
'aaaaaaaaaa'

>>> name = 'Jack'
>>> 'Hello, ' + name + '!'
'Hello, Jack!'

Python supports slicing (substring) operation: [a:b] or
[a:b:c] means the substring starts from position a, stops at
position b, step by c. The default value of a is 0, b is the end of the
original string.

this is a very long word
>>> word = 'Pneumonoultramicroscopicsilicovolcanoconiosis'
>>> word[0]
'P'
>>> word[3]
'u'
>>> word[-1]
's'
>>> word[-0]
'P'
>>> word[-10]
'n'
>>> word[5:]
'onoultramicroscopicsilicovolcanoconiosis'
>>> word[:5]
'Pneum'
>>> word[::3]
'Punlacspsivcons'
>>> word[::-1]
'sisoinoconaclovociliscipocsorcimartluonomuenP'

You can use len() to get the length of a string.

>>> len(word)
45

You can read Built-in
Types [https://docs.python.org/2/library/stdtypes.html] in Python doc
for more about types and operators.

Data containers

You can have a lot of separated variables in your Python program, but
it’s a good idea to group them together.

Data containers are containers for variables and values, you can them
like a set or a collection of some variables/values.

tuple

Tuples are used to represent an immutable, ordered set of stuffs,
elements inside tuples are separated by commas.

Although parentheses are not always necessary, still, you should put
them them you want to tell other people you’re using a tuple here.

an empty tuple
>>> ()
()
>>> t = (12345, 54321, 'hello!')
>>> t
(12345, 54321, 'hello!')

Tuples are immutable, but you can put mutable elements (such as
variables) inside a tuple. For example, this is a very common idiom for
variable swapping.

>>> a = 55
>>> b = 66
>>> (a, b)
(55, 66)
>>> (a, b) = (b, a)
>>> (a, b)
(66, 55)

list [http://docs.python.org/library/functions.html#list]

Lists are used to represent an immutable, ordered set of stuffs,
elements inside lists are separated by commas.

an empty list
>>> []
[]
>>> squares = [1, 4, 9, 16, 25]
>>> squares
[1, 4, 9, 16, 25]

Like strings, you can use subscriptions and slicing on lists.

>>> squares[0] # indexing returns the item
1
>>> squares[-1]
25
>>> squares[-3:] # slicing returns a new list
[9, 16, 25]

Lists are mutable, you can change the elements inside a list.

>>> cubes = [1, 8, 27, 65, 125]
>>> cubes[3] = 64
>>> cubes
[1, 8, 27, 64, 125]

Strings, tuples, and lists are all sequential
types [https://docs.python.org/2/library/stdtypes.html#typesseq], we
can perform same operations on them!

concatenation, repetition, subscription, slicing, length ...

>>> cubes = [1, 8, 27, 64, 125]
>>> squares = [1, 4, 9, 16, 25]
>>> squares + cubes
[1, 4, 9, 16, 25, 1, 8, 27, 64, 125]

>>> squares * 3
[1, 4, 9, 16, 25, 1, 4, 9, 16, 25, 1, 4, 9, 16, 25]
>>> squares * 3 + cubes * 2
[1, 4, 9, 16, 25, 1, 4, 9, 16, 25, 1, 4, 9, 16, 25, 1, 8, 27, 64, 125, 1, 8, 27, 64, 125]

>>> (squares * 3 + cubes * 2)[::5]
[1, 1, 1, 1, 1]
>>> len((squares * 3 + cubes * 2)[::5])
5

dict [http://docs.python.org/library/stdtypes.html#dict]

A dictionary is an unordered set of key-value pairs, keys are unique
(within one dictionary).

>>> scores = {'Jack':95, 'Tom' : 86, 'Emily': 99}
>>> scores['Jack']
95
>>> scores.keys()
['Emily', 'Jack', 'Tom']

>>> del scores['Tom']
>>> scores.keys()
['Emily', 'Jack']

Control flows and basic algorithms

Now it’s time to learn more about controlling the behavior of our
program. The basic concept of control flow is: sequential execution and
conditional jump.

	By default, your program will run one line by another.

	When there’s a conditional jump, we move to another part of the
program and start from there.

Conditions and loops

if-else blocks

Consider the usage of if in English language.

If I study, I will pass the exam.

If the predicate is true, then something is going to happen.

In Python programming language, a if statement means that if a
“conditional expression” returns True, then execute the following
block. elif (read: else if) and else blocks are optional, you
can add them if you need.

answer = 42
if answer == 42:
 print("the answer to life, the universe and everything!")
else:
 print("wrong answer, sorry.")

print("End of a if-else block")

In the above example, answer is an integer (42), we compare it to
42, that is obviously True. The python interpreter will execute the
inner block.

Note that in Python programming language, indentions do matter! We
recommend you to use 4 spaces for an indent level. Python doesn’t
like other languages, blocks are represented by different levels of
indents.

A predicate could be a comparison, or a certain condition, which returns
Ture or False. You can combine several predicates with
and/or/not operators.

< less than
<= less than or equal
> greater than
>= greater than or equal
== equal
!= not equal

Ex.
a > b
a == b
value in [1, 2, 3]

See: Truth Value
Testing [https://docs.python.org/2/library/stdtypes.html#truth]

while blocks

Computers help people to do boring jobs, especially repetitions. Another
control structure in the Python programming language is while loop.

while loops are quite easy to understand, for a given if block,
repeat the jobs inside the block while the predicate returns True.

