

python_translate, translations without gettext

	Introduction
	Installation

	Constructing the Translator

	The Translation Process

	Using Message Domains

	Usage

	Using the Translator
	Message Placeholders

	Creating Translations

	Pluralization

	Forcing the Translator Locale

	Retrieving the Message Catalogue

	Adding Custom Format Support
	Creating a Custom Loader

	Creating a Custom Dumper

	Using with django

	License

Introduction

python_translate provides tools to internationalize your
application.

Installation

You can install the component in 2 different ways:

	Install it via pip (pip install python_translate)

	Use the official Git repository (https://github.com/adamziel/python_translate).

Constructing the Translator

The main access point of the Translation component is
python_translate.translations.Translator. Before you can use it,
you need to configure it and load the messages to translate (called message
catalogs).

Configuration

The constructor of the Translator class needs one argument: The locale.

from python_translate.translations import Translator

translator = Translator('fr_FR')

Note

The locale set here is the default locale to use. You can override this
locale when translating strings.

Note

The term locale refers roughly to the user’s language and country. It
can be any string that your application uses to manage translations and
other format differences (e.g. currency format). The ISO 639-1 [http://en.wikipedia.org/wiki/List_of_ISO_639-1_codes]
language code, an underscore (_), then the ISO 3166-1 alpha-2 [http://en.wikipedia.org/wiki/ISO_3166-1#Current_codes]
country code (e.g. fr_FR for French/France) is recommended.

Loading Message Catalogs

The messages are stored in message catalogs inside the Translator
class. A message catalog is like a dictionary of translations for a specific
locale.

python_translate uses Loader classes to load catalogs. You can load
multiple resources for the same locale, which will then be combined into one
catalog.

The component comes with some default Loaders and you can create your own
Loader too. The default loaders are:

	python_translate.loaders.DictLoader - to load
catalogs from Python dictionaries.

	python_translate.loaders.JsonFileLoader - to load
catalogs from JSON files.

	python_translate.loaders.YamlFileLoader - to load
catalogs from Yaml files (requires pyyaml).

	python_translate.loaders.MoFileLoader - to load
catalogs from gettext files (requires polib).

	python_translate.loaders.PoFileLoader - to load
catalogs from gettext files (requires polib).

You can also create your own Loader,
in case the format is not already supported by one of the default loaders.

At first, you should add one or more loaders to the Translator:

...
translator.add_loader('dict', DictLoader())

The first argument is the name to which you can refer the loader in the
translator and the second argument is an instance of the loader itself. After
this, you can add your resources using the correct loader.

Loading Messages with the ArrayLoader

Loading messages can be done by calling
python_translate.translation.Translator::add_resource. The first
argument is the loader name (this was the first argument of the add_loader
method), the second is the resource and the third argument is the locale:

...
translator.add_resource('dict', {
 'Hello World!': 'Bonjour',
}, 'fr_FR')

Loading Messages with the File Loaders

If you use one of the file loaders, you should also use the add_resource
method. The only difference is that you should put the file name to the resource
file as the second argument, instead of an array:

...
translator.add_loader('yaml', YamlFileLoader())
translator.add_resource('yaml', 'path/to/messages.fr.yml', 'fr_FR')

The Translation Process

To actually translate the message, the Translator uses a simple process:

	A catalog of translated messages is loaded from translation resources defined
for the locale (e.g. fr_FR). Messages from the
Fallback Locales are also loaded and added to the
catalog, if they don’t already exist. The end result is a large “dictionary”
of translations

	If the message is located in the catalog, the translation is returned. If
not, the translator returns the original message.

You start this process by calling
python_translate.translation.Translator::trans or
python_translate.translation.Translator::transchoice. Then, the
Translator looks for the exact string inside the appropriate message catalog
and returns it (if it exists).

Fallback Locales

If the message is not located in the catalog of the specific locale, the
translator will look into the catalog of one or more fallback locales. For
example, assume you’re trying to translate into the fr_FR locale:

	First, the translator looks for the translation in the fr_FR locale;

	If it wasn’t found, the translator looks for the translation in the fr
locale;

	If the translation still isn’t found, the translator uses the one or more
fallback locales set explicitly on the translator.

