

Welcome to python-valve’s documentation!

python-valve is a Python library which aims to provide the ability to
interface with various Valve services and products, including: the Steam
web API, locally installed Steam clients, Source servers and the Source
master server.

Contents:

	Interacting with Source Servers
	Example

	Queriers and Exceptions

	Identifying Server Platforms

	Querying the Source Master Server
	Example

	SteamIDs
	The SteamID Class

	Exceptions

	Useful Constants

	Source Remote Console (RCON)
	High-level API

	Core API

	Command-line Client

	Steam Web API
	Low-level Wrapper

	Interfaces

Although Python libraries do already exist for many aspects which
python-valve aims to cover, many of them are ageing and no long maintained.
python-valve hopes to change that and provide an all-in-one library for
interfacing with Valve products and services that is well tested, well
documented and actively maintained.

python-valve’s functional test suite for its A2S implementation is actively
ran against thousands of servers to ensure that if any subtle changes are made
by Valve that break things they can be quickly picked up and fixed.

License

Copyright (c) 2013-2017 Oliver Ainsworth

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Trademarks

Valve, the Valve logo, Half-Life, the Half-Life logo, the Lambda logo,
Steam, the Steam logo, Team Fortress, the Team Fortress logo,
Opposing Force, Day of Defeat, the Day of Defeat logo, Counter-Strike,
the Counter-Strike logo, Source, the Source logo, Counter-Strike:
Condition Zero, Portal, the Portal logo, Dota, the Dota 2 logo, and
Defense of the Ancients are trademarks and/or registered trademarks of
Valve Corporation.

Any reference to these are purely for the purpose of identification. Valve
Corporation is not affiliated with python-valve in any way.

Indices and tables

	Index

	Module Index

	Search Page

Interacting with Source Servers

Source provides the “A2S” protocol for querying game servers. This protocol
is used by the Steam and in-game server browsers to list information about
servers such as their name, player count and whether or not they’re password
protected. valve.source.a2s provides a client implementation of
A2S.

	
class valve.source.a2s.ServerQuerier(address, timeout=5.0)

	Implements the A2S Source server query protocol.

https://developer.valvesoftware.com/wiki/Server_queries

Note

Instantiating this class creates a socket. Be sure to close the
querier once finished with it. See valve.source.BaseQuerier.

	
info()

	Retreive information about the server state

This returns the response from the server which implements
__getitem__ for accessing response fields. For example:

with ServerQuerier(...) as server:
 print(server.info()["server_name"])

The following fields are available on the response:

	Field
	Description

	response_type
	Always 0x49

	server_name
	The name of the server

	map
	The name of the map being ran by the server

	folder
	The gamedir if the modification being ran by
the server. E.g. tf, cstrike, csgo.

	game
	A string identifying the game being ran by the
server

	app_id
	The numeric application ID of the game ran by
the server. Note that this is the app ID of the
client, not the server. For example, for Team
Fortress 2 440 is returned instead of
232250 which is the ID of the server
software.

	player_count
	Number of players currently connected.
See players() for caveats about the
accuracy of this field.

	max_players
	The number of player slots available. Note that
player_count may exceed this value under
certain circumstances. See players().

	bot_count
	The number of AI players present

	server_type
	A util.ServerType instance
representing the type of server. E.g.
Dedicated, non-dedicated or Source TV relay.

	platform
	A util.Platform instances
represneting the platform the server is running
on. E.g. Windows, Linux or Mac OS X.

	password_protected
	Whether or not a password is required to
connect to the server.

	vac_enabled
	Whether or not Valve anti-cheat (VAC) is
enabled

	version
	The version string of the server software

Currently the extra data field (EDF) is not supported.

	
ping()

	Ping the server, returning the round-trip latency in milliseconds

The A2A_PING request is deprecated so this actually sends a A2S_INFO
request and times that. The time difference between the two should
be negligble.

	
players()

	Retrive a list of all players connected to the server

The following fields are available on the response:

	Field
	Description

	response_type
	Always 0x44

	player_count
	The number of players listed

	players
	A list of player entries

The players field is a list that contains player_count number
of messages.PlayerEntry instances which have the same
interface as the top-level response object that is returned.

The following fields are available on each player entry:

	Field
	Description

	name
	The name of the player

	score
	Player’s score at the time of the request.
What this relates to is dependant on the
gamemode of the server.

	duration
	Number of seconds the player has been
connected as a float

Note

Under certain circumstances, some servers may return a player
list which contains empty name fields. This can lead to
player_count being misleading.

Filtering out players with empty names may yield a more
accurate enumeration of players:

with ServerQuerier(...) as query:
 players = []
 for player in query.players()["players"]:
 if player["name"]:
 players.append(player)
 player_count = len(players)

	
rules()

	Retreive the server’s game mode configuration

This method allows you capture a subset of a server’s console
variables (often referred to as ‘cvars’,) specifically those which
have the FCVAR_NOTIFY flag set on them. These cvars are used to
indicate game mode’s configuration, such as the gravity setting for
the map or whether friendly fire is enabled or not.

The following fields are available on the response:

	Field
	Description

	response_type
	Always 0x56

	rule_count
	The number of rules

	rules
	A dictionary mapping rule names to their
corresponding string value

Example

In this example we will query a server, printing out it’s name and the number
of players currently conected. Then we’ll print out all the players sorted
score-decesending.

import valve.source.a2s

SERVER_ADDRESS = (..., ...)

with valve.source.a2s.ServerQuerier(SERVER_ADDRESS) as server:
 info = server.info()
 players = server.players()

print("{player_count}/{max_players} {server_name}".format(**info))
for player in sorted(players["players"],
 key=lambda p: p["score"], reverse=True):
 print("{score} {name}".format(**player))

Queriers and Exceptions

Both valve.source.a2s.ServerQuerier and
valve.source.master_server.MasterServerQuerier are based on a
common querier interface. They also raise similar exceptions. All of these
live in the valve.source module.

	
class valve.source.BaseQuerier(address, timeout=5.0)

	Base class for implementing source server queriers.

When an instance of this class is initialised a socket is created.
It’s important that, once a querier is to be discarded, the associated
socket be closed via close(). For example:

querier = valve.source.BaseQuerier(('...', 27015))
try:
 querier.request(...)
finally:
 querier.close()

When server queriers are used as context managers, the socket will
be cleaned up automatically. Hence it’s preferably to use the with
statement over the try-finally pattern described above:

with valve.source.BaseQuerier(('...', 27015)) as querier:
 querier.request(...)

Once a querier has been closed, any attempts to make additional requests
will result in a QuerierClosedError to be raised.

	Variables:	
	host – Host requests will be sent to.

	port – Port number requests will be sent to.

	timeout – How long to wait for a response to a request.

	
close()

	Close the querier’s socket.