	This will print only one line.

i = 0
if i < 10:
 print(i)

	This will print ten lines, from 0 to 9.

i = 0
while i < 10:
 print(i)
 i = i + 1

While we arrive the end of the block, we jump back to the very beginning
of the while block and test the predicate. If it returns True,
execute the block, otherwise, jump out of the loop.

We call the structure above “loop”. The program will loop the inner
block (usually called “loop body”) again and again for given condition.

Take a look at variable i, inside the inner loop, you must make some
changes to the variables in the predicate, otherwise the loop will never
end.

	A “infinity” loop

while True:
 print("The Galaxy Express 999")
 print("will take you on a journey")
 print("a never ending journey")
 print("a journey to the stars")

for blocks

In most of the cases of loops, we have a counter i or j to
record the times of the loop. Python offers another syntax for this kind
of use: for loops.

for i in range(10):
 print(i)

In python 2 (different from python3), range() yields a list.

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 10, 2)
[1, 3, 5, 7, 9]

for i in range() is a syntax sugar for this kind of loops, python
will put each element from the list inside i, you can use i
inside the loop body.

The concept of this kind of behaviors is called “iteration”, we get an
element one by one from a sequential type.

Similarly, we can iterate over a string or a list/tuple.

>>> for c in "Hello":
... print(c)
H
e
l
l
o

>>> for e in [1, 2, 3, "gg", 55.66]:
... print(e)
1
2
3
gg
55.66

>>> for e in (5566, "never", "die"):
... print(e)
5566
never
die

Sometimes you might need both the element and the index points to that
element, enumerate will return a tuple of the index and the element
at the same time.

>>> for i, x in enumerate("hello"):
... print(i, x)
(0, 'h')
(1, 'e')
(2, 'l')
(3, 'l')
(4, 'o')

Functions and methods

Functions

It’s a good idea to cut different parts of your code to little
independent blocks, that is called encapsulation. We make our
programs to little tiny components and combine them to a big whole
castle.

def hello():
 print("Hello")

hello()

We define a function called hello, it prints hello. When we want
to “call” the function, we use a pair of parentheses right after the
name of the function.

Functions can take arguments (sometimes we call them parameters), you
“pass” arguments to a function and it will do some stuffs.

>>> def say(s):
... """
... print the string s
... """
... print(s)
>>> say("hi")
hi
>>> say("Hello")
Hello
>>> say("Morning")
Morning

Also, it’s a good habit to write down the description via a docstring in
the very beginning of a function. You can use help() to read the
document of the function.

>>> help(say)
Help on function say in module __main__:

say(s)
 print the string s

Also, you can write down your functions in a file and import it from
other programs.

	bar.py

def f():
 print("in bar.py, function f()")

	foo.py

import bar

bar.f()

Computer science is a study of abstraction, programmers encapsulate the details of implementation inside functions, you don’t need to understand the details of a function but read the documentation and use it.

Methods

Methods are like functions but belong to objects/classes.

Python is an object oriented programming language, the language already provides lots of builtin types and methods. You can use help() and dir() to figure them out.

	for instance, we want to uppercase a string, try to find if that is a builtin method of type str.

>>> help(str)

>>> dir(str)
['__add__', '__class__', '__contains__', '__delattr__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__getslice__', '__gt__', '__hash__', '__init__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '_formatter_field_name_split', '_formatter_parser', 'capitalize', 'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']

Awesome, it looks like that we can use str.upper, it takes a string (instant) and returns a copy of uppercased string.

| upper(...)
| S.upper() -> string
|
| Return a copy of the string S converted to uppercase.

>>> "wow! It's the power of python!".upper()
"WOW! IT'S THE POWER OF PYTHON!"

Note: Always try to use builtin types/methods before you create your own. You can google for the jobs you want to do or read the python online documentation.

For example, you want to capitalize a string in Python, the query of googling might be:

Google: python capitalize a string

https://stackoverflow.com/questions/352478/capitalize-a-string
https://docs.python.org/2/library/string.html

Reading the python documentations and the answers on stackoverflow helps you discover more!

See: The Python Standard library [https://docs.python.org/2/library/]

User defined data structures

Sometimes builtin types are not enought for our tasks. We can define our types in Python.

class MyCar(object):
 def __init__(self, speed, color):
 self.speed = speed
 self.color = color

 def go(self):
 print("Hi, I'm a " + self.color + " car, I can run at " + str(self.speed) + "Km/h!")

car = MyCar(100, "red")
car.go()

Note the first argument of these methods, it refers to the class instant
itself. The “initialization” of an instance should be a class method
called __init__, it will be involved when an instance is created.

Instance variables are defined as self.xxx, you can store some
information for an instance.

 Copyright 2014, Yung-Yu Chen.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Python Workshop 0.0.0 documentation

Index

 Copyright 2014, Yung-Yu Chen.
 Created using Sphinx 1.2.2.

 search.html

 Navigation

 		
 index

 		Python Workshop 0.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Yung-Yu Chen.
 Created using Sphinx 1.2.2.

_static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/file.png

