

Guide to Python Type Checking

Contents:

	Background
	Why Should I Care?

	Enter PEP 484

	The Tools
	mypy

	PyCharm

	pytype

	Comparison

	Type Classes
	Foundational Types

	Concrete Collection Types

	NamedTuple

	Ordinary Classes

Indices and tables

	Index

	Module Index

	Search Page

Background

Why Should I Care?

You may have heard about type-hints being added to python 3.5, and
wondered “why you should I care?”. Well, the answer is much the same as
for documenting your code: type checking saves you time by preventing
mistakes and removing guesswork. Up until now, the best that we had in
terms of type specifications was a handful of conventions which were
ambiguous at best, and now we have a standard to build tools around.

Take the numpy docstring
convention [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]
as an example. They kindly give us some basic typing examples, such as
this:

Parameters

filename : str
copy : bool
dtype : data-type
iterable : iterable object
shape : int or tuple of int
files : list of str

But there’s no guidance on how to combine these into more complex
recipes. As a result, I often see ambiguous type specifications that
look like this:

list of str or int

Is the int in the list or out of it?

Moreover, there are no examples of how to handle complex tuples,
dictionary key and value types, callable signatures, or how to specify
types which are classes rather than instances.

The upshot is that with this much ambiguity, programmatic type checking
is pretty unreliable. To improve the situation, some IDEs like PyCharm
have proposed their own
convention [https://www.jetbrains.com/help/pycharm/2016.1/type-hinting-in-pycharm.html]
which is a step forward, but do you really want to make your modules
IDE-specific?

Enter PEP 484

With PEP 484 [https://www.python.org/dev/peps/pep-0484/], Guido and
crew have figured all this out for you and created a standard for type
annotations which is now part of python 3.5. If you’re using python 3.5
or greater, you can write function definitions like this:

def func(inputs: Union[str, List[str]],
 enabled: Dict[str, bool]) -> Iterable[str]:
 ...

Neat. But what about those of us still stuck on 2.x?

This is where we need to stop and clarify the difference between type
annotations and type checking. With the addition of pep484, python 3.5
gained two things:

	a standard for describing types (e.g. Union[str, List[str]].)

	syntax support for annotating function arguments and return values
with type descriptions

Noticeably lacking here is actual type checking, i.e. inspection of
code to enforce that arguments and assignments match their declared
types. The developers of python left that role be filled by third-party
tools.

Back to python 2.x: A standard for describing types in unambiguous terms
is a big deal even without the syntax support added in 3.5, and the good
news is that the means for creating these type definitions, the
typing module [https://github.com/python/mypy/blob/master/lib-typing/3.2/typing.py],
is available for python 2.7. However, the lack of syntactical support
means that the type-checkers must provide their own conventions for
associating type descriptions with arguments and return values in python
2.7 code.

So, without further ado, let’s get to the tools.

The Tools

There are a handful of tools for performing pep484-compatible type
checking. Each has its pros and cons. Both perform static code analysis,
which means they are not actually importing and running your modules:
instead they parse and analyze your code. This is safer, but it means
that dynamically generated objects can not be inspected.

mypy

mypy [http://mypy-lang.org/] is a command-line tool much like a
linter that scans your code and prints out errors. The developers of
mypy are leading the charge on type-checking. PEP 484 was originally
inspired by mypy and Guido himself is now currently involved in its
development.

Below are your options support by mypy for adding type annotations to
functions in python 2.7 (more info
here [http://mypy.readthedocs.io/en/latest/python2.html]):

Single-line:

def doit(inputs, enabled):
 # (Union[str, List[str]], Dict[str, bool]) -> Iterable[str]
 "Do something with those inputs"
 ...

The bummer with this is it can get very long, and it’s hard to visually
associate the argument with the type.

Multi-line:

def doit(inputs, # type: Union[str, List[str]]
 enabled # type: Dict[str, bool]
):
 # type: (...) -> Iterable[str]
 "Do something with those inputs"
 ...

A bit more verbose, but more legible.

One aspect of mypy which may make it difficult for you to integrate into your
build/release cycle is that python 3.5+ is required to run it, even if you’re
analyzing python 2.7 code.

PyCharm

PyCharm is my new favorite IDE. Its code analysis goes deep, and it
saves my ass daily. Now that I’ve been making it aware of my argument
and return types, it’s basically SkyNet (or will be, with just a few
more upgrades...).

As of this writing, PyCharm supports both the single-line and multi-line styles
above, as well as PEP484-compatible types delivered via docstrings. For the
latter you have to be pretty anal about your formatting: If you’re too
loosey-goosey the parser will give up. PyCharm can parse four styles of
docstrings.

reStructureText style

def doit(inputs, enabled):
 """Do something with those inputs

 :param inputs: input names
 :type inputs: Union[str, List[str]]
 :param enabled: mapping of input names to enabled status
 :type enabled: Dict[str, bool]
 :rtype: Iterable[str]
 """
 ...