It is safe to call this multiple times.

	
get_response()

	Wait for a response to a request.

	Raises:	
	NoResponseError – If the configured timeout is
reached before a response is received.

	QuerierClosedError – If the querier has been closed.

	Returns:	The raw response as a bytes.

	
request(*request)

	Issue a request.

The given request segments will be encoded and combined to
form the final message that is sent to the configured address.

	Parameters:	request (valve.source.messages.Message) – Request message segments.

	Raises:	QuerierClosedError – If the querier has been closed.

	
exception valve.source.NoResponseError

	Raised when a server querier doesn’t receive a response.

	
exception valve.source.QuerierClosedError

	Raised when attempting to use a querier after it’s closed.

Identifying Server Platforms

valve.source.util provides a handful of utility classes which are
used when querying Source servers.

	
class valve.source.util.Platform(value)

	A Source server platform identifier

This class provides utilities for representing Source server platforms
as returned from a A2S_INFO request. Each platform is ultimately
represented by one of the following integers:

	ID
	Platform

	76
	Linux

	108
	Linux

	109
	Mac OS X

	111
	Mac OS X

	119
	Windows

Note

Starbound uses 76 instead of 108 for Linux in the old GoldSource
style.

	
__eq__(other)

	Check for equality between two platforms

If other is not a Platform instance then an attempt is made to
convert it to one using same approach as __init__(). This means
platforms can be compared against integers and strings. For example:

>>>Platform(108) == "linux"
True
>>>Platform(109) == 109
True
>>>Platform(119) == "w"
True

Despite the fact there are two numerical identifers for Mac (109 and
111) comparing either of them together will yield True.

>>>Platform(109) == Platform(111)
True

	
__init__(value)

	Initialise the platform identifier

The given value will be mapped to a numeric identifier. If the
value is already an integer it must then it must exist in the table
above else ValueError is returned.

If value is a one character long string then it’s ordinal value
as given by ord() is used. Alternately the string can be either
of the following:

	Linux

	Mac OS X

	Windows

	
__weakref__

	list of weak references to the object (if defined)

	
os_name

	Convenience mapping to names returned by os.name

	
class valve.source.util.ServerType(value)

	A Source server platform identifier

This class provides utilities for representing Source server types
as returned from a A2S_INFO request. Each server type is ultimately
represented by one of the following integers:

	ID
	Server type

	68
	Dedicated

	100
	Dedicated

	108
	Non-dedicated

	112
	SourceTV

Note

Starbound uses 68 instead of 100 for a dedicated server in the old
GoldSource style.

	
__eq__(other)

	Check for equality between two server types

If other is not a ServerType instance then an attempt is made to
convert it to one using same approach as __init__(). This means
server types can be compared against integers and strings. For example:

>>>Server(100) == "dedicated"
True
>>>Platform(108) == 108
True
>>>Platform(112) == "p"
True

	
__init__(value)

	Initialise the server type identifier

The given value will be mapped to a numeric identifier. If the
value is already an integer it must then it must exist in the table
above else ValueError is returned.

If value is a one character long string then it’s ordinal value
as given by ord() is used. Alternately the string can be either
of the following:

	Dedicated

	Non-Dedicated

	SourceTV

	
__weakref__

	list of weak references to the object (if defined)

Querying the Source Master Server

When a Source server starts it can optionally add it self to an index of
live servers to enable players to find the server via matchmaking and the
in-game server browsers. It does this by registering it self with the “master
server”. The master server is hosted by Valve but the protocol used to
communicate with it is reasonably well documented.

Clients can request a list of server addresses from the master server for
a particular region. Optionally, they can also specify a filtration criteria
to restrict what servers are returned. valve.source.master_server
provides an interface for interacting with the master server.

Note

Although “master server” is used in a singular context there are in fact
multiple servers. By default
valve.source.master_server.MasterServerQuerier will lookup
hl2master.steampowered.com which, at the time of writing, has three
A entries.

	
class valve.source.master_server.MasterServerQuerier(address=('hl2master.steampowered.com', 27011), timeout=10.0)

	Implements the Source master server query protocol

https://developer.valvesoftware.com/wiki/Master_Server_Query_Protocol

Note

Instantiating this class creates a socket. Be sure to close the
querier once finished with it. See valve.source.BaseQuerier.

	
__iter__()

	An unfitlered iterator of all Source servers

This will issue a request for an unfiltered set of server addresses
for each region. Addresses are received in batches but returning
a completely unfiltered set will still take a long time and be
prone to timeouts.

Note

If a request times out then the iterator will terminate early.
Previous versions would propagate a NoResponseError.

See find() for making filtered requests.

	
find(region='all', duplicates=<Duplicates.KEEP: 'keep'>, **filters)

	Find servers for a particular region and set of filtering rules

This returns an iterator which yields (host, port) server
addresses from the master server.

region spcifies what regions to restrict the search to. It can
either be a REGION_ constant or a string identifying the region.
Alternately a list of the strings or REGION_ constants can be
used for specifying multiple regions.

The following region identification strings are supported:

	String
	Region(s)

	na-east
	East North America

	na-west
	West North America

	na
	East North American, West North America

	sa
	South America

	eu
	Europe

	as
	Asia, the Middle East

	oc
	Oceania/Australia

	af
	Africa

	rest
	Unclassified servers

	all
	All of the above

Note

“rest” corresponds to all servers that don’t fit with any
other region. What causes a server to be placed in this region
by the master server isn’t entirely clear.

The region strings are not case sensitive. Specifying an invalid
region identifier will raise a ValueError.

As well as region-based filtering, alternative filters are supported
which are documented on the Valve developer wiki.

https://developer.valvesoftware.com/wiki/Master_Server_Query_Protocol#Filter

This method accepts keyword arguments which are used for building the
filter string that is sent along with the request to the master server.
Below is a list of all the valid keyword arguments:

	Filter
	Description

	type
	Server type, e.g. “dedicated”. This can be a
ServerType instance or any value that can be
converted to a ServerType.

	secure
	Servers using Valve anti-cheat (VAC). This should be
a boolean.

	gamedir
	A string specifying the mod being ran by the server.
For example: tf, cstrike, csgo, etc..

	map
	Which map the server is running.

	linux
	Servers running on Linux. Boolean.

	empty
	Servers which are not empty. Boolean.

	full
	Servers which are full. Boolean.

	proxy
	SourceTV relays only. Boolean.

	napp
	Servers not running the game specified by the given
application ID. E.g. 440 would exclude all TF2
servers.

	noplayers
	Servers that are empty. Boolean

	white
	Whitelisted servers only. Boolean.

	gametype
	Server which match all the tags given. This should
be set to a list of strings.

	gamedata
	Servers which match all the given hidden tags.
Only applicable for L4D2 servers.

	gamedataor
	Servers which match any of the given hidden tags.
Only applicable to L4D2 servers.

