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CHAPTER 1

Contents

1.1 Pauli and Clifford Groups

1.1.1 qecc.Pauli: Class representing Pauli group elements

The class qecc.Pauli is used to represent elements of the Pauli group 𝒫𝑛 on 𝑛 qubits. Instances can be constructed
by specifying strings of I, X, Y and Z, corresponding to the specification of an operator in the Pauli group.

>>> import qecc as q
>>> P = q.Pauli('X')
>>> print P
i^0 X
>>> Q = q.Pauli('XZZXI')
>>> print Q
i^0 XZZXI
>>> R = q.Pauli('XYZ')
>>> print R
i^0 XYZ

Additionaly, a phase can be provided. Since only integer powers of 𝑖 are allowed as phases, the phase of a qecc.
Pauli instance is represented by an integer in range(4). Any other integer is converted to an integer in that range
that is equivalent mod 4.

>>> print q.Pauli('X', 2)
i^2 X

The qecc.Pauli class supports multiplication, tensor products and negation by the *, & and - operators, respec-
tively.

>>> import qecc
>>> P = qecc.Pauli('X')
>>> Q = qecc.Pauli('Y')
>>> P * Q

(continues on next page)
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(continued from previous page)

i^1 Z
>>> P & Q
i^0 XY
>>> -P * Q
i^3 Z

Using these operators, it is straightforward to construct instances of qecc.Pauli from existing instances. To make
this easier, QuaEC provides single-qubit operators I, X, Y and Z.

>>> from qecc import I, X, Y, Z
>>> print q.Pauli('XZZXI') & I
i^0 XZZXII

Additionally, instances of qecc.Pauli can be tested for equality.

>>> -P * Q == P * -Q
True
>>> P * Q != Q * P
True

The length of a qecc.Pauli is defined as the number of qubits it acts upon.

>>> print len(qecc.Pauli('XYZI'))
4

This information is also exposed as the property nq.

>>> print qecc.Pauli('XYZI').nq
4

Class Reference

class qecc.Pauli(operator, phase=0)
Class representing an element of the Pauli group on 𝑛 qubits.

Parameters

• operator (str) – String of I’s, X’s, Y’s and Z’s.

• phase (int) – A phase input as an integer from 0 to 3, interpreted as 𝑖phase.

nq
Returns the number of qubits upon which this Pauli operator acts.

wt
Measures the weight of a given Pauli.

Return type int (between 0 and the number of qubits on which the Pauli is defined)

Returns The number of qubits on which the represented Pauli operator is supported.

str_sparse(incl_ph=True)
Returns a compact representation for qecc.Pauli objects, for those having support on a small number
of qubits of a large register.

tens(other)
Concatenates the op strings of two Paulis, and multiplies their phases, to produce the Kronecker product
of the two.

2 Chapter 1. Contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


QuaEC Documentation, Release 1.0.1

Parameters other (qecc.Pauli) – Pauli operator 𝑄 to be tensored with this instance.

Returns An instance representing 𝑃 ⊗ 𝑄, where 𝑃 is the Pauli operator represented by this
instance.

set_phase(ph=0)
Returns a qecc.Pauli object having the same operator as the input, with a specified phase (usually used
to erase phases).

mul_phase(ph)
Increments the phase of this Pauli by 𝑖ph.

Parameters ph (int) – Amount the phase is to be incremented by.

Returns This instance.

permute_op(perm)
Returns a new qecc.Pauli instance whose operator part is related to the operator part of this Pauli, so
that 𝜎𝜇 is mapped to 𝜎𝜋(𝜇) for some permutation 𝜋 of the objects 𝑋,𝑌, 𝑍.

For example:

>>> import qecc as q
>>> P = q.Pauli('XYZXYZ')
>>> print P.permute_op('ZXY')
i^0 ZXYZXY

Note that the result is not guaranteed to be the result of a Clifford operator acting on this Pauli, as permu-
tation may not respect the phases introduced by taking products. For example:

>>> import qecc as q
>>> P = q.Pauli('XYZ')
>>> Q = q.Pauli('YYZ')
>>> P * Q
i^1 ZII
>>> Pp = P.permute_op('ZYX')
>>> Qp = Q.permute_op('ZYX')
>>> Pp * Qp
i^3 XII

Parameters perm (list) – A list indicating which permutation is to be performed.

Returns A new instance Q of qecc.Pauli that is related to this instance by a permutation of
𝑋 , 𝑌 and 𝑍.

as_gens()
Expresses an input Pauli in terms of the elementary generators 𝑋𝑗 and 𝑍𝑗 , stripping off phases.

Return type list of qecc.Pauli instances.

as_bsv()
Converts the given Pauli to a binary symplectic vector, discarding phase information.

Returns A binary symplectic vector representing this Pauli operator.

Return type BinarySymplecticVector

as_circuit()
Transforms an n-qubit Pauli to a serial circuit on n qubits. Neglects global phases.

Return type qecc.Circuit

1.1. Pauli and Clifford Groups 3
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as_unitary()
Returns a numpy.ndarray containing a unitary matrix representation of this Pauli operator.

Raises a RuntimeError if NumPy cannot be imported.

as_clifford()
Converts a Pauli into a Clifford which changes the signs of input Paulis. :returns: A Clifford representing
conjugation by this Pauli operator. :rtype: qecc.Clifford

static from_sparse(sparse_pauli, nq=None)
Given a dictionary from non-negative integers to single-qubit Pauli operators or strings representing single-
qubit Pauli operators, creates a new instance of qecc.Pauli representing the input.