For (3), the fallback locales can be set by calling
python_translate.translation.Translator::set_fallback_locales:

...
translator.set_fallback_locales(['en'])

Using Message Domains

As you’ve seen, message files are organized into the different locales that
they translate. The message files can also be organized further into “domains”.

The domain is specified in the fourth argument of the add_resource()
method. The default domain is messages. For example, suppose that, for
organization, translations were split into three different domains:
messages, admin and navigation. The French translation would be
loaded like this:

// ...
translator.add_loader('yml', YamlLoader())

translator.add_resource('yml', 'messages.fr.yml', 'fr_FR')
translator.add_resource('yml', 'admin.fr.yml', 'fr_FR', 'admin')
translator.add_resource('yml', 'navigation.fr.yml', 'fr_FR', 'navigation')

When translating strings that are not in the default domain (messages),
you must specify the domain as the third argument of trans():

translator.trans('Symfony is great', {}, 'admin')

Symfony will now look for the message in the admin domain of the
specified locale.

Usage

Read how to use the Translation component in Using the Translator.

Using the Translator

Imagine you want to translate the string “Symfony” into French:

from python_translate.translations import Translator
from python_translate.loader import DictLoader

translator = new Translator('fr_FR')
translator.add_loader('dict', DictLoader())
translator.add_resource('dict', {
 'Symfony!': "J'aime python_translate!",
}, 'fr_FR')

print translator->trans('Symfony!')

In this example, the message “Symfony!” will be translated into
the locale set in the constructor (fr_FR) if the message exists in one of
the message catalogs.

Message Placeholders

Sometimes, a message containing a variable needs to be translated:

// ...
translated = translator.trans('Hello ' + name)

print translated

However, creating a translation for this string is impossible since the translator
will try to look up the exact message, including the variable portions
(e.g. “Hello Ryan” or “Hello Fabien”). Instead of writing a translation
for every possible iteration of the name variable, you can replace the
variable with a “placeholder”:

translated = translator.trans(
 'Hello {name}',
 {'name': name}
)

print translated

python_translate will now look for a translation of the raw message (Hello {name})
and then replace the placeholders with their values. Creating a translation
is done just as before:

Note

The placeholders are simply python formating placeholders.

As you’ve seen, creating a translation is a two-step process:

	Abstract the message that needs to be translated by processing it through
the Translator.

	Create a translation for the message in each locale that you choose to
support.

The second step is done by creating message catalogs that define the translations
for any number of different locales.

Creating Translations

Translation files consist of a series of
id-translation pairs for the given domain and locale. The source is the identifier
for the individual translation, and can be the message in the main locale (e.g.
“Symfony is great”) of your application or a unique identifier (e.g.
symfony.great - see the sidebar below).

Translation files can be created in several different formats, Yaml being the
recommended format. These files are parsed by one of the loader classes.

Using Real or Keyword Messages

This example illustrates the two different philosophies when creating
messages to be translated:

translator.trans('Symfony')

translator.trans('symfony.great')

In the first method, messages are written in the language of the default
locale (English in this case). That message is then used as the “id”
when creating translations.

In the second method, messages are actually “keywords” that convey the
idea of the message. The keyword message is then used as the “id” for
any translations. In this case, translations must be made for the default
locale (i.e. to translate symfony.great to Symfony is great).

The second method is handy because the message key won’t need to be changed
in every translation file if you decide that the message should actually
read “Symfony is really great” in the default locale.

The choice of which method to use is entirely up to you, but the “keyword”
format is often recommended.

Additionally, the yaml file format supports nested ids to
avoid repeating yourself if you use keywords instead of real text for your
ids:

The multiple levels are flattened into single id/translation pairs by
adding a dot (.) between every level, therefore the above examples are
equivalent to the following:

Pluralization

Message pluralization is a tough topic as the rules can be quite complex. For
instance, here is the mathematical representation of the Russian pluralization
rules:

((number % 10 == 1) && (number % 100 != 11))
 ? 0
 : (((number % 10 >= 2)
 && (number % 10 <= 4)
 && ((number % 100 < 10)
 || (number % 100 >= 20)))
 ? 1
 : 2
)

As you can see, in Russian, you can have three different plural forms, each
given an index of 0, 1 or 2. For each form, the plural is different, and
so the translation is also different.

