

Welcome to the Transcoded docs!

Contents:

	Installation instructions

	Configuration
	Creating users

	Creating profiles

	Transcoding profiles
	container

	vcodec / acodec

	vpolicy / apolicy

	vbitrate / abitrate

	vbitratemax / abitratemax

	twopass

	Codec specific options

	Codec specific options
	H264 specific options

	VP9 specific options

	VP8 specific options

	HTTP API
	Authentication

	Submitting a job

	Receiving callbacks

Indices and tables

	Index

	Module Index

	Search Page

Installation instructions

You can install transcoded through the pypi repositories:

$ sudo pip install python-transcoded

This installs the transcoded daemon and its dependencies. It doesn’t include any files for the init system, only the
transcoded command that starts the daemon. An example init script for systemd:

[Unit]
Description=Video transcoding daemon

[Service]
Type=simple
ExecStart=/usr/bin/python3 -m transcoded

[Install]
WantedBy=multi-user.target

Configuration

The transcoded daemon expects an configuration file in /etc/transcoded.ini by default, you can specify another
configuration file by passing the –config parameter to the daemon.

This is an example config file:

[general]
port=12380
listen=127.0.0.1

[user-mediacenter]
password=verysecret
paths=/mnt/storage/videos
callback=http://127.0.0.1/transcode-callback

[profile-h264]
container=mkv
vcodec=h264
vpolicy=always
acodec=aac
apolicy=always
vbitrate=2M
vbitratemax=3M
abitrate=192k
abitratemax=1M

Creating users

Every application that uses transcoded needs an user definition block in the configuration file. This block defines
the authentication information for that application and limits the application to certain paths. This is because
otherwise it would be possible to request transcoded to overwrite some random files that it shouldn’t touch.

It also defines a callback url that is used to inform the requesting application of the transcoding progress. This
is also “hardcoded” to make sure transcoded isn’t used to make random web requests.

The user blocks section always start with user- and then the username for that user. The paths option can contain
multiple paths by specifying a json list instead of a single value. The paths are used for both the input and output
paths for the files to transcode. To disable the path checking you can just specify / as the root path.

Creating profiles

The profiles are an abstraction layer between your application and the transcoding backend, since ffmpeg/avconf aren’t
very consistent between the various packaged versions in distro’s. Since the profile definitions are the most complex
part of the configuration it is further defined in the next page

Transcoding profiles

The profiles define the output format(s) that are acceptable for usage. With the various settings you can control how
strict it is with transcoding or just copying the streams. An example profile:

[profile-webm]
container=webm
vcodec=vp9,vp8
vpolicy=only-mismatch
acodec=opus,vorbis
apolicy=only-mismatch
vbitrate=8M
vbitratemax=8M
abitrate=192k
abitratemax=1M

This profile will create files that are compatible with the webm specifications.

container

The container will define the output container format for the files, options are:

	mkv

	webm

vcodec / acodec

This defines what codec(s) are acceptable as output format. You can specify multiple codecs seperated by a comma.

If multiple codecs are specified it will always use the first codec in the list when transcoding is needed, the other
codecs in the list are used for checking if the output is acceptable.

In the example above the video codec is defined as vp9,vp8, in that case if the input is an H.264 stream then it will
transcode it to vp9 since H.264 is not an acceptable format and vp9 is the first specified format. If the input is
an vp8 file it won’t transcode the file but just copy the stream to the new container (unless the vpolicy is changed)

Supported video codecs:

	vp8

	vp9

	h264

Supported audio codecs:

	mp3

	aac

	ac3

	vorbis

	opus

vpolicy / apolicy

The codec policy settings define what should happen if the input codec already matches the output codec options. The
default setting is only-mismatch, in that case it will will copy the input stream directly into the output container
without modification if the inputs match the output requirements.

The other option is always-transcode. In that mode it will always put the input stream through the encoder and decoder again,
even if the codec matched. This might be necessary if the input files might contain weird things that aren’t supported
on your player but still use the same codec. This option is not the default since transcoding the stream is way slower
than just copying it.

vbitrate / abitrate

This specifies the output bitrate for the video and audio stream. This is only used when the file actually gets transcoded
according the the policy specified. If this isn’t specified the defaults will be used for the specific codec.

vbitratemax / abitratemax

This is the maximum bitrate that the input file can have without it being forced to transcode. This can be used to
override the policy defined when the input has a higher bitrate than can be played.

twopass

This can be set to enable twopass encoding. The default is false since this usually doesn’t help with the encoding
quality but is way slower.

Codec specific options

Some codecs also have options of their own, prefixed with the codec name.

Codec specific options

This is the documentation for the codec specific options in the profile definitions. Most of the info here is from the
ffmpeg wiki.

Codecs:

	H264 specific options
	h264_preset

	h264_tune

	h264_profile

	h264_crf

	h264_params

	h264_faststart

	h264_yuv420p

	VP9 specific options
	vp9_hdr

	vp9_deadline

	vp9_yuv420p

	vp9_crf

	VP8 specific options
	vp8_quality

	vp8_yuv420p

	vp8_crf

H264 specific options

h264_preset

This sets the encoding preset for libx264. The default option is medium.