Note

Your mileage may vary with some of these filters. There’s no
real guarantee that the servers returned by the master server will
actually satisfy the filter. Because of this it’s advisable to
explicitly check for compliance by querying each server
individually. See valve.source.a2s.

The master server may return duplicate addresses. By default, these
duplicates will be included in the iterator returned by this method.
See Duplicates for controlling this behaviour.

	
class valve.source.master_server.Duplicates

	Bases: enum.Enum

Behaviour for duplicate addresses.

These values are intended to be used with MasterServerQuerier.find()
to control how duplicate addresses returned by the master server are
treated.

	Variables:	
	KEEP – All addresses are returned, even duplicates.

	SKIP – Skip duplicate addresses.

	STOP – Stop returning addresses when a duplicate is encountered.

Example

In this example we will list all unique European and Asian Team Fortress 2
servers running the map ctf_2fort.

import valve.source.master_server

with valve.source.master_server.MasterServerQuerier() as msq:
 servers = msq.find(
 region=["eu", "as"],
 duplicates="skip",
 gamedir="tf",
 map="ctf_2fort",
)
 for host, port in servers:
 print "{0}:{1}".format(host, port)

SteamIDs

SteamID are used in many places within Valve services to identify entities
such as users, groups and game servers. SteamIDs have many different
representations which all need to be handled so the valve.steam.id
module exists to provide an mechanism for representing these IDs in a usable
fashion.

The SteamID Class

Rarely will you ever want to instantiate a SteamID directly. Instead
it is best to use the SteamID.from_community_url() and
SteamID.from_text() class methods for creating new instances.

	
class valve.steam.id.SteamID(account_number, instance, type, universe)

	Represents a SteamID

A SteamID is broken up into four components: a 32 bit account number,
a 20 bit “instance” identifier, a 4 bit account type and an 8 bit
“universe” identifier.

There are 10 known accounts types as listed below. Generally you won’t
encounter types other than “individual” and “group”.

	Type
	Numeric
value
	Can be mapped
to URL
	Constant

	Invalid
	0
	No
	TYPE_INVALID

	Individual
	1
	Yes
	TYPE_INDIVIDUAL

	Multiseat
	2
	No
	TYPE_MULTISEAT

	Game server
	3
	No
	TYPE_GAME_SERVER

	Anonymous game
server
	4
	No
	TYPE_ANON_GAME_SERVER

	Pending
	5
	No
	TYPE_PENDING

	Content server
	6
	No
	TYPE_CONTENT_SERVER

	Group
	7
	Yes
	TYPE_CLAN

	Chat
	8
	No
	TYPE_CHAT

	“P2P Super
Seeder”
	9
	No
	TYPE_P2P_SUPER_SEEDER

	Anonymous user
	10
	No
	TYPE_ANON_USER

TYPE_-prefixed constants are provided by the valve.steam.id
module for the numerical values of each type.

All SteamIDs can be represented textually as well as by their numerical
components. This is typically in the STEAM_X:Y:Z form where X, Y, Z are
the “universe”, “instance” and the account number respectively. There are
two special cases however. If the account type if invalid then “UNKNOWN”
is the textual representation. Similarly “STEAM_ID_PENDING” is used when
the type is pending.

As well as the the textual representation of SteamIDs there are also the
64 and 32 bit versions which contain the SteamID components encoded into
integers of corresponding width. However the 32-bit representation also
includes a letter to indicate account type.

	
__int__()

	The 64 bit representation of the SteamID

64 bit SteamIDs are only valid for those with the type
TYPE_INDIVIDUAL or TYPE_CLAN. For all other types
SteamIDError will be raised.

The 64 bit representation is calculated by multiplying the account
number by two then adding the “instance” and then adding another
constant which varies based on the account type.

For TYPE_INDIVIDUAL the constant is 0x0110000100000000,
whereas for TYPE_CLAN it’s 0x0170000000000000.

	
__str__()

	The textual representation of the SteamID

This is in the STEAM_X:Y:Z form and can be parsed by from_text()
to produce an equivalent instance. Alternately
STEAM_ID_PENDING or UNKNOWN may be returned if the account
type is TYPE_PENDING or TYPE_INVALID respectively.

Note

from_text() will still handle the STEAM_ID_PENDING and
UNKNOWN cases.

	
__weakref__

	list of weak references to the object (if defined)

	
as_32()

	Returns the 32 bit community ID as a string

This is only applicable for TYPE_INDIVIDUAL,
TYPE_CLAN and TYPE_CHAT types. For any other types,
attempting to generate the 32-bit representation will result in
a SteamIDError being raised.

	
as_64()

	Returns the 64 bit representation as a string

This is only possible if the ID type is TYPE_INDIVIDUAL or
TYPE_CLAN, otherwise SteamIDError is raised.

	
community_url(id64=True)

	Returns the full URL to the Steam Community page for the SteamID

This can either be generate a URL from the 64 bit representation
(the default) or the 32 bit one. Generating community URLs is only
supported for IDs of type TYPE_INDIVIDUAL and
TYPE_CLAN. Attempting to generate a URL for any other type
will result in a SteamIDError being raised.

	
classmethod from_community_url(id, universe=0)

	Parse a Steam community URL into a SteamID instance

This takes a Steam community URL for a profile or group and converts
it to a SteamID. The type of the ID is infered from the type character
in 32-bit community urls ([U:1:1] for example) or from the URL path
(/profile or /groups) for 64-bit URLs.

As there is no way to determine the universe directly from
URL it must be expliticly set, defaulting to
UNIVERSE_INDIVIDUAL.

Raises SteamIDError if the URL cannot be parsed.

	
classmethod from_text(id, type=1)

	Parse a SteamID in the STEAM_X:Y:Z form

Takes a teaxtual SteamID in the form STEAM_X:Y:Z and returns
a corresponding SteamID instance. The X represents the
account’s ‘universe,’ Z is the account number and Y is either 1 or 0.

As the account type cannot be directly inferred from the SteamID
it must be explicitly specified, defaulting to TYPE_INDIVIDUAL.

The two special IDs STEAM_ID_PENDING and UNKNOWN are also
handled returning SteamID instances with the appropriate
types set (TYPE_PENDING and TYPE_INVALID respectively)
and with all other components of the ID set to zero.

	
type_name

	The account type as a string

Exceptions

	
exception valve.steam.id.SteamIDError

	Bases: ValueError

Raised when parsing or building invalid SteamIDs

Useful Constants

As well as providing the SteamID class, the valve.steam.id
module also contains numerous constants which relate to the contituent parts
of a SteamID. These constants map to their numeric equivalent.

