

Welcome to python_speech_features’s documentation!

This library provides common speech features for ASR including MFCCs and filterbank energies.
If you are not sure what MFCCs are, and would like to know more have a look at this MFCC tutorial:
http://www.practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/.

You will need numpy and scipy to run these files. The code for this project is available at https://github.com/jameslyons/python_speech_features .

Supported features:

	python_speech_features.mfcc() - Mel Frequency Cepstral Coefficients

	python_speech_features.fbank() - Filterbank Energies

	python_speech_features.logfbank() - Log Filterbank Energies

	python_speech_features.ssc() - Spectral Subband Centroids

To use MFCC features:

from python_speech_features import mfcc
from python_speech_features import logfbank
import scipy.io.wavfile as wav

(rate,sig) = wav.read("file.wav")
mfcc_feat = mfcc(sig,rate)
fbank_feat = logfbank(sig,rate)

print(fbank_feat[1:3,:])

From here you can write the features to a file etc.

Functions provided in python_speech_features module

	
python_speech_features.base.mfcc(signal, samplerate=16000, winlen=0.025, winstep=0.01, numcep=13, nfilt=26, nfft=512, lowfreq=0, highfreq=None, preemph=0.97, ceplifter=22, appendEnergy=True, winfunc=<function <lambda>>)

	Compute MFCC features from an audio signal.

	Parameters:	
	signal – the audio signal from which to compute features. Should be an N*1 array

	samplerate – the samplerate of the signal we are working with.

	winlen – the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)

	winstep – the step between successive windows in seconds. Default is 0.01s (10 milliseconds)

	numcep – the number of cepstrum to return, default 13

	nfilt – the number of filters in the filterbank, default 26.

	nfft – the FFT size. Default is 512.

	lowfreq – lowest band edge of mel filters. In Hz, default is 0.

	highfreq – highest band edge of mel filters. In Hz, default is samplerate/2

	preemph – apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.

	ceplifter – apply a lifter to final cepstral coefficients. 0 is no lifter. Default is 22.

	appendEnergy – if this is true, the zeroth cepstral coefficient is replaced with the log of the total frame energy.

	winfunc – the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming

	Returns:	A numpy array of size (NUMFRAMES by numcep) containing features. Each row holds 1 feature vector.

	
python_speech_features.base.fbank(signal, samplerate=16000, winlen=0.025, winstep=0.01, nfilt=26, nfft=512, lowfreq=0, highfreq=None, preemph=0.97, winfunc=<function <lambda>>)

	Compute Mel-filterbank energy features from an audio signal.

	Parameters:	
	signal – the audio signal from which to compute features. Should be an N*1 array

	samplerate – the samplerate of the signal we are working with.

	winlen – the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)

	winstep – the step between successive windows in seconds. Default is 0.01s (10 milliseconds)

	nfilt – the number of filters in the filterbank, default 26.

	nfft – the FFT size. Default is 512.

	lowfreq – lowest band edge of mel filters. In Hz, default is 0.

	highfreq – highest band edge of mel filters. In Hz, default is samplerate/2

	preemph – apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.

	winfunc – the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming

	Returns:	2 values. The first is a numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector. The
second return value is the energy in each frame (total energy, unwindowed)

	
python_speech_features.base.logfbank(signal, samplerate=16000, winlen=0.025, winstep=0.01, nfilt=26, nfft=512, lowfreq=0, highfreq=None, preemph=0.97)

	Compute log Mel-filterbank energy features from an audio signal.

	Parameters:	
	signal – the audio signal from which to compute features. Should be an N*1 array

	samplerate – the samplerate of the signal we are working with.

	winlen – the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)

	winstep – the step between successive windows in seconds. Default is 0.01s (10 milliseconds)

	nfilt – the number of filters in the filterbank, default 26.

	nfft – the FFT size. Default is 512.

	lowfreq – lowest band edge of mel filters. In Hz, default is 0.

	highfreq – highest band edge of mel filters. In Hz, default is samplerate/2

	preemph – apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.