>>> from qecc import Pauli, X, Y, Z
>>> print Pauli.from_sparse({3: X, 5: X, 7: Z}, nq=12)
i^0 X[3] X[5] Z[7]

Parameters

• sparse_pauli (dict) – Dictionary from qubit indices (non-negative integers) to
single-qubit Pauli operators or to strings.

• nq (int) – If not None, specifies the number of qubits on which the newly created Pauli
operator is to act.

static from_clifford(cliff_in)
Tests an input Clifford cliff_in to determine if it is, in fact, a Pauli. If so, it outputs the Pauli. If not, it
raises an error.

Parameters cliff_in – Representation of Clifford operator to be converted, if possible.

Return type qecc.Pauli

Example:

>>> import qecc as q
>>> cliff = q.Clifford([q.Pauli('XI',2),q.Pauli('IX')], map(q.Pauli,['ZI','IZ
→˓']))
>>> q.Pauli.from_clifford(cliff)
i^0 ZI

Converting a Pauli into a Clifford and back again will erase the phase:

>>> import qecc as q
>>> paul = q.Pauli('YZ',3)
>>> cliff = paul.as_clifford()
>>> q.Pauli.from_clifford(cliff)
i^0 YZ

static from_string(bitstring, p_1)
Creates a multi-qubit Pauli using a bitstring and a one-qubit Pauli, by replacing all instances of 1 in the
bitstring with the appropriate Pauli, and replacing all instances of 0 with the identity.

Parameters

• bitstring (list) – a list of integers, each of which is either 0 or 1. bitstring can also
be a string, type conversion is automatic.

• p_1 (str) – a single-qubit Pauli.
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Returns a phaseless Pauli from a bitstring. The intended use of this function is as a quick means
of specifying binary Paulis. p_1 is the one_qubit Pauli that a ‘1’ represents.

Return type qecc.Pauli

Example:

>>> import qecc as q
>>> bitstring = '101110111100'
>>> p_1 = q.Pauli('X')
>>> q.Pauli.from_string(bitstring, p_1)
i^0 XIXXXIXXXXII

reg_wt(**kwargs)
Produces the number of qubits within a subset of the register on which the Pauli in question acts non-
trivially.

Parameters region (tuple) – a tuple containing the indices on which the weight is to be
evaluated.

Returns the number of qubits in the sub-register on which the Pauli self does not act as the
identity.

cust_wt(char)
Produces the number of qubits on which an input Pauli acts as a specified single-qubit Pauli.

Parameters char (str) – a single-letter string containing an I, X, Y or Z.

Returns the number of qubits in the Pauli self which are acted upon by the single-qubit oper-
ator char.

ct()
The conjugate transpose of this Pauli operator.

Return type an instance of the qecc.Pauli class.

centralizer_gens(group_gens=None)
Returns the generators of the centralizer group C(𝑃 ), where 𝑃 is the Pauli operator represented by this
instance. If group_gens is specified, C(𝑃 ) is taken to be a subgroup of the group 𝐺 = ⟨𝐺1, . . . , 𝐺𝑘⟩,
where 𝐺𝑖 is the 𝑖th element of group_gens.

Parameters group_gens (list of qecc.Pauli instances) – Either None or a list of genera-
tors 𝐺𝑖. If not None, the returned centralizer C(𝑃 ) is a subgroup of the group ⟨𝐺𝑖⟩𝑘𝑖=1.

Returns A list of elements 𝑃𝑖 of the Pauli group such that C(𝑃 ) = ⟨𝑃𝑖⟩𝑛𝑖=1, where 𝑛 is the
number of unique generators of the centralizer.

hamming_dist(other)
Returns the Hamming distance between this and another Pauli operator, defined as 𝑑(𝑃,𝑄) = wt(𝑃𝑄).

Iterating Over Groups and Subgroups

qecc.pauli_group(nq)
Generates an iterator onto the Pauli group of 𝑛 qubits, where 𝑛 is given as the argument nq.

Parameters nq (int) – The number of qubits acted upon by the returned Pauli group.

Returns An iterator such that list(pauli_group(nq)) produces a list of all possible Pauli
operators on nq qubits.

1.1. Pauli and Clifford Groups 5
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qecc.from_generators(gens, coset_rep=None, incl_identity=True)
Given a list of generators gens, yields an iterator onto the group generated by products of elements from gens.

If coset_rep is specified, returns the coset of the group generated by gens represented by coset_rep.

Utility Functions

qecc.com(P, Q)
Given two elements P and Q of a Pauli group, returns 0 if [𝑃,𝑄] = 0 and returns 1 if {𝑃,𝑄} = 0.

Parameters

• P (qecc.Pauli) – Representation of 𝑃 .

• Q (qecc.Pauli) – Representation of 𝑄.

Returns 𝑐(𝑃,𝑄).

Return type int

qecc.elem_gens(nq)
Produces all weight-one 𝑋 and 𝑍 operators on nq qubits. For example,

>>> import qecc as q
>>> Xgens, Zgens = q.elem_gens(2)
>>> print Xgens[1]
i^0 IX

Parameters nq (int) – Number of qubits for each returned operator.

Returns a tuple of two lists, containing 𝑋 and 𝑍 generators, respectively.

qecc.eye_p(nq)
Given a number of qubits, returns the identity Pauli on that many qubits.

Parameters nq (int) – Number of qubits upon which the returned Pauli acts.

Return type qecc.Pauli

Returns A Pauli operator acting as the identity on each of nq qubits.