Account Types

The following are the various account types that can be encoded into a
SteamID. Many of them are seemingly no longer in use – at least not in
public facing services – and you’re only likely to come across
TYPE_INDIVIDUAL, TYPE_CLAN and possibly
TYPE_GAME_SERVER.

	
valve.steam.id.TYPE_INVALID = 0

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.TYPE_INDIVIDUAL = 1

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.TYPE_MULTISEAT = 2

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.TYPE_GAME_SERVER = 3

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.TYPE_ANON_GAME_SERVER = 4

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.TYPE_PENDING = 5

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.TYPE_CONTENT_SERVER = 6

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.TYPE_CLAN = 7

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.TYPE_CHAT = 8

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.TYPE_P2P_SUPER_SEEDER = 9

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.TYPE_ANON_USER = 10

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

Universes

A SteamID “universe” provides a way of grouping IDs. Typically you’ll only
ever come across the UNIVERSE_INDIVIDUAL universe.

	
valve.steam.id.UNIVERSE_INDIVIDUAL = 0

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.UNIVERSE_PUBLIC = 1

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.UNIVERSE_BETA = 2

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.UNIVERSE_INTERNAL = 3

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.UNIVERSE_DEV = 4

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
valve.steam.id.UNIVERSE_RC = 5

	int(x=0) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

Source Remote Console (RCON)

Source remote console (or RCON) provides a way for server operators to
administer and interact with their servers remotely in the same manner as
the console provided by srcds. The valve.rcon module
provides an implementation of the RCON protocol.

RCON is a simple, TCP-based request-response protocol with support for
basic authentication. The RCON client initiates a connection to a server
and attempts to authenticate by submitting a password. If authentication
succeeds then the client is free to send further requests. These subsequent
requests are interpreted the same way as if you were to type them into
the srcds console.

Warning

Passwords and console commands are sent in plain text. Tunneling the
connection through a secure channel may be advisable where possible.

Note

Multiple RCON authentication failures in a row from a single host will
result in the Source server automatically banning that IP, preventing
any subsequent connection attempts.

High-level API

The valve.rcon module provides a number of ways to interact with
RCON servers. The simplest is the execute() function which executes
a single command on the server and returns the response as a string.

In many cases this may be sufficient but it’s important to consider that
execute() will create a new, temporary connection for every command.
If order to reuse a connection the RCON class should be used
directly.

Also note that execute() only returns Unicode strings which may
prove problematic in some cases. See Unicode and String Encoding.

	
valve.rcon.execute(address, password, command)

	Execute a command on an RCON server.

This is a very high-level interface which connects to the given
RCON server using the provided credentials and executes a command.

	Parameters:	
	address – the address of the server to connect to as a tuple
containing the host as a string and the port as an integer.

	password (str) – the password to use to authenticate the connection.

	command (str) – the command to execute on the server.

	Raises:	
	UnicodeDecodeError – if the response could not be decoded into
Unicode.

	RCONCommunicationError – if a connection to the RCON server
could not be made.

	RCONAuthenticationError – if authentication failed, either
due to being banned or providing the wrong password.

	RCONMessageError – if the response body couldn’t be decoded
into a Unicode string.

	Returns:	the response to the command as a Unicode string.

Core API

The core API for the RCON implementation is split encapsulated by two
distinct classes: RCONMessage and RCON.

Representing RCON Messages

Each RCON message, whether a request or a response, is represented by an
instance of the RCONMessage class. Each message has three fields:
the message ID, type and contents or body. The message ID of a request is
reflected back to the client when the server returns a response but is
otherwise unsued by this implementation. The type is one of four constants
(represented by three distinct values) which signifies the semantics of the
message’s ID and body. The body it self is an opaque string; its value
depends on the type of message.

	
class valve.rcon.RCONMessage(id_, type_, body_or_text)

	Represents a RCON request or response.

	
classmethod decode(buffer_)

	Decode a message from a bytestring.

This will attempt to decode a single message from the start of the
given buffer. If the buffer contains more than a single message then
this must be called multiple times.

	Raises:	MessageError – if the buffer doesn’t contain a valid message.

	Returns:	a tuple containing the decoded RCONMessage and
the remnants of the buffer. If the buffer contained exactly one
message then the remaning buffer will be empty.

	
encode()

	Encode message to a bytestring.

	
text

	Get the body of the message as Unicode.

	Raises:	UnicodeDecodeError – if the body cannot be decoded as ASCII.

	Returns:	the body of the message as a Unicode string.

Note

It has been reported that some servers may not return valid
ASCII as they’re documented to do so. Therefore you should
always handle the potential UnicodeDecodeError.

If the correct encoding is known you can manually decode
body for your self.

Unicode and String Encoding

The type of the body field of RCON messages is documented as being a
double null-terminated, ASCII-encoded string. At the Python level though
both Unicode strings and raw byte string interfaces are provided by
RCONMessage.text and RCONMessage.body respectively.

In Python you are encouraged to deal with text (a.k.a. Unicode strings)
in preference to raw byte strings unless strictly neccessary. However,
it has been reported that under some conditions RCON servers may return
invalid ASCII sequences in the response body. Therefore it is possible
that the textual representation of the body cannot be determined and
attempts to access RCONMessage.text will fail with a
UnicodeDecodeError being raised.

It appears – but is not conclusively determined – that RCON servers in
fact return UTF-8-encoded message bodies, hence why ASCII seems to to work
in most cases. Until this can be categorically proven as the behaviour that
should be expected Python-valve will continue to attempt to process ASCII
strings.

If you come across UnicodeDecodeError whilst accessing response
bodies you will instead have to make-do and handle the raw byte strings
manually. For example:

response = rcon.execute("command")
response_text = response.body.decode("utf-8")

If this is undesirable it is also possible to globally set the encoding
used by RCONMessage but this not particularly encouraged:

import valve.rcon

valve.rcon.RCONMessage.ENCODING = "utf-8"

Creating RCON Connections

	
class valve.rcon.RCON(address, password, timeout=None)

	Represents an RCON connection.

	
__call__(command)

	Invoke a command.

This is a higher-level version of execute() that always blocks
and only returns the response body.

	Raises:	RCONMessageError – if the response body couldn’t be decoded
into a Unicode string.

	Returns:	the response to the command as a Unicode string.

	
authenticate(timeout=None)

	Authenticate with the server.

This sends an authentication message to the connected server
containing the password. If the password is correct the server
sends back an acknowledgement and will allow all subsequent
commands to be executed.

However, if the password is wrong the server will either notify
the client or immediately drop the connection depending on whether
the client IP has been banned or not. In either case, the client
connection will be closed and an exception raised.