	Returns:	A numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector.

	
python_speech_features.base.ssc(signal, samplerate=16000, winlen=0.025, winstep=0.01, nfilt=26, nfft=512, lowfreq=0, highfreq=None, preemph=0.97, winfunc=<function <lambda>>)

	Compute Spectral Subband Centroid features from an audio signal.

	Parameters:	
	signal – the audio signal from which to compute features. Should be an N*1 array

	samplerate – the samplerate of the signal we are working with.

	winlen – the length of the analysis window in seconds. Default is 0.025s (25 milliseconds)

	winstep – the step between successive windows in seconds. Default is 0.01s (10 milliseconds)

	nfilt – the number of filters in the filterbank, default 26.

	nfft – the FFT size. Default is 512.

	lowfreq – lowest band edge of mel filters. In Hz, default is 0.

	highfreq – highest band edge of mel filters. In Hz, default is samplerate/2

	preemph – apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97.

	winfunc – the analysis window to apply to each frame. By default no window is applied. You can use numpy window functions here e.g. winfunc=numpy.hamming

	Returns:	A numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector.

	
python_speech_features.base.hz2mel(hz)

	Convert a value in Hertz to Mels

	Parameters:	hz – a value in Hz. This can also be a numpy array, conversion proceeds element-wise.

	Returns:	a value in Mels. If an array was passed in, an identical sized array is returned.

	
python_speech_features.base.mel2hz(mel)

	Convert a value in Mels to Hertz

	Parameters:	mel – a value in Mels. This can also be a numpy array, conversion proceeds element-wise.

	Returns:	a value in Hertz. If an array was passed in, an identical sized array is returned.

	
python_speech_features.base.get_filterbanks(nfilt=20, nfft=512, samplerate=16000, lowfreq=0, highfreq=None)

	Compute a Mel-filterbank. The filters are stored in the rows, the columns correspond
to fft bins. The filters are returned as an array of size nfilt * (nfft/2 + 1)

	Parameters:	
	nfilt – the number of filters in the filterbank, default 20.

	nfft – the FFT size. Default is 512.

	samplerate – the samplerate of the signal we are working with. Affects mel spacing.

	lowfreq – lowest band edge of mel filters, default 0 Hz

	highfreq – highest band edge of mel filters, default samplerate/2

	Returns:	A numpy array of size nfilt * (nfft/2 + 1) containing filterbank. Each row holds 1 filter.

	
python_speech_features.base.lifter(cepstra, L=22)

	Apply a cepstral lifter the the matrix of cepstra. This has the effect of increasing the
magnitude of the high frequency DCT coeffs.

	Parameters:	
	cepstra – the matrix of mel-cepstra, will be numframes * numcep in size.

	L – the liftering coefficient to use. Default is 22. L <= 0 disables lifter.

	
python_speech_features.base.delta(feat, N)

	Compute delta features from a feature vector sequence.

	Parameters:	
	feat – A numpy array of size (NUMFRAMES by number of features) containing features. Each row holds 1 feature vector.

	N – For each frame, calculate delta features based on preceding and following N frames

	Returns:	A numpy array of size (NUMFRAMES by number of features) containing delta features. Each row holds 1 delta feature vector.

Functions provided in sigproc module

	
python_speech_features.sigproc.framesig(sig, frame_len, frame_step, winfunc=<function <lambda>>, stride_trick=True)

	Frame a signal into overlapping frames.

	Parameters:	
	sig – the audio signal to frame.

	frame_len – length of each frame measured in samples.

	frame_step – number of samples after the start of the previous frame that the next frame should begin.

	winfunc – the analysis window to apply to each frame. By default no window is applied.

	stride_trick – use stride trick to compute the rolling window and window multiplication faster

	Returns:	an array of frames. Size is NUMFRAMES by frame_len.

	
python_speech_features.sigproc.deframesig(frames, siglen, frame_len, frame_step, winfunc=<function <lambda>>)

	Does overlap-add procedure to undo the action of framesig.