Searching Over Pauli Group Elements

QuaEC provides useful tools for searching over elements of the Pauli group. A few particlar searches are provided
built-in, while other searches can be efficiently built using the predicates described in Predicates and Filters.

qecc.is_in_normalizer(pauli, stab)
Given an element pauli of a Pauli group and the generators stab of a stabilizer group 𝑆, returns True if and
only if pauli is in the normalizer 𝑁(𝑆).

qecc.mutually_commuting_sets(n_elems, n_bits=None, group_gens=None, exclude=None)
Yields an iterator onto tuples representing mutually commuting sets of n_elems independent Pauli operators,
excluding the identity Pauli.

Parameters

• n_elems (int) – The number of mutually commuting Pauli operators to include in each
tuple.
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• n_bits (int) – The number of qubits on which each Pauli operator considered by this
iterator acts. If None, defaults to the number of qubits on which the first element of
group_gens acts.

• group_gens (None or a sequence of qecc.Pauli instances) – The generators of the
group in which to search for mutually commuting Pauli operators. Defaults to the elemen-
tary generators of the Pauli group on n_bits qubits.

• exclude (None or a sequence of qecc.Pauli instances) – If not None, the iterator will
omit from its search any operators in the group generated by exclude.

1.1.2 qecc.Clifford: Class representing Clifford group elements

Elements of the automorphism group of the Pauli group (known as the Clifford group) are represented by the class
qecc.Clifford. Instances of Clifford are constructed by specifying the mappings of the generators of the
Pauli group, such that the action of a Clifford instance is defined for all input Pauli group elements.

>>> import qecc as q
>>> C = q.Clifford(['XX', 'IX'], ['ZI', 'ZZ'])
>>> print C
XI |-> +XX
IX |-> +IX
ZI |-> +ZI
IZ |-> +ZZ

Also, the results of an element of the Clifford group can be left partially unspecified, using the singleton qecc.
Unspecified:

>>> import qecc as q
>>> print q.Clifford(['IZ','XZ'],['XI',q.Unspecified])
XI |-> +IZ
IX |-> +XZ
ZI |-> +XI
IZ |-> Unspecified

Once an instance of qecc.Clifford has been constructed in this way, its action on elements of the Pauli group can
be calculated by calling the Clifford instance as a function.

>>> from qecc import I, X, Y, Z
>>> C(X & Y)
i^0 YZ
>>> map(C, ['XI', 'IX', 'YI', 'IY', 'ZI', 'IZ'])
[i^0 XX, i^0 IX, i^0 YX, i^0 ZY, i^0 ZI, i^0 ZZ]

Note that in this example, C has converted strings to qecc.Pauli instances. This is done automatically by qecc.
Clifford.

Instances of Clifford can be combined by multiplication (*) and by tensor products (&). Multiplication of two
Clifford instances returns a new instance representing their composition, while the tensor product returns a new
instance that acts on each register independently.

>>> import qecc as q
>>> C = q.Clifford(['XX', 'IX'], ['ZI', 'ZZ'])
>>> D = q.Clifford(['XI', 'IZ'], ['ZI', 'IX'])
>>> print C * D
XI |-> +XX
IX |-> +ZZ

(continues on next page)
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(continued from previous page)

ZI |-> +ZI
IZ |-> +IX
>>> print C & D
X[0] |-> +X[0] X[1]
X[3] |-> +Z[3]
Z[1] |-> +Z[0] Z[1]
Z[3] |-> +X[3]

Note that in the second example, the printing of the Clifford operator has switched to a sparse format that suppresses
printing lines for qubits that are not acted upon by the operator (in this case, qubits 1 and 2 are trivially acted upon by
C & D).

As with qecc.Pauli, the length of a qecc.Clifford instance is defined as the number of qubits on which that
instance acts. This information is also exposed as the property nq.

>>> import qecc as q
>>> C = q.Clifford(['XX', 'IX'], ['ZI', 'ZZ'])
>>> print len(C)
2
>>> print C.nq
2

Class Reference

class qecc.Clifford(xbars, zbars)
Class representing an element of the Cifford group on 𝑛 qubits.

Parameters

• xbars (list of qecc.Pauli instances) – A list of operators �̄�𝑖 such that the represented
Clifford operation 𝐶 acts as 𝐶(𝑋𝑖) = �̄�𝑖. Note that in order for the represented operator
to be an automorphism, each �̄�𝑖 must have phase either 0 or 2. A warning will result if this
condition is not met.

• zbars (list of qecc.Pauli instances) – See xbars.

nq
Returns the number of qubits on which this qecc.Clifford object acts.

n_unspecified
Returns the number of unspecifed outputs of this qecc.Clifford object.

str_sparse()
Provides a compact representation for qecc.Clifford objects, intended for use in the case where many
of the outputs have small support.

is_valid(quiet=True)
Returns True if this instance represents a valid automorphism. In particular, this method returns True
if all output phase assignments are either 0 or 2, and if all of the commutation relations on its outputs are
obeyed. Unspecified outputs are ignored.

Parameters quiet (bool) – If set to True, this method will not print out any information,
but will return True or False as described above. Otherwise, if the operator is not a valid
Clifford operator, diagnostic information will be printed.

inv()
Calculates the inverse 𝐶−1 of this Clifford operator 𝐶, such that 𝐶−1 · 𝐶 is the identity Clifford.

8 Chapter 1. Contents
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conjugate_pauli(pauli)
Given an instance of qecc.Pauli representing the operator 𝑃 , calculates the mapping 𝐶𝑃𝐶†, where 𝐶
is the operator represented by this instance.

Parameters pauli (qecc.Pauli) – Representation of the Pauli operator 𝑃 .

Returns Representation of the Pauli operator 𝐶𝑃𝐶†, where 𝐶 is the Clifford operator repre-
sented by this instance.

Return type qecc.Pauli

constraint_completions()
Yields an iterator onto possible Clifford operators whose outputs agree with this operator for all outputs
that are specified. Note that all yielded operators assign the phase 0 to all outputs, by convention.