When a translation has different forms due to pluralization, you can provide
all the forms as a string separated by a pipe (|):

'There is one apple|There are {count} apples'

To translate pluralized messages, use the python_translate.translations.Translator.transchoice method

	translator.transchoice(

	‘There is one apple|There are {count} apples’,
10,
{‘count’: 10}

)

The second argument (10 in this example) is the number of objects being
described and is used to determine which translation to use and also to populate
the {count} placeholder.

Based on the given number, the translator chooses the right plural form.
In English, most words have a singular form when there is exactly one object
and a plural form for all other numbers (0, 2, 3…). So, if count is
1, the translator will use the first string (There is one apple)
as the translation. Otherwise it will use There are {count} apples.

Here is the French translation:

'Il y a {count} pomme|Il y a {count} pommes'

Even if the string looks similar (it is made of two sub-strings separated by a
pipe), the French rules are different: the first form (no plural) is used when
count is 0 or 1. So, the translator will automatically use the
first string (Il y a {count} pomme) when count is 0 or 1.

Each locale has its own set of rules, with some having as many as six different
plural forms with complex rules behind which numbers map to which plural form.
The rules are quite simple for English and French, but for Russian, you’d
may want a hint to know which rule matches which string. To help translators,
you can optionally “tag” each string:

'one: There is one apple|some: There are {count} apples'

'none_or_one: Il y a {count} pomme|some: Il y a {count} pommes'

The tags are really only hints for translators and don’t affect the logic
used to determine which plural form to use. The tags can be any descriptive
string that ends with a colon (:). The tags also do not need to be the
same in the original message as in the translated one.

Tip

As tags are optional, the translator doesn’t use them (the translator will
only get a string based on its position in the string).

Explicit Interval Pluralization

The easiest way to pluralize a message is to let the Translator use internal
logic to choose which string to use based on a given number. Sometimes, you’ll
need more control or want a different translation for specific cases (for
0, or when the count is negative, for example). For such cases, you can
use explicit math intervals:

'{0} There are no apples|{1} There is one apple|]1,19] There are {count} apples|[20,Inf] There are many apples'

The intervals follow the ISO 31-11 [http://en.wikipedia.org/wiki/Interval_(mathematics)#Notations_for_intervals] notation. The above string specifies
four different intervals: exactly 0, exactly 1, 2-19, and 20
and higher.

Note that interval definitions will not be present in a translated message,
and they have nothing to do with placeholders such as {count}. They
will not be formatted, just removed before you get to see them.

You can also mix explicit math rules and standard rules. In this case, if
the count is not matched by a specific interval, the standard rules take
effect after removing the explicit rules:

'{0} There are no apples|[20,Inf] There are many apples|There is one apple|a_few: There are {count} apples'

For example, for 1 apple, the standard rule There is one apple will
be used. For 2-19 apples, the second standard rule There are {count}
apples will be selected.

You may even represent a finite set of numbers:

{1,2,3,4}

Or numbers between two other numbers:

[1, +Inf[
]-1,2[

The left delimiter can be [(inclusive) or] (exclusive). The right
delimiter can be [(exclusive) or] (inclusive). Beside numbers, you
can use -Inf and +Inf for the infinite.

Forcing the Translator Locale

When translating a message, the Translator uses the specified locale or the
fallback locale if necessary. You can also manually specify the locale to
use for translation:

translator.trans(
 'Symfony',
 {},
 'messages',
 'fr_FR'
)

translator.transchoice(
 '{0} There are no apples|{1} There is one apple|]1,Inf[There are {count} apples',
 10,
 {'count': 10},
 'messages',
 'fr_FR'
)

Retrieving the Message Catalogue

In case you want to use the same translation catalogue outside your application
(e.g. use translation on the client side), it’s possible to fetch raw translation
messages. Just specify the required locale:

messages = translator.get_messages('fr_FR')

The messages variable will have the following structure:

{
 'messages': {
 'Hello world': 'Bonjour tout le monde',
 },
 'validators': {
 'Value should not be empty': 'Valeur ne doit pas être vide',
 'Value is too long': 'Valeur est trop long',
 }
}

Adding Custom Format Support

Sometimes, you need to deal with custom formats for translation files. The
Translation component is flexible enough to support this. Just create a
loader (to load translations) and, optionally, a dumper (to dump translations).