Ugly, but gets the job done. Epydoc-style docstrings are the same but
with an @ instead of the leading :.

google style

def doit(inputs, enabled):
 """Do something with those inputs

 Args:
 inputs (Union[str, List[str]]): input names
 enabled (Dict[str, bool]): mapping of input names to
 enabled status

 Returns:
 Iterable[str]: enabled inputs
 """
 ...

Compact, but legible.

numpy style

def doit(inputs, enabled):
 """Do something with those inputs

 Parameters

 inputs : Union[str, List[str]]
 input names
 enabled: Dict[str, bool]
 mapping of input names to enabled status

 Returns

 Iterable[str]
 enabled inputs
 """
 ...

My personal favorite.

The main downside with PyCharm for PEP484-style type-checking is that it’s
still playing catchup with mypy. Some pretty fundamental features are still
missing:

	Type [https://youtrack.jetbrains.com/issue/PY-20057]

	Type aliases [https://youtrack.jetbrains.com/issue/PY-19807]

	TypeVar [https://youtrack.jetbrains.com/issue/PY-19915]

	Generics [https://youtrack.jetbrains.com/issue/PY-19939]

Plus, I’d love to see more visual feedback [https://youtrack.jetbrains.com/issue/PY-20530?query=pep484]

If nothing else comes from writing this, it will be worth it if a few people
click on the links above and make some noise on those issues.

pytype

I’m including pytype [https://github.com/google/pytype] from Google for
the sake of completeness. It’s a command-line tool like mypy.
The main thing it has going for it is that it can
be run using python 2.7, unlike mypy which can only be run using python 3.5+
(both tools can analyze python 3.x code).

Comparison

PyCharm gives you near instant feedback about type incompatibilities in
the context of your code, which creates an addictive feedback loop that
encourages ever more type-hinting. Mypy on the other hand is a bit of a
pain. You have to run it manually, then dig through its cryptic output
and look up corresponding line numbers. It’s really meant to be integrated
into your build/release process.

I also really like that PyCharm let’s me continue to specify types within
docstrings. For existing code, basic types are already working within
PyCharm, so I just need to upgrade the more exotic recipes to the new standard.
Also, I prefer to have type info adjacent to the description of the type.

The main downside of PyCharm is that it is not as thorough as mypy and
there are still a number of extremely important features that are not
implemented at this moment, though I have confidence that it will improve in the
short term. mypy is also capable of statically typing individual variables not just
function arguments and returns.

There’s nothing stopping you from using both in tandem – PyCharm as the
immediate first line of defense and mypy as a more thorough check run by
continuous integration.

Type Classes

The first thing to understand is that type annotations are actual python
classes. You must import them from typing to use them. This is
admittedly a bit of a nuisance, but it makes more sense when you
consider that the syntax integration in python 3.5 means you’re
attaching objects to function definitions just as you do when providing
a default value to an argument. In fact, you can use
typing.get_type_hints() function to inspect type hint objects on a
function at runtime, just as you would inspect argument defaults with
inspect.getargspec().

Type classes fall into several categories, which we’ll review below.

Foundational Types

The core set of types is pretty well covered in the mypy
docs [http://mypy.readthedocs.io/en/latest/kinds_of_types.html], but
I’ll give a brief overview below.

Any

Represents any type.

If a function returns None you should specify this explicitly,
because if omitted it defaults to Any which is more permissive.

Unlike Any, object is an ordinary static type, and only
operations valid for all types are accepted for object values.

Any is thus more permissive.

Callable

Used to denote a function or bound method with a particular signature.

Here’s a simple function and how to encode that as a type annotation:

def repeat(s, count):
 # type: (str, int) -> str
 return s * count

Callable[[str, int], str]

Or, if you only care about the return result:

Callable[..., str]

Union

Used when there is more than one valid type.

Union[str, List[str]]

Optional

Shorthand for a type which is allowed to be None.

These are equivalent:

Optional[int]
Union[int, None]

In mypy None is by default a valid value for every type, but due to
popular demand that is going to change, though I’m not sure in what time
frame. It’s already possible to change the behavior of the type-checker
using a flag. Thus, if you’re getting started now, its best to get in
the habit of adding the Optional type modifier to denote a type that
includes None.

Type

Used to denote that a type should be an uninstantiated class.

Type[MyClass]
Type[Union[MyClass, OtherClass]]

Type Aliases

This is a technique rather than a type. Remember how we discussed that
type definitions are regular python objects? Well, that means you can
assign them to module-level variables and use these variables in your
annotations. This is handy if you have a lot of functions that take the
same complex recipe.

(broken in pycharm)

from typing import Dict, List, Union
PropertiesType = Dict[str, List[str]]
PropertiesListType = List[Dict[str, PropertiesType]]

def process_properties(props):
 # type: (PropertiesListType) -> None
 ...

Generic

This is the base class for all the collection classes covered below.
It’s what gives them the bracket syntax for type-specialization (e.g.
Container[int]). My epiphany with type-hinting came when I realized
that subclasses of Generic are not just for defining type-hints. By
using Generic as an alternative base class to object when
creating your own collection classes, your classes can be used both as a
collection (by instantiating it as you normally would) and as a type
annotation (by using [] on the class itself). Check out the
Stack
example [http://mypy.readthedocs.io/en/latest/generics.html#generics]
in the mypy docs to see an example.