Note

Client banning IP banning happens automatically after a few
failed attempts at authentication. Assuming you can direct
access to the server’s console you can unban the client IP
using the removeip command:

Banning xxx.xxx.xxx.xx for rcon hacking attempts
] removeip xxx.xxx.xxx.xxx
removeip: filter removed for xxx.xxx.xxx.xxx

	param timeout:	the number of seconds to wait for a response. If
not given the connection-global timeout is used.

	raises RCONAuthenticationError:

	 	if authentication failed, either
due to being banned or providing the wrong password.

	raises RCONTimeoutError:

	 	if the server takes too long to respond.
The connection will be closed in this case as well.

	Raises:	
	RCONError – if closed.

	RCONError – if not connected.

	
authenticated

	Determine if the connection is authenticated.

	
close()

	Close connection to a server.

	
closed

	Determine if the connection has been closed.

	
connect()

	Create a connection to a server.

	Raises:	
	RCONError – if closed.

	RCONError – if connected.

	
connected

	Determine if a connection has been made.

Note

Strictly speaking this does not guarantee that any subsequent
attempt to execute a command will succeed as the underlying
socket may be closed by the server at any time. It merely
indicates that a previous call to connect() was
successful.

	
cvarlist()

	Get all ConVars for an RCON connection.

This will issue a cvarlist command to it in order to enumerate
all available ConVars.

	Returns:	an iterator of :class:`ConVar`s which may be empty.

	
execute(command, block=True, timeout=None)

	Invoke a command.

Invokes the given command on the conncted server. By default this
will block (up to the timeout) for a response. This can be disabled
if you don’t care about the response.

	param str command:

	 	the command to execute.

	param bool block:

	 	whether or not to wait for a response.

	param timeout:	the number of seconds to wait for a response. If
not given the connection-global timeout is used.

	raises RCONCommunicationError:

	 	if the socket is closed or in any
other erroneous state whilst issuing the request or receiving
the response.

	raises RCONTimeoutError:

	 	if the timeout is reached waiting for a
response. This doesn’t close the connection but the response is
lost.

	returns:	the response to the command as a RCONMessage or
None depending on whether block was True or not.

	Raises:	
	RCONError – if not authenticated.

	RCONError – if not connected.

Example

import valve.rcon

address = ("rcon.example.com", 27015)
password = "top-secrect-password"
with valve.rcon.RCON(address, password) as rcon:
 response = rcon.execute("echo Hello, world!")
 print(response.text)

Command-line Client

As well as providing means to programatically interact with RCON servers,
the valve.rcon module also provides an interactive, command-line
client. A client shell can be started by calling shell() or running
the valve.rcon module.

	
valve.rcon.shell(address=None, password=None)

	A simple interactive RCON shell.

This will connect to the server identified by the given address using
the given password. If a password is not given then the shell will
prompt for it. If no address is given, then no connection will be made
automatically and the user will have to do it manually using !connect.

Once connected the shell simply dispatches commands and prints the
response to stdout.

	Parameters:	
	address – a network address tuple containing the host and port
of the RCON server.

	password (str) – the password for the server. This is ignored if
address is not given.

Using the RCON Shell

When shell() is executed, an interactive RCON shell is created. This
shell reads commands from stdin, passes them to a connected RCON server
then prints the response to stdout in a conventional read-eval-print pattern.

By default, commands are treated as plain RCON commmands and are passed
directly to the connected server for evaluation. However, commands prefixed
with an exclamation mark are interpreted by the shell it self:

	!connect

	Connect to an RCON server. This command accepts two space-separated
arguments: the address of the server and the corresponding password;
the latter is optional. If the password is not given the user is
prompted for it.

If the shell is already connected to a server then it will disconnect
first before connecting to the new one.

	!disconnect

	Disconnect from the current RCON server.

	!shutdown

	Shutdown the RCON server. This actually just sends an exit command
to the server. This must be used instead of exit as its behaviour
could prove confusing with !exit otherwise.

	!exit

	Exit the shell. This does not shutdown the RCON server.

Help is available via the help command. When connected, an optional
argument can be provided which is the RCON command to show help for.

When connected to a server, command completions are provided via the tab key.

Command-line Invocation

The valve.rcon module is runnable. When ran with no arguments its the
same as calling shell() with defaults. As with shell(), the
address and password can be provided as a part of the invoking command:

$ python -m valve.rcon
$ python -m valve.rcon rcon.example.com:27015
$ python -m valve.rcon rcon.example.com:27015 --password TOP-SECRET

Warning

Passing sensitive information via command-line arguments, such as
your RCON password, can be dangerous. For example, it can show
up in ps output.

Executing a Single Command

When ran, the module has two modes of execution: the default, which will
spawn an interactive RCON shell and the single command execution mode.
When passed the --execute argument, python -m valve.rcon
will run the given command and exit with a status code of zero upon
completion. The command response is printed to stdout.

This can be useful for simple scripting of RCON commands outside of a
Python environment, such as in a shell script.

$ python -m valve.rcon rcon.example.com:27015 \
 --password TOP-SECRET --execute "echo Hello, world!"

Usage

Steam Web API

The Steam Web API provides a mechanism to use Steam services over an HTTP.
The API is divided up into “interfaces” with each interface having a number of
methods that can be performed on it. Python-valve provides a thin wrapper on
top of these interfaces as well as a higher-level implementation.

Generally you’ll want to use the higher-level interface to the API as it
provides greater abstraction and session management. However the higher-level
API only covers a few core interfaces of the Steam Web API, so it may be
necessary to use the wrapper layer in some circumstances.

Although an API key is not strictly necessary to use the Steam Web API, it is
advisable to get an API key [http://steamcommunity.com/dev/apikey]. Using an
API key allows access to greater functionality. Also, before using the Steam
Web API it is good idea to read the
Steam Web API Terms of Use [http://steamcommunity.com/dev/apiterms] and
Steam Web API Documentation [http://steamcommunity.com/dev/].

Low-level Wrapper

The Steam Web API is self-documenting via the
/ISteamWebAPIUtil/GetSupportedAPIList/v1/ endpoint. This enables
python-valve to build the wrapper entirely automatically, which includes
validating parameters and automatic generation of documentation.

The entry-point for using the API wrapper is by constructing a API
instance. During initialisation a request is issued to the
GetSupportedAPIList endpoint and the interfaces are constructed. If a Steam
Web API key is specified then a wider selection of interfaces will be available.
Note that this can be a relatively time consuming process as the response
returned by GetSupportedAPIList can be quite large. This is especially true
when an API key is given as there are more interfaces to generated.

An instance of each interface is created and bound to the API
instance, as it is this API instance that will be responsible for
dispatching the HTTP requests. The interfaces are made available via
API.__getitem__(). The interface objects have methods which correspond
to those returned by GetSupportedAPIList.

	
class valve.steam.api.interface.API(key=None, format='json', versions=None, interfaces=None)

	
	
__getitem__(interface_name)

	Get an interface instance by name

	
__init__(key=None, format='json', versions=None, interfaces=None)

	Initialise an API wrapper

The API is usable without an API key but exposes significantly less
functionality, therefore it’s advisable to use a key.