Valid options are:

	Preset

	Speed relative to medium

	ultrafast

	0.45

	superfast

	?

	veryfast

	?

	faster

	0.75

	fast

	0.9

	medium

	1

	slow

	1.4

	slower

	2

	veryslow

	2.8

This controls the transcoding speed/quality tradeoff. The slower options create nicer output but cost more cpu time.
Usually medium is the right choise.

h264_tune

This sets the tune parameter for the x264 encoder. Options are:

	Tune

	Usage

	film

	Use for high quality movie content; lowers deblocking

	animation

	Good for cartoons; uses higher deblocking and more reference frames

	grain

	Preserves the grain structure in old, grainy film material

	stillimage

	Good for slideshow-like content

	fastdecode

	Allows faster decoding by disabling certain filters

h264_profile

This sets the H.264 profile that is used for encoding, it defaults to main, The valid options are:

	baseline

	main

	high

	high10

	high422

	high444

h264_crf

This sets the constant rate factor. The CRF controls the output quality. The default is 23, higher numbers give higher
quality and lower numbers give worse quality. The range is 0-51

h264_params

This can be used to pass extra settings to x264

h264_faststart

This moves the H.264 metadata to the start of the file instead of the end, this means that browsers can start playing
the files quicker but it costs slightly more time to encode. It defaults to false

h264_yuv420p

This forces it to translate the video to YUV420 before encoding, this is required for most video players so it is true
by default.

VP9 specific options

vp9_hdr

not implemented

vp9_deadline

This sets the deadline parameter for libvpx. The default value is good. The options are:

	Deadline

	Quality

	realtime

	Fastest encoding, but less quality

	good

	Default encoding

	best

	Very slow encoding but better quality

vp9_yuv420p

This forces it to translate the video to YUV420 before encoding, this is required for most video players so it is true
by default.

vp9_crf

This sets the constant rate factor. The CRF controls the output quality. The range is 0-63

Recommended values

	Resolution

	CRF

	240p

	37

	360p

	36

	480p

	33

	720p

	32

	1080p

	31

	1440p

	24

	2160p

	15

VP8 specific options

vp8_quality

This sets the quality parameter for libvpx. The default value is good. The options are:

	Quality

	Description

	realtime

	Fastest encoding, but less quality

	good

	Default encoding

	best

	Very slow encoding but better quality

vp8_yuv420p

This forces it to translate the video to YUV420 before encoding, this is required for most video players so it is true
by default.

vp8_crf

This sets the constant rate factor. The CRF controls the output quality. The range is 4-63.

The default value is 10

HTTP API

This defines the API used to control transcoded

Authentication

For authentication HTTP basic auth is used with the username and password specified in the configuration file.

Submitting a job

POST /jobs HTTP/1.1
Authorization: Basic somethingsomething
Content-Type: application/json

{
 "source": "/home/video/input.mov",
 "destination" :"/home/video/output.webm",
 "profile": "webm",
 "id": "21"
}

You submit a job by POST’ing a json blob to the /jobs endpoint. The fields in the json blob:

	Field

	Description

	source

	Full path to the source file

	destination

	Full path to the destination file

	profile

	The profile to use for transcoding, defined in the configuration file

	id

	(optional) Id for the transcoding job for reference of the sending application. This is sent back to the application with the callbacks

The possible responses:

	Status

	Body

	200

	Job is queued

	400

	No valid json data received

	400

	Missing required field xxx

	403

	Source path not allowed for x

	403

	Destination path not allowed for x

	404

	Profile “x” is not defined

	404

	Source file does not exist

Receiving callbacks

For every jobs the requesting application will receive various callbacks at the callback url defined in the config file.
The callback is always a POST request.

Job started

{
 "status": "started",
 "source": "/home/video/input.mov",
 "destination" :"/home/video/output.webm",
 "id": "21"
}

Job progress

{
 "status": "running",
 "progress" 22.4
 "source": "/home/video/input.mov",
 "destination" :"/home/video/output.webm",
 "id": "21"
}

Job completed

{
 "status": "done",
 "source": "/home/video/input.mov",
 "destination" :"/home/video/output.webm",
 "id": "21"
}

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to the Transcoded docs!

 		
 Installation instructions

 		
 Configuration

 		
 Creating users

 		
 Creating profiles

 		
 Transcoding profiles

 		
 container

 		
 vcodec / acodec

 		
 vpolicy / apolicy

 		
 vbitrate / abitrate

 		
 vbitratemax / abitratemax

 		
 twopass

 		
 Codec specific options

 		
 Codec specific options

 		
 H264 specific options

 		
 h264_preset

 		
 h264_tune

 		
 h264_profile

 		
 h264_crf

 		
 h264_params

 		
 h264_faststart

 		
 h264_yuv420p

 		
 VP9 specific options

 		
 vp9_hdr

 		
 vp9_deadline

 		
 vp9_yuv420p

 		
 vp9_crf

 		
 VP8 specific options

 		
 vp8_quality

 		
 vp8_yuv420p

 		
 vp8_crf

 		
 HTTP API

 		
 Authentication

 		
 Submitting a job

 		
 Receiving callbacks

 		
 Job started

 		
 Job progress

 		
 Job completed