If this operator is fully specified, the iterator will yield exactly one element, which will be equal to this
operator.

For example:

>>> import qecc as q
>>> C = q.Clifford([q.Pauli('XI'), q.Pauli('IX')], [q.Unspecified, q.
→˓Unspecified])
>>> it = C.constraint_completions()
>>> print it.next()
XI |-> +XI
IX |-> +IX
ZI |-> +ZI
IZ |-> +IZ
>>> print it.next()
XI |-> +XI
IX |-> +IX
ZI |-> +ZI
IZ |-> +IY
>>> print len(list(C.constraint_completions()))
8

If this operator is not a valid Clifford operator, then this method will raise an qecc.
InvalidCliffordError upon iteraton.

as_bsm()
Returns a representation of the Clifford operator as a binary symplectic matrix.

Return type qecc.BinarySymplecticMatrix

as_unitary()
Returns a numpy.ndarray containing a unitary matrix representation of this Clifford operator.

Raises a RuntimeError if NumPy cannot be imported.

circuit_decomposition(include_pauli=True)
Returns a qecc.Circuit object consisting of the circuit decomposition of self.as_bsm() and a qecc.
Pauli object which ensures the output phases of the qecc.Clifford object are preserved.

Parameters include_pauli (bool) – If True, Pauli locations are added at the end of the
returned circuit. If False, the returned Circuit is correct only up to a Pauli operator at the
end.

Return type Circuit

1.1. Pauli and Clifford Groups 9
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Alternate Constructors

In addition to specifying the outputs of a Clifford operator acting on the elementary generators of the Pauli group,
one can also create a Clifford instance by specifying the ouput of an operator on an arbitrary generating set. In
particlar, the function qecc.generic_clifford() takes the inputs and outputs of a given Clifford operator in
order to create a qecc.Clifford instance.

qecc.generic_clifford(paulis_in, paulis_out)
Given two lists of qecc.Pauli instances, paulis_in and paulis_out, produces an instance C of qecc.
Clifford such that C(paulis_in[i]) == paulis_out[i] for all i in range(2 * nq), where
nq is the length of each element of the two lists.

Each of paulis_in and paulis_out is assumed to be ordered such that the slice [0:nq] produces a list
of logical 𝑋 operators, and such that the slice [nq:2*nq] produces the logical 𝑍 operators.

Parameters

• paulis_in – A list of length 2 * nq logical Pauli operators specifying the input con-
straints for the desired Clifford operation.

• paulis_out – A list of length 2 * nq logical Pauli operators specifying the output
constraints for the desired Clifford operation.

Returns A Clifford operator mapping the input constraints to the output constraints.

Return type qecc.Clifford

Iterators onto the Clifford Group

qecc.clifford_group(nq, consider_phases=False)
Given a number of qubits 𝑛, returns an iterator that produces all elements of 𝒞𝑛, the Clifford group on 𝑛 qubits.

Parameters

• nq (int) – The number of qubits upon which each yielded element will act.

• consider_phases (bool) – If True, then Clifford operators whose assignments of
phases to the generators of the Pauli group differ will be treated as distinct. Otherwise, the
yielded elements will be drawn from the group 𝒞𝑛 = Aut(𝒫𝑛/{𝑖𝑘𝐼 : 𝑘 ∈ Z4}), such that
the phases of the outputs are not considered.

Common Clifford Gates

The qecc package provides support for several common Clifford operators. These functions can be used to quickly
analyze small circuits. For more extensive circuit support, please see Circuit Manipulation and Simulation.

qecc.eye_c(nq)
Yields the identity Clifford, defined to map every generator of the Pauli group to itself.

Return type Clifford

qecc.cnot(nq, ctrl, targ)
Yields the nq-qubit CNOT Clifford controlled on ctrl, acting a Pauli 𝑋 on targ.

Return type qecc.Clifford

qecc.hadamard(nq, q)
Yields the nq-qubit Clifford, switching 𝑋 and 𝑍 on qubit q, yielding a minus sign on 𝑌 .

Return type qecc.Clifford
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qecc.phase(nq, q)
Yields the 𝜋

4 𝑧
-rotation Clifford, acting on qubit q.

Return type qecc.Clifford

qecc.swap(nq, q1, q2)
Yields the swap Clifford, on nq qubits, which swaps the Pauli generators on q1 and q2.

Return type qecc.Clifford

qecc.cz(nq, q1, q2)
Yields the nq-qubit C-Z Clifford, acting on qubits q1 and q2.

Return type qecc.Clifford

qecc.pauli_gate(pauli)
Imports an instance of the qecc.Pauli class into the qecc.Clifford class, representing a Pauli as a series
of sign changes.

Return type qecc.Clifford

1.2 Collections of Pauli Operators

1.2.1 qecc.PauliList: Sequence type for Pauli operators

For convinenence, the qecc package provides a subclass of list intended for use with Pauli operators. PauliList
instances can be created either by converting an existing instance of a sequence type, or by providing the elements of
the new PauliList.

>>> import qecc as q
>>> L = ['I', 'X', 'Y', 'Z']
>>> print q.PauliList(L)
PauliList(i^0 I, i^0 X, i^0 Y, i^0 Z)
>>> print q.PauliList('XYZ', 'YZX', 'ZXY')
PauliList(i^0 XYZ, i^0 YZX, i^0 ZXY)

Tensor products of a qecc.Pauli` with a PauliList result in tensoring the given Pauli group element onto each
element of the list.