(broken in pycharm)

TypeVar

TypeVar lets you create relationships and restrictions between an
argument and other arguments or return values.

For example, let’s say that you have a function which takes a value of
any type, and returns a value of the same type.

If we use Any then we fail to make that relationship:

def passthrough(input):
 # type: (Any) -> Any
 return input

Both input and result may be any type, but there’s nothing to indicate that
they will always be the same type as each other.

To give the type checker more context, we create a TypeVar and share it
between annotations.

T = TypeVar('T')

def passthrough(input):
 # type: (T) -> T
 return input

This is called a generic function. Of course, it gets more interesting
than this. A TypeVar can be restricted in the same way as any other value:

TypeVar('T', bound=Callable[[int, str], bool])

TypeVars are often used with Generic collections (discussed more
below) to form a relationship between the collection and another
argument or return values. Here’s a solid example from
the docs on generics [http://mypy.readthedocs.io/en/latest/generics.html#generic-functions]:

from typing import TypeVar, Sequence

T = TypeVar('T')

def first(seq: Sequence[T]) -> T:
 return seq[0]

Concrete Collection Types

The concrete collection types are intended to be used as stand-ins for
certain key collections for the purpose of type-hinting. They cannot be
instantiated: For that, you need to continue to use their “real”
counterparts.

In an ideal world, all of the collections in python’s standard library
would subclass from Generic, which would allow the same class to
serve as both implementation and type annotation. Perhaps if type
hinting takes off this will be addressed one day, in the meantime we
have this split.

The concrete collection types:

	Tuple

	Dict

	DefaultDict

	List

	Set

These are pretty straight-forward to use. You can glean all you need
from a few simple examples:

	Example
	Explanation

	list
	list of any type, possibly heterogeneous

	List[Any]
	same as above

	List[int]
	list containing only integers

	dict
	dictionary with any key or value

	Dict[Any, Any]
	same as above

	Dict[str, int]
	dictionary whose keys are strings and values are integers

	tuple
	tuple with any quantity of any type

	Tuple[Any, ...]
	same as above

	Tuple[int]
	tuple with a single integer. ex: (1,)

	Tuple[int, ...]
	tuple with any number of int

	Tuple[int, str]
	tuple whose first element is an integer and second is a string

NamedTuple

typing.NamedTuple is an alternative to collections.namedtuple
that supports type-checking.

Under the hood it wraps collections.namedtuple and tags the
resulting class with an attribute to track the field types, but in
reality, that’s not even necessary as the static code analysis won’t
have access to it.

Here’s an example adapted from the docs. The Point class defined in
the following code is opaque to type-checking:

from collections import namedtuple

Point = namedtuple('Point', ['x', 'y'])
p = Point(x=1, y='x')
p.y / 2.0 # fails at runtime

By swapping it with typing.NamedTuple, the Point class can now
be used as a type annotation in functions and instantiation of the type
can be properly validated.

from typing import NamedTuple

Point = NamedTuple('Point', [('x', int), ('y', int)])
p = Point(x=1, y='x') # issue detected by mypy
p.y / 2.0

Ordinary Classes

As you might expect, any class can be used as a type identifier. This
restricts objects to instances of this class and its subclasses.

The two tools – mypy and PyCharm – differ in how they find objects
specified in type annotations.

With mypy, the name given must be a valid identifier for that
object in the current module. For example, this works:

import zipfile

def zipit(arg):
 # type: (zipfile.ZipFile) -> None
 return

But this does not:

import zipfile

def zipit(arg):
 # type: (ZipFile) -> None
 return

This is because ZipFile does not identify any object at the scope of
the zipit function (to be honest, I’m actually not entirely sure how
the scoping works in mypy, but it has a module scope for sure). This
behavior makes sense if you think of the type-comments as placeholders
for the python 3.5 syntax additions. Again, it helps to think of type hints
the same way that you would default arguments. In that light, I think it’s
intuitive that it would not work without first importing zipfile:

def zipit(arg: zipfile.ZipFile) -> None:
 return

This rule actually applies to any object defined externally to a comment-based
type annotation, such as type aliases, but it comes into play most often
with custom classes.

PyCharm is a bit more forgiving than mypy. If prefix your object with a dotted
module or package name, it will find the object within that module, assuming
your project search paths are setup correctly. Of course, if you plan to use
both tools in conjunction, you’ll have to shoot for the lowest common
denominator, which is mypy.

Index

 nav.xhtml

 Table of Contents

 		Guide to Python Type Checking

 		Background

 		Why Should I Care?

 		Enter PEP 484

 		The Tools

 		mypy

 		PyCharm

 		pytype

 		Comparison

 		Type Classes

 		Foundational Types

 		Any

 		Callable

 		Union

 		Optional

 		Type

 		Type Aliases

 		Generic

 		TypeVar

 		Concrete Collection Types

 		NamedTuple

 		Ordinary Classes

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