Imagine that you have a custom format where translation messages are defined
using one line for each translation and parentheses to wrap the key and the
message. A translation file would look like this:

(welcome)(accueil)
(goodbye)(au revoir)
(hello)(bonjour)

Creating a Custom Loader

To define a custom loader that is able to read these kinds of files, you must create a
new class that extends the
python_translate.loaders.Loader. The
:method:`python_translate.loaders.Loader::load`
method will get a filename and parse it into an dict. Then, it will
create the catalog that will be returned:

import re
from python_translate.translations import MessageCatalogue
from python_translate.loaders import Loader

FORMAT_REGEX = re.compile("\(([^\)]+)\)\(([^\)]+)\)")

class MyFormatLoader(Loader):

 def load(self, resource, locale, domain = 'messages'):
 messages = {}
 with open(resource, 'r') as f:
 lines = f.readlines()

 for line in lines:
 match = FORMAT_REGEX.match(line)
 if match:
 messages[match.group(1)] = match.group(2)

 catalogue = MessageCatalogue(locale)
 catalogue.add(messages, domain)

 return catalogue

Once created, it can be used as any other loader:

from python_translate.translations import Translator

translator = Translator('fr_FR')
translator.add_loader('my_format', MyFormatLoader())

translator.add_resource('my_format', './translations/messages.txt', 'fr_FR')

print translator.trans('welcome')

It will print “accueil”.

Creating a Custom Dumper

It is also possible to create a custom dumper for your format, which is
useful when using the extraction commands. To do so, a new class
implementing the
python_translate.dumpers.Dumper. The
must be created. To write the dump contents into a file, extending the
python_translate.dumpers.FileDumper class
will save a few lines:

:method:`python_translate.dumpers.Dumper::load`

from python_translate.translations import MessageCatalogue
from python_translate.dumpers import FileDumper

class MyFormatDumper(FileDumper):

	def format(self, messages, domain = ‘messages’):

	output = ‘’

	for source, target in messages.all(domain).items():

	output += “({0})({1})n”.format(source, target)

return output

	def get_extension(self):

	return ‘txt’

The :method:`python_translate.dumpers.FileDumper::format`
method creates the output string, that will be used by the
:method:`python_translate.dumpers.Dumper::dump` method
of the FileDumper class to create the file. The dumper can be used like any other
built-in dumper. In the following example, the translation messages defined in the
YAML file are dumped into a text file with the custom format:

from python_translate.loaders import YamlFileLoader

loader = YamlFileLoader();
catalogue = loader.load('./translations/messages.fr_FR.yml' , 'fr_FR')

dumper = MyFormatDumper()
dumper.dump(catalogue, {'path': './dumps'})

Using with django

There is a separate project that integrates python_translate with django:

http://github.com/adamziel/django_translate

License

The code is derived from the Symfony Translation component:
(c) Fabien Potencier <fabien@symfony.com>
https://github.com/symfony/symfony
For the full copyright and license information, please view the LICENSE and LICENSE_SYMFONY_TRANSLATION

The documentation and README are derived from the Symfony Documentation:
https://github.com/symfony/symfony-docs
http://symfony.com
The documentation and README are licensed under https://creativecommons.org/licenses/by-sa/3.0/

Index

 C
 | T

C

 	
 	
 Components

 	Translation

T

 	
 	Translation

 	Adding Custom Format Support

 	Usage

 	Using with django

 _static/up.png

nav.xhtml

 Table of Contents

 		
 python_translate, translations without gettext

 		
 Introduction

 		
 Installation

 		
 Constructing the Translator

 		
 Configuration

 		
 Loading Message Catalogs

 		
 The Translation Process

 		
 Fallback Locales

 		
 Using Message Domains

 		
 Usage

 		
 Using the Translator

 		
 Message Placeholders

 		
 Creating Translations

 		
 Pluralization

 		
 Explicit Interval Pluralization

 		
 Forcing the Translator Locale

 		
 Retrieving the Message Catalogue

 		
 Adding Custom Format Support

 		
 Creating a Custom Loader

 		
 Creating a Custom Dumper

 		
 Using with django

 		
 License

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