>>> from qecc import X
>>> print q.PauliList(L) & X
PauliList(i^0 IX, i^0 XX, i^0 YX, i^0 ZX)

In general, a qecc.PauliList can be used anywhere that a list of qecc.Pauli instances is appropriate. For
example, the constructor of qecc.Clifford accepts qecc.PauliList instances:

>>> import qecc as q
>>> C = q.Clifford(q.PauliList('XX', q.Unspecified), q.PauliList(q.Unspecified, q.
→˓Pauli('ZZ', phase=2)))
>>> print C
XI |-> +XX
IX |-> Unspecified
ZI |-> Unspecified
IZ |-> -ZZ
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Class Reference

class qecc.PauliList(*paulis)
Subclass of list offering useful methods for lists of qecc.Pauli instances.

Parameters paulis – Instances either of str or qecc.Pauli, or the special object qecc.
Unspecified. Strings are passed to the constructor of qecc.Pauli for convinenence.

pad(extra_bits=0, lower_right=None)
Takes a PauliList, and returns a new PauliList, appending extra_bits qubits, with stabilizer operators
specified by lower_right.

Parameters

• pauli_list_in – list of Pauli operators to be padded.

• extra_bits (int) – Number of extra bits to be appended to the system.

• lower_right – list of qecc.Pauli operators, acting on extra_bits qubits.

Return type list of qecc.Pauli objects.

Example:

>>> import qecc as q
>>> pauli_list = q.PauliList('XXX', 'YIY', 'ZZI')
>>> pauli_list.pad(extra_bits=2, lower_right=q.PauliList('IX','ZI'))
PauliList(i^0 XXXII, i^0 YIYII, i^0 ZZIII, i^0 IIIIX, i^0 IIIZI)

generated_group(coset_rep=None)
Yields an iterator onto the group generated by this list of Pauli operators. See also qecc.
from_generators.

stabilizer_subspace()
Returns a numpy.ndarray of shape (n - k, 2 ** n) containing an orthonormal basis for the
mutual +1 eigenspace of each fully specified Pauli in this list. Here, n is taken to be the number of qubits
and k is taken to be the number of independent Pauli operators in this list.

Raises a RuntimeError if NumPy cannot be imported.

For example, to find the Bell basis vector |𝛽00⟩ using the stabilizer formalism:

>>> import qecc as q
>>> q.PauliList('XX', q.Unspecified, q.Unspecified, 'ZZ').stabilizer_
→˓subspace()
array([[ 0.70710678+0.j, 0.00000000+0.j, 0.00000000+0.j, 0.70710678+0.j]])

Similarly, one can find the codewords of the phase-flip code 𝑆 = ⟨𝑋𝑋𝐼, 𝐼𝑋𝑋⟩:

>>> q.PauliList('XXI', 'IXX').stabilizer_subspace()
array([[ 0.50000000+0.j, 0.00000000-0.j, 0.00000000-0.j, 0.50000000+0.j,

0.00000000-0.j, 0.50000000+0.j, 0.50000000+0.j, 0.00000000-0.j],
[ 0.02229922+0.j, 0.49950250+0.j, 0.49950250+0.j, 0.02229922+0.j,
0.49950250+0.j, 0.02229922+0.j, 0.02229922+0.j, 0.49950250+0.j]])

Note that in this second case, some numerical errors have occured; this method does not guarantee that the
returned basis vectors are exact.

centralizer_gens(group_gens=None)
Returns the generators of the centralizer group C(𝑃1, . . . , 𝑃𝑘), where 𝑃𝑖 is the 𝑖th element of this list. See
qecc.Pauli.centralizer_gens() for more information.
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1.3 Binary Symplectic Form

1.3.1 Introduction

The qecc package provides support for elements of the Pauli and Clifford groups in binary symplectic form, including
support for algorithms acting on these representations. Note that all classes and functions documented here depend on
the numpy package. For more information on the binary symplectic representation, read [CRSS96], Section 2.

1.3.2 qecc.BinarySymplecticVector: Binary symplectic representation of Pauli
group elements

The class qecc.BinarySymplecticVector provides a means of representing elements of the Pauli group (ne-
glecting global phases) using binary vectors 𝑎 and 𝑏 such that an element 𝑃 of the Pauli group acting on 𝑛 qubits is
𝑋𝑎𝑍𝑏 = 𝑋𝑎1𝑍𝑏1 ⊗ . . . ⊗𝑋𝑎𝑛𝑍𝑏𝑛 . Binary symplectic vectors can be obtained from a single binary list, two binary
lists, or converted from another Pauli instance (removing the phase):

>>> import qecc as q
>>> a=[1, 0, 1]; b=[0, 1, 1]
>>> q.BinarySymplecticVector(a,b)==q.BinarySymplecticVector(a+b)
True

>>> import qecc as q
>>> a=[1, 0, 1]; b=[0, 1, 1]
>>> q.BinarySymplecticVector(a,b)
( 1 0 1 | 0 1 1 )

>>> import qecc as q
>>> q.Pauli('XYIYIIZ',2).as_bsv()
( 1 1 0 1 0 0 0 | 0 1 0 1 0 0 1 )

Class Reference

class qecc.BinarySymplecticVector(*args)
Encapsulates a binary symplectic vector representing an element of the Pauli group on 𝑛 qubits.

A new BinarySymplecticVector can be constructed using either a single NumPy array containing both
the 𝑋 and 𝑍 parts of the binary symplectic vector. Alternatively, a new vector can be instantiated using two
NumPy arrays. For example, the following two invocations are equivalent:

>>> import qecc
>>> import numpy as np
>>> bsv = qecc.BinarySymplecticVector(np.array([1, 0, 0, 0, 0, 0]))
>>> bsv = qecc.BinarySymplecticVector(np.array([1, 0, 0]), np.array([0, 0, 0]))

The len of a BinarySymplecticVector is defined as the number of qubits upon which the represented
Pauli operator acts, and is thus half of the length of a single array containing the same data.

x
Array containing the 𝑋 part of the binary symplectic vector.