	Parameters:	
	frames – the array of frames.

	siglen – the length of the desired signal, use 0 if unknown. Output will be truncated to siglen samples.

	frame_len – length of each frame measured in samples.

	frame_step – number of samples after the start of the previous frame that the next frame should begin.

	winfunc – the analysis window to apply to each frame. By default no window is applied.

	Returns:	a 1-D signal.

	
python_speech_features.sigproc.magspec(frames, NFFT)

	Compute the magnitude spectrum of each frame in frames. If frames is an NxD matrix, output will be Nx(NFFT/2+1).

	Parameters:	
	frames – the array of frames. Each row is a frame.

	NFFT – the FFT length to use. If NFFT > frame_len, the frames are zero-padded.

	Returns:	If frames is an NxD matrix, output will be Nx(NFFT/2+1). Each row will be the magnitude spectrum of the corresponding frame.

	
python_speech_features.sigproc.powspec(frames, NFFT)

	Compute the power spectrum of each frame in frames. If frames is an NxD matrix, output will be Nx(NFFT/2+1).

	Parameters:	
	frames – the array of frames. Each row is a frame.

	NFFT – the FFT length to use. If NFFT > frame_len, the frames are zero-padded.

	Returns:	If frames is an NxD matrix, output will be Nx(NFFT/2+1). Each row will be the power spectrum of the corresponding frame.

	
python_speech_features.sigproc.logpowspec(frames, NFFT, norm=1)

	Compute the log power spectrum of each frame in frames. If frames is an NxD matrix, output will be Nx(NFFT/2+1).

	Parameters:	
	frames – the array of frames. Each row is a frame.

	NFFT – the FFT length to use. If NFFT > frame_len, the frames are zero-padded.

	norm – If norm=1, the log power spectrum is normalised so that the max value (across all frames) is 0.

	Returns:	If frames is an NxD matrix, output will be Nx(NFFT/2+1). Each row will be the log power spectrum of the corresponding frame.

	
python_speech_features.sigproc.preemphasis(signal, coeff=0.95)

	perform preemphasis on the input signal.

	Parameters:	
	signal – The signal to filter.

	coeff – The preemphasis coefficient. 0 is no filter, default is 0.95.

	Returns:	the filtered signal.

Indices and tables

	Index

	Search Page

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 python_speech_features	

 	
 	
 python_speech_features.base	

 	
 	
 python_speech_features.sigproc	

Index

 D
 | F
 | G
 | H
 | L
 | M
 | P
 | S

D

 	
 	deframesig() (in module python_speech_features.sigproc)

 	
 	delta() (in module python_speech_features.base)

F

 	
 	fbank() (in module python_speech_features.base)

 	
 	framesig() (in module python_speech_features.sigproc)

G

 	
 	get_filterbanks() (in module python_speech_features.base)

H

 	
 	hz2mel() (in module python_speech_features.base)

L

 	
 	lifter() (in module python_speech_features.base)

 	
 	logfbank() (in module python_speech_features.base)

 	logpowspec() (in module python_speech_features.sigproc)

M

 	
 	magspec() (in module python_speech_features.sigproc)

 	
 	mel2hz() (in module python_speech_features.base)

 	mfcc() (in module python_speech_features.base)

P

 	
 	powspec() (in module python_speech_features.sigproc)

 	preemphasis() (in module python_speech_features.sigproc)

 	
 	python_speech_features.base (module)

 	python_speech_features.sigproc (module)

S

 	
 	ssc() (in module python_speech_features.base)

 nav.xhtml

 Table of Contents

 		Welcome to python_speech_features's documentation!

_static/comment-bright.png

_static/comment-close.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