Response formatters are callables which take the Unicode response from
the Steam Web API and turn it into a more usable Python object, such as
dictionary. The Steam API it self can generate responses in either
JSON, XML or VDF. The formatter callables should have an attribute
format which is a string indicating which textual format they
handle. For convenience the format parameter also accepts the
strings json, xml and vdf which are mapped to the
json_format(), etree_format() and vdf_format()
formatters respectively.

The interfaces argument can optionally be set to a module
containing BaseInterface subclasses which will be instantiated
and bound to the API instance. If not given then the
interfaces are loaded using ISteamWebAPIUtil/GetSupportedAPIList.

The optional versions argument allows specific versions of interface
methods to be used. If given, versions should be a mapping of
further mappings keyed against the interface name. The inner mapping
should specify the version of interface method to use which is keyed
against the method name. These mappings don’t need to be complete and
can omit methods or even entire interfaces. In which case the default
behaviour is to use the method with the highest version number.

	Parameters:	
	key (str) – a Steam Web API key.

	format – response formatter.

	versions – the interface method versions to use.

	interfaces – a module containing BaseInterface
subclasses or None if they should be loaded for the first time.

	
api_root = 'https://api.steampowered.com/'

	

	
request(http_method, interface, method, version, params=None, format=None)

	Issue a HTTP request to the Steam Web API

This is called indirectly by interface methods and should rarely be
called directly. The response to the request is passed through the
response formatter which is then returned.

	Parameters:	
	interface (str) – the name of the interface.

	method (str) – the name of the method on the interface.

	version (int) – the version of the method.

	params – a mapping of GET or POST data to be sent with the
request.

	format – a response formatter callable to overide format.

	
session()

	Create an API sub-session without rebuilding the interfaces

This returns a context manager which yields a new API instance
with the same interfaces as the current one. The difference between
this and creating a new API manually is that this will avoid
rebuilding the all interface classes which can be slow.

	
versions()

	Get the versions of the methods for each interface

This returns a dictionary of dictionaries which is keyed against
interface names. The inner dictionaries map method names to method
version numbers. This structure is suitable for passing in as the
versions argument to __init__().

Interface Method Version Pinning

It’s important to be aware of the fact that API interface methods can have
multiple versions. For example, ISteamApps/GetAppList. This means they may
take different arguments and returned different responses. The default
behaviour of the API wrapper is to always expose the method with the highest
version number.

This is fine in most cases, however it does pose a potential problem. New
versions of interface methods are likely to break backwards compatability.
Therefore API provides a mechanism to manually specify the interface
method versions to use via the versions argument to API.__init__().

The if given at all, versions is expected to be a dictionary of dictionaries
keyed against interface names. The inner dictionaries map method names to
versions. For example:

{"ISteamApps": {"GetAppList": 1}}

Passsing this into API.__init__() would mean version 1 of
ISteamApps/GetAppList would be used in preference to the default behaviour
of using the highest version – wich at the time of writing is version 2.

It is important to pin your interface method versions when your code enters
production or otherwise face the risk of it breaking in the future if and when
Valve updates the Steam Web API. The API.pin_versions() method is
provided to help in determining what versions to pin. How to integrate interface
method version pinning into existing code is an excerise for the reader however.

Response Formatters

	
valve.steam.api.interface.json_format(response)

	Parse response as JSON using the standard Python JSON parser

	Returns:	the JSON object encoded in the response.

	
valve.steam.api.interface.etree_format(response)

	Parse response using ElementTree

	Returns:	a xml.etree.ElementTree.Element of the root element of
the response.

	
valve.steam.api.interface.vdf_format(response)

	Parse response using valve.vdf

	Returns:	a dictionary decoded from the VDF.

Interfaces

These interfaces are automatically wrapped and documented. The availability of
some interfaces is dependant on whether or not an API key is given. It should
also be noted that as the interfaces are generated automatically they do not
respect the naming conventions as detailed in PEP 8.

	
class interfaces.IGCVersion_205790(api)

	
	
GetClientVersion()

	

	
GetServerVersion()

	

	
name = 'IGCVersion_205790'

	

	
class interfaces.IGCVersion_440(api)

	
	
GetClientVersion()

	

	
GetServerVersion()

	

	
name = 'IGCVersion_440'

	

	
class interfaces.IGCVersion_570(api)

	
	
GetClientVersion()

	

	
GetServerVersion()

	

	
name = 'IGCVersion_570'

	

	
class interfaces.IGCVersion_730(api)

	
	
GetServerVersion()

	

	
name = 'IGCVersion_730'

	

	
class interfaces.IPortal2Leaderboards_620(api)

	
	
GetBucketizedData(leaderboardName)

	

	Parameters:	leaderboardName (string) – The leaderboard name to fetch data for.

	
name = 'IPortal2Leaderboards_620'

	

	
class interfaces.IPortal2Leaderboards_841(api)

	
	
GetBucketizedData(leaderboardName)

	

	Parameters:	leaderboardName (string) – The leaderboard name to fetch data for.

	
name = 'IPortal2Leaderboards_841'

	

	
class interfaces.ISteamApps(api)

	
	
GetAppList()

	

	
GetServersAtAddress(addr)

	

	Parameters:	addr (string) – IP or IP:queryport to list

	
UpToDateCheck(appid, version)

	

	Parameters:	
	appid (uint32) – AppID of game

	version (uint32) – The installed version of the game

	
name = 'ISteamApps'

	

	
class interfaces.ISteamDirectory(api)

	
	
GetCMList(cellid, maxcount=None)

	

	Parameters:	
	cellid (uint32) – Client’s Steam cell ID

	maxcount (uint32) – Max number of servers to return

	
name = 'ISteamDirectory'

	

	
class interfaces.ISteamEnvoy(api)

	
	
PaymentOutReversalNotification()

	

	
name = 'ISteamEnvoy'

	

	
class interfaces.ISteamNews(api)

	
	
GetNewsForApp(appid, count=None, enddate=None, feeds=None, maxlength=None)

	

	Parameters:	
	appid (uint32) – AppID to retrieve news for

	count (uint32) – # of posts to retrieve (default 20)

	enddate (uint32) – Retrieve posts earlier than this date (unix epoch timestamp)

	feeds (string) – Comma-seperated list of feed names to return news for

	maxlength (uint32) – Maximum length for the content to return, if this is 0 the full content is returned, if it’s less then a blurb is generated to fit.

	
name = 'ISteamNews'

	

	
class interfaces.ISteamRemoteStorage(api)

	
	
GetCollectionDetails(collectioncount, publishedfileids0)

	

	Parameters:	
	collectioncount (uint32) – Number of collections being requested

	publishedfileids0 (uint64) – collection ids to get the details for

	
GetPublishedFileDetails(itemcount, publishedfileids0)