Return type numpy.ndarray, shape (2 * nq, ).
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>>> import qecc as q
>>> q.BinarySymplecticVector([1,0,0,0,1,0]).x
array([1, 0, 0])

z
Array containing the 𝑍 part of the binary symplectic vector.

Return type numpy.ndarray, shape (nq, ).

>>> import qecc as q
>>> q.BinarySymplecticVector([1,0,0,0,1,0]).z
array([0, 1, 0])

copy()
Returns a copy of the binary symplectic vector such that mutations of the copy do not affect this instance.
For more details, see the numpy.ndarray.copy() method.

as_pauli()
Returns an instance of qecc.Pauli representing the same Pauli operator as this vector. Note that
phase information is not preserved by the binary symplectic representation of the Pauli group, and so
P.as_bsv().as_pauli() need not equal P.

>>> import qecc as q
>>> pauli_with_phase=q.Pauli('IXXYZ',2)
>>> pauli_with_phase.as_bsv().as_pauli()
i^0 IXXYZ

bsip(other)
Returns the binary symplectic inner product 𝑢 ⊙ 𝑣 of this vector with another vector. Letting 𝑢 = (𝑎|𝑏)
and 𝑣 = (𝑐|𝑑), 𝑢⊙ 𝑣 = 𝑎 · 𝑑 + 𝑏 · 𝑐.

>>> import qecc as q
>>> vector_a = q.BinarySymplecticVector([1,0,1],[0,1,1])
>>> vector_b = q.Pauli('YYZ').as_bsv()
>>> vector_a.bsip(vector_b)
1

Utility Functions

qecc.all_pauli_bsvs(nq)
Lists all the Paulis on nq qubits according to their binary symplectic representations.

Parameters nq (int) – Number of qubits.

Returns an iterator that yields the binary symplectic representations of each element of the Pauli
group 𝒫𝑛.

>>> list(all_pauli_bsvs(1))
[( 0 | 0 ), ( 0 | 1 ), ( 1 | 0 ), ( 1 | 1 )]

qecc.constrained_set(pauli_array_input, logical_array_input)
Given a set of constraints of the form 𝑃𝑖 ⊙ 𝑄 = 𝑏𝑖, with each 𝑃𝑖 a Pauli operator and each 𝑏𝑖 a bit, yields an
iterator onto Pauli operators 𝑄 such that all constraints are satisfied.

Parameters

• pauli_array_input (list of qecc.Pauli instances.) – Constraint operators 𝑃𝑖.
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• logical_array_input (numpy.ndarray of dtype=int and shape
(len(pauli_array_input), ).) – Constraint values 𝑏𝑖.

>>> import qecc as q
>>> list(q.constrained_set(map(lambda s: q.Pauli(s).as_bsv(), ['XY','ZZ']),[1,0]))
[( 0 0 | 0 1 ), ( 0 0 | 1 0 ), ( 1 1 | 0 0 ), ( 1 1 | 1 1 )]

qecc.commute(bsv1, bsv2)
Returns True if bsv1 and bsv2 commute by evaluating the symplectic inner product.

Return type bool

qecc.xz_switch(bsv)
Given a qecc.BinarySymplecticVector, returns a new vector whose 𝑋 and 𝑍 parts have been swapped.

1.3.3 qecc.BinarySymplecticMatrix - Binary symplectic representation of Clif-
ford group elements

Class Reference

class qecc.BinarySymplecticMatrix(*args)
Encapsulates a binary symplectic matrix representing an element of the Clifford group on 𝑛 qubits.

A new BinarySymplecticMatrix can be constructed using either a single NumPy 2-D array containing
the 𝑋𝑋 , 𝑋𝑍, 𝑍𝑋 , and 𝑍𝑍 parts of the binary symplectic matrix. Alternatively, a new matrix can be instantiated
using four NumPy arrays. For example, the following two invocations are equivalent:

>>> import qecc
>>> import numpy as np
>>> bsm = qecc.BinarySymplecticMatrix(np.array([[1, 0, 0, 0],[1, 1, 0, 0],[0, 0,
→˓1, 1],[0, 0, 0, 1]]))
>>> bsm = qecc.BinarySymplecticMatrix(np.array([[1, 0],[1, 1]]), np.array([[0, 0],
→˓[0, 0]]), np.array([[0, 0],[0, 0]]), np.array([[1, 1],[0, 1]]))

nq
Returns the number of qubits that the binary symplectic matrix acts upon.

xc
Returns the left half of a binary symplectic matrix.

zc
Returns the right half of a binary symplectic matrix.

xr
Returns the top half of a binary symplectic matrix.

zr
Returns the bottom half of a binary symplectic matrix.

xx
Returns the upper-left quadrant of a binary symplectic matrix.

xz
Returns the upper-right quadrant of a binary symplectic matrix.

zx
Returns the lower-left quadrant of a binary symplectic matrix.
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zz
Returns the lower-right quadrant of a binary symplectic matrix.

left_H(j)
Multiplies on the left by a Hadamard gate on the 𝑗th qubit. This method acts in-place, as opposed to
acting on a copy of the binary symplectic matrix. In order to preserve the original matrix, use the copy()
method:

>>> new_bsm = bsm.copy().left_H(idx)

right_H(j)
Multiplies on the right by a Hadamard gate on the 𝑗th qubit. See left_H() for more details.

right_H_all()
Multiplies on the right by a Hadamard gate on each qubit. See left_H() for more details.

left_SWAP(j, k)
Multiplies on the left by a SWAP gate between the 𝑗th and 𝑘th qubits. This method acts in-place, as
opposed to acting on a copy of the binary symplectic matrix. In order to preserve the original matrix, use
the copy() method:

>>> new_bsm = bsm.copy().left_SWAP(j, k)

right_SWAP(j, k)
Multiplies on the right by a SWAP gate between the 𝑗th and 𝑘th qubits. See left_SWAP() for more
details.

left_CNOT(c, t)
Multiplies on the left by a CNOT gate controlled by the 𝑐th qubit and targeting the 𝑘th qubit. This method
acts in-place, as opposed to acting on a copy of the binary symplectic matrix. In order to preserve the
original matrix, use the copy() method:

>>> new_bsm = bsm.copy().left_CNOT(c, t)

right_CNOT(c, t)
Multiplies on the right by a CNOT gate controlled by the 𝑐th qubit and targeting the 𝑘th qubit. For more
details, see left_CNOT().

left_R_pi4(i)
Multiplies on the left by an 𝑅𝜋/4 gate acting on the 𝑖th qubit. This method acts in-place, as opposed to
acting on a copy of the binary symplectic matrix. In order to preserve the original matrix, use the copy()
method:

>>> new_bsm = bsm.copy().left_R_pi4(c, t)

right_R_pi4(i)
Multiplies on the right by an 𝑅𝜋/4 gate acting on the 𝑖th qubit. For more details, see left_R_pi4().

left_CZ(c1, c2)
Multiplies on the left by an controlled-𝑍 gate acting between the 𝑐th

1 and 𝑐th
2 qubits. This method acts

in-place, as opposed to acting on a copy of the binary symplectic matrix. In order to preserve the original
matrix, use the copy() method:

>>> new_bsm = bsm.copy().left_CZ(c, t)

right_CZ(c1, c2)
Multiplies on the right by an controlled-𝑍 gate acting between the 𝑐th

1 and 𝑐th
2 qubits. For more details, see

left_CZ().
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inv(check_validity=True)
Returns the inverse of this binary symplectic matrix, assuming that this matrix represents a valid Clifford
gate.

Note that if the matrix 𝐻 does not represent a valid Clifford, this method will return a matrix 𝐺 such that
𝐻𝐺 is not the identity matrix.

Parameters check_validity (bool) – If True, then the matrix is first checked to ensure
that it is a valid Clifford.

Raises qecc.InvalidCliffordError if check_validity is True and the binary
symplectic matrix being inverted does not represent a valid Clifford group element.

as_clifford(check_validity=True)
Converts this binary symplectic matrix into a Clifford representation.

Parameters check_validity (bool) – If True, then the matrix is first checked to ensure
that it is a valid Clifford.

Return type qecc.Clifford

Returns The same gate as this binary symplectic matrix, represented as an instance of qecc.
Clifford.

is_valid()
Checks the satisfaction of the symplectic condition on a qecc.BinarySymplecticMatrix object.

copy()
Returns a copy of this binary symplectic matrix, pointing to a distinct location in memory.

circuit_decomposition(validate=True)
Decomposes the binary symplectic matrix using the algorithm of [AG04].

Utility Functions

qecc.is_bsm_valid(*args, **kwargs)

qecc.bsmzeros(nq)
Returns a binary symplectic matrix on 𝑛 qubits, initialized to all zeros.

Parameters nq (int) – Number of qubits that the created matrix will act upon.

Returns A binary symplectic matrix containing all zeros.

Return type BinarySymplecticMatrix

qecc.array_to_pauli(bsv_array)
Function wrapper for type conversion from binary symplectic vector to qecc.Pauli. See qecc.
BinarySymplecticVector.as_pauli().

1.4 Stabilizer Codes

1.4.1 qecc.StabilizerCode

Introduction

QuaEC includes a class, qecc.StabilizerCode, that represents error-correcting codes specified using the stabi-
lizer formalism [Got97]. To construct a stabilizer code in QuaEC, the generators of a stabilizer group must be specified
along with a particular assignment of logical operators acting on states encoded in the stabilizer code.
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>>> import qecc as q
>>> stab = q.StabilizerCode(['ZZI', 'IZZ'], ['XXX'], ['ZZZ'])
>>> print stab
S = <i^0 ZZI, i^0 IZZ>
Xbars = PauliList(i^0 XXX)
Zbars = PauliList(i^0 ZZZ)

For convienence, several static methods are provided to create instances for well-known stabilizer codes.

>>> stab = q.StabilizerCode.perfect_5q_code()
>>> print stab
5-qubit perfect code
S = <i^0 XZZXI, i^0 IXZZX, i^0 XIXZZ, i^0 ZXIXZ>
Xbars = PauliList(i^0 XXXXX)
Zbars = PauliList(i^0 ZZZZZ)

Once constructed, an instance of qecc.StabilizerCode exposes properties that describe the number of physical
and logical qubits, as well as the distance of the code. (Please note that calculating the distance can be extremely slow
for large codes.)

>>> print (stab.nq, stab.nq_logical, stab.distance)
(5, 1, 3)

Encoders and decoders for stabilizer codes can be found in a straightforward manner using qecc.
StabilizerCode.