	

	Parameters:	
	itemcount (uint32) – Number of items being requested

	publishedfileids0 (uint64) – published file id to look up

	
name = 'ISteamRemoteStorage'

	

	
class interfaces.ISteamUserAuth(api)

	
	
AuthenticateUser(encrypted_loginkey, sessionkey, steamid)

	

	Parameters:	
	encrypted_loginkey (rawbinary) – Should be the users hashed loginkey, AES encrypted with the sessionkey.

	sessionkey (rawbinary) – Should be a 32 byte random blob of data, which is then encrypted with RSA using the Steam system’s public key. Randomness is important here for security.

	steamid (uint64) – Should be the users steamid, unencrypted.

	
name = 'ISteamUserAuth'

	

	
class interfaces.ISteamUserOAuth(api)

	
	
GetTokenDetails(access_token)

	

	Parameters:	access_token (string) – OAuth2 token for which to return details

	
name = 'ISteamUserOAuth'

	

	
class interfaces.ISteamUserStats(api)

	
	
GetGlobalAchievementPercentagesForApp(gameid)

	

	Parameters:	gameid (uint64) – GameID to retrieve the achievement percentages for

	
GetGlobalStatsForGame(appid, count, name0, enddate=None, startdate=None)

	

	Parameters:	
	appid (uint32) – AppID that we’re getting global stats for

	count (uint32) – Number of stats get data for

	enddate (uint32) – End date for daily totals (unix epoch timestamp)

	name0 (string) – Names of stat to get data for

	startdate (uint32) – Start date for daily totals (unix epoch timestamp)

	
GetNumberOfCurrentPlayers(appid)

	

	Parameters:	appid (uint32) – AppID that we’re getting user count for

	
name = 'ISteamUserStats'

	

	
class interfaces.ISteamWebAPIUtil(api)

	
	
GetServerInfo()

	

	
GetSupportedAPIList()

	

	
name = 'ISteamWebAPIUtil'

	

	
class interfaces.ISteamWebUserPresenceOAuth(api)

	
	
PollStatus(message, steamid, umqid, pollid=None, secidletime=None, sectimeout=None, use_accountids=None)

	

	Parameters:	
	message (uint32) – Message that was last known to the user

	pollid (uint32) – Caller-specific poll id

	secidletime (uint32) – How many seconds is client considering itself idle, e.g. screen is off

	sectimeout (uint32) – Long-poll timeout in seconds

	steamid (string) – Steam ID of the user

	umqid (uint64) – UMQ Session ID

	use_accountids (uint32) – Boolean, 0 (default): return steamid_from in output, 1: return accountid_from

	
name = 'ISteamWebUserPresenceOAuth'

	

	
class interfaces.ITFSystem_440(api)

	
	
GetWorldStatus()

	

	
name = 'ITFSystem_440'

	

	
class interfaces.IPlayerService(api)

	
	
RecordOfflinePlaytime(play_sessions, steamid, ticket)

	

	Parameters:	
	play_sessions (string) –

	steamid (uint64) –

	ticket (string) –

	
name = 'IPlayerService'

	

	
class interfaces.IAccountRecoveryService(api)

	
	
ReportAccountRecoveryData(install_config, loginuser_list, machineid, shasentryfile)

	

	Parameters:	
	install_config (string) –

	loginuser_list (string) –

	machineid (string) –

	shasentryfile (string) –

	
RetrieveAccountRecoveryData(requesthandle)

	

	Parameters:	requesthandle (string) –

	
name = 'IAccountRecoveryService'

	

 Python Module Index

 i |
 v

 		 	

 		
 i	

 	
 	
 interfaces	

 		 	

 		
 v	

 	[image: -]
 	
 valve	

 	
 	
 valve.rcon	

 	
 	
 valve.source	

 	
 	
 valve.source.a2s	

 	
 	
 valve.source.util	

 	
 	
 valve.steam.api.interface	

 	
 	
 valve.steam.id	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	
 	__call__() (valve.rcon.RCON method)

 	__eq__() (valve.source.util.Platform method)

 	(valve.source.util.ServerType method)

 	__getitem__() (valve.steam.api.interface.API method)

 	__init__() (valve.source.util.Platform method)

 	(valve.source.util.ServerType method)

 	(valve.steam.api.interface.API method)

 	
 	__int__() (valve.steam.id.SteamID method)

 	__iter__() (valve.source.master_server.MasterServerQuerier method)

 	__str__() (valve.steam.id.SteamID method)

 	__weakref__ (valve.source.util.Platform attribute)

 	(valve.source.util.ServerType attribute)

 	(valve.steam.id.SteamID attribute)

A

 	
 	API (class in valve.steam.api.interface)

 	api_root (valve.steam.api.interface.API attribute)

 	as_32() (valve.steam.id.SteamID method)

 	
 	as_64() (valve.steam.id.SteamID method)

 	authenticate() (valve.rcon.RCON method)

 	authenticated (valve.rcon.RCON attribute)

 	AuthenticateUser() (interfaces.ISteamUserAuth method)

B

 	
 	BaseQuerier (class in valve.source)

C

 	
 	close() (valve.rcon.RCON method)

 	(valve.source.BaseQuerier method)

 	closed (valve.rcon.RCON attribute)

 	
 	community_url() (valve.steam.id.SteamID method)

 	connect() (valve.rcon.RCON method)

 	connected (valve.rcon.RCON attribute)

 	cvarlist() (valve.rcon.RCON method)

D

 	
 	decode() (valve.rcon.RCONMessage class method)

 	
 	Duplicates (class in valve.source.master_server)

E

 	
 	encode() (valve.rcon.RCONMessage method)

 	etree_format() (in module valve.steam.api.interface)

 	
 	execute() (in module valve.rcon)

 	(valve.rcon.RCON method)

F

 	
 	find() (valve.source.master_server.MasterServerQuerier method)

 	
 	from_community_url() (valve.steam.id.SteamID class method)

 	from_text() (valve.steam.id.SteamID class method)

G

 	
 	get_response() (valve.source.BaseQuerier method)

 	GetAppList() (interfaces.ISteamApps method)

 	GetBucketizedData() (interfaces.IPortal2Leaderboards_620 method)

 	(interfaces.IPortal2Leaderboards_841 method)

 	GetClientVersion() (interfaces.IGCVersion_205790 method)

 	(interfaces.IGCVersion_440 method)

 	(interfaces.IGCVersion_570 method)

 	GetCMList() (interfaces.ISteamDirectory method)

 	GetCollectionDetails() (interfaces.ISteamRemoteStorage method)

 	GetGlobalAchievementPercentagesForApp() (interfaces.ISteamUserStats method)

 	GetGlobalStatsForGame() (interfaces.ISteamUserStats method)

 	
 	GetNewsForApp() (interfaces.ISteamNews method)

 	GetNumberOfCurrentPlayers() (interfaces.ISteamUserStats method)

 	GetPublishedFileDetails() (interfaces.ISteamRemoteStorage method)

 	GetServerInfo() (interfaces.ISteamWebAPIUtil method)

 	GetServersAtAddress() (interfaces.ISteamApps method)

 	GetServerVersion() (interfaces.IGCVersion_205790 method)

 	(interfaces.IGCVersion_440 method)

 	(interfaces.IGCVersion_570 method)

 	(interfaces.IGCVersion_730 method)

 	GetSupportedAPIList() (interfaces.ISteamWebAPIUtil method)

 	GetTokenDetails() (interfaces.ISteamUserOAuth method)

 	GetWorldStatus() (interfaces.ITFSystem_440 method)

I

 	
 	IAccountRecoveryService (class in interfaces)

 	IGCVersion_205790 (class in interfaces)

 	IGCVersion_440 (class in interfaces)

 	IGCVersion_570 (class in interfaces)

 	IGCVersion_730 (class in interfaces)

 	info() (valve.source.a2s.ServerQuerier method)

 	interfaces (module)

 	IPlayerService (class in interfaces)

 	IPortal2Leaderboards_620 (class in interfaces)

 	IPortal2Leaderboards_841 (class in interfaces)

 	
 	ISteamApps (class in interfaces)

 	ISteamDirectory (class in interfaces)

 	ISteamEnvoy (class in interfaces)

 	ISteamNews (class in interfaces)

 	ISteamRemoteStorage (class in interfaces)

 	ISteamUserAuth (class in interfaces)

 	ISteamUserOAuth (class in interfaces)

 	ISteamUserStats (class in interfaces)

 	ISteamWebAPIUtil (class in interfaces)

 	ISteamWebUserPresenceOAuth (class in interfaces)

 	ITFSystem_440 (class in interfaces)

J

 	
 	json_format() (in module valve.steam.api.interface)

M

 	
 	MasterServerQuerier (class in valve.source.master_server)

N

 	
 	name (interfaces.IAccountRecoveryService attribute)

 	(interfaces.IGCVersion_205790 attribute)

 	(interfaces.IGCVersion_440 attribute)

 	(interfaces.IGCVersion_570 attribute)

 	(interfaces.IGCVersion_730 attribute)

 	(interfaces.IPlayerService attribute)

 	(interfaces.IPortal2Leaderboards_620 attribute)

 	(interfaces.IPortal2Leaderboards_841 attribute)

 	(interfaces.ISteamApps attribute)

 	(interfaces.ISteamDirectory attribute)

 	(interfaces.ISteamEnvoy attribute)

 	(interfaces.ISteamNews attribute)

 	(interfaces.ISteamRemoteStorage attribute)

 	(interfaces.ISteamUserAuth attribute)

 	(interfaces.ISteamUserOAuth attribute)

 	(interfaces.ISteamUserStats attribute)

 	(interfaces.ISteamWebAPIUtil attribute)

 	(interfaces.ISteamWebUserPresenceOAuth attribute)

 	(interfaces.ITFSystem_440 attribute)

 	
 	NoResponseError

O

 	
 	os_name (valve.source.util.Platform attribute)

P

 	
 	PaymentOutReversalNotification() (interfaces.ISteamEnvoy method)

 	ping() (valve.source.a2s.ServerQuerier method)

 	
 	Platform (class in valve.source.util)

 	players() (valve.source.a2s.ServerQuerier method)

 	PollStatus() (interfaces.ISteamWebUserPresenceOAuth method)

Q

 	
 	QuerierClosedError

R

 	
 	RCON (class in valve.rcon)

 	RCONMessage (class in valve.rcon)

 	RecordOfflinePlaytime() (interfaces.IPlayerService method)

 	ReportAccountRecoveryData() (interfaces.IAccountRecoveryService method)

 	
 	request() (valve.source.BaseQuerier method)

 	(valve.steam.api.interface.API method)

 	RetrieveAccountRecoveryData() (interfaces.IAccountRecoveryService method)

 	rules() (valve.source.a2s.ServerQuerier method)

S

 	
 	ServerQuerier (class in valve.source.a2s)

 	ServerType (class in valve.source.util)

 	session() (valve.steam.api.interface.API method)

 	
 	shell() (in module valve.rcon)

 	SteamID (class in valve.steam.id)

 	SteamIDError

T

 	
 	text (valve.rcon.RCONMessage attribute)

 	TYPE_ANON_GAME_SERVER (in module valve.steam.id)

 	TYPE_ANON_USER (in module valve.steam.id)

 	TYPE_CHAT (in module valve.steam.id)

 	TYPE_CLAN (in module valve.steam.id)

 	TYPE_CONTENT_SERVER (in module valve.steam.id)

 	
 	TYPE_GAME_SERVER (in module valve.steam.id)

 	TYPE_INDIVIDUAL (in module valve.steam.id)

 	TYPE_INVALID (in module valve.steam.id)

 	TYPE_MULTISEAT (in module valve.steam.id)

 	type_name (valve.steam.id.SteamID attribute)

 	TYPE_P2P_SUPER_SEEDER (in module valve.steam.id)

 	TYPE_PENDING (in module valve.steam.id)

U

 	
 	UNIVERSE_BETA (in module valve.steam.id)

 	UNIVERSE_DEV (in module valve.steam.id)

 	UNIVERSE_INDIVIDUAL (in module valve.steam.id)

 	
 	UNIVERSE_INTERNAL (in module valve.steam.id)

 	UNIVERSE_PUBLIC (in module valve.steam.id)

 	UNIVERSE_RC (in module valve.steam.id)

 	UpToDateCheck() (interfaces.ISteamApps method)

V

 	
 	valve.rcon (module)

 	valve.source (module)

 	valve.source.a2s (module)

 	valve.source.util (module), [1]

 	
 	valve.steam.api.interface (module)

 	valve.steam.id (module)

 	vdf_format() (in module valve.steam.api.interface)

 	versions() (valve.steam.api.interface.API method)

 _static/up.png

nav.xhtml

 Table of Contents

 		Welcome to python-valve's documentation!

 		Interacting with Source Servers

 		Example

 		Queriers and Exceptions

 		Identifying Server Platforms

 		Querying the Source Master Server

 		Example

 		SteamIDs

 		The SteamID Class

 		Exceptions

 		Useful Constants

 		Account Types

 		Universes

 		Source Remote Console (RCON)

 		High-level API

 		Core API

 		Representing RCON Messages

 		Creating RCON Connections

 		Command-line Client

 		Using the RCON Shell

 		Command-line Invocation

 		Steam Web API

 		Low-level Wrapper

 		Interface Method Version Pinning

 		Response Formatters

 		Interfaces

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