>>> enc = stab.encoding_cliffords().next()
>>> print enc
X[0] |-> +X[0] X[1] X[2] X[3] X[4]
X[1] |-> +X[0] X[2] X[3] X[4]
X[2] |-> +X[1] X[2]
X[3] |-> +Y[0] X[1] X[3] Y[4]
X[4] |-> +X[0] X[1] Y[3] Y[4]
Z[0] |-> +Z[0] Z[1] Z[2] Z[3] Z[4]
Z[1] |-> +X[0] Z[1] Z[2] X[3]
Z[2] |-> +X[1] Z[2] Z[3] X[4]
Z[3] |-> +X[0] X[2] Z[3] Z[4]
Z[4] |-> +Z[0] X[1] X[3] Z[4]
>>> print enc.inv()
X[0] |-> -X[0] Z[3] X[4]
X[1] |-> +X[0] X[1]
X[2] |-> +X[0] X[1] X[2]
X[3] |-> -X[0] X[2] X[3] Z[4]
X[4] |-> +X[0] Y[3] Y[4]
Z[0] |-> -Z[0] Y[1] Y[3] Z[4]
Z[1] |-> -Z[0] Y[2] Z[3] Y[4]
Z[2] |-> +Z[0] Z[1] Z[2] X[3]
Z[3] |-> -Z[0] Y[1] Z[3] Y[4]
Z[4] |-> -Z[0] Z[1] X[2] Z[3] Z[4]

Stabilizer codes may be combined by the tensor product (reprsented in QuaEC by &), or by concatenation:

>>> print stab & stab
S = <i^0 XZZXIIIIII, i^0 IXZZXIIIII, i^0 XIXZZIIIII, i^0 ZXIXZIIIII, i^0 IIIIIXZZXI,
→˓i^0 IIIIIIXZZX, i^0 IIIIIXIXZZ, i^0 IIIIIZXIXZ>
Xbars = PauliList(i^0 XXXXXIIIII, i^0 IIIIIXXXXX)
Zbars = PauliList(i^0 ZZZZZIIIII, i^0 IIIIIZZZZZ)

(continues on next page)
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(continued from previous page)

>>> print q.StabilizerCode.bit_flip_code(1).concatenate(q.StabilizerCode.phase_flip_
→˓code(1))
S = <i^0 Z[0] Z[1], i^0 Z[1] Z[2], i^0 Z[3] Z[4], i^0 Z[4] Z[5], i^0 Z[6] Z[7], i^0
→˓Z[7] Z[8], i^0 XXXXXXIII, i^0 IIIXXXXXX>
Xbars = PauliList(i^0 XXXXXXXXX)
Zbars = PauliList(i^0 ZZZZZZZZZ)

Class Reference

class qecc.StabilizerCode(group_generators, logical_xs, logical_zs, label=None)
Class representing a stabilizer code specified by the generators of its stabilizer group and by representatives for
the logical operators acting on the code.

Parameters

• group_generators – Generators 𝑁𝑖 such that the stabilizer group 𝑆 of the represented
code is given by 𝑆 = ⟨𝑁𝑖⟩.

• logical_xs – Representatives for the logical 𝑋 operators acting on encoded states.

• logical_zs – Representatives for the logical 𝑍 operators acting on encoded states.

• label (str) – User-facing name for the stabilizer code.

nq
The number of physical qubits into which this code encodes.

n_constraints
The number of stabilizer constraints on valid codewords.

nq_logical
The number of logical qubits admitted by this code.

logical_ys
Derives logical 𝑌 operators, given logical 𝑋 and 𝑍 operators.

logical_ops
Returns a list of all logical operators for a code in the form [Xs, Ys, Zs].

distance
The distance of this code, defined by min wt{𝑃 |𝑃 ∈ N(𝑆)∖𝑆}, where 𝑆 is the stabilizer group for this
code.

Warning: this property is currently very slow to compute.

n_correctable
The number of errors 𝑡 correctable by this code, defined by

⌊︀
𝑑−1
2

⌋︀
, where 𝑑 is the distance of the code,

given by the distance property.

stabilizer_group(coset_rep=None)
Iterator onto all elements of the stabilizer group 𝑆 describing this code, or onto a coset 𝑃𝑆 of the stabilizer
group.

Parameters coset_rep (qecc.Pauli) – A Pauli operator 𝑃 , so that the iterated coset is
𝑃𝑆. If not specified, defaults to the identity.

Yields All elements of the coset 𝑃𝑆 of the stabilizer group 𝑆.

logical_pauli_group(incl_identity=True)
Iterator onto the group N(𝑆)/𝑆, where 𝑆 is the stabilizer group describing this code. Each member of
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the group is specified by a coset representative drawn from the respective elements of N(𝑆)/𝑆. These
representatives are chosen to be the logical 𝑋 and 𝑍 operators specified as properties of this instance.

Parameters incl_identity (bool) – If False, the identity coset 𝑆 is excluded from this
iterator.

Yields A representative for each element of N(𝑆)/𝑆.

normalizer_group(mod_s=False)
Returns all elements of the normalizer of the stabilizer group. If mod_s is True, returns the set 𝑁(𝑆)∖𝑆.

encoding_cliffords()
Returns an iterator onto all Clifford operators that encode into this stabilizer code, starting from an input
register such that the state to be encoded is a state of the first 𝑘 qubits, and such that the rest of the qubits
in the input register are initialized to |0⟩.

Yields instances C of qecc.Clifford such that C(q.StabilizerCode.
unencoded_state(k, n - k)) equals this code.

syndrome_to_recovery_operator(synd)
Returns a Pauli operator which corrects an error on the stabilizer code self, given the syndrome synd,
a bitstring indicating which generators the implied error commutes with and anti-commutes with.

Parameters synd – a string, list, tuple or other sequence type with entries consisting only of 0
or 1. This parameter will be certified before use.

syndromes_and_recovery_operators()
Outputs an iterator onto tuples of syndromes and appropriate recovery operators.

recovery_circuit_as_qcircuit(C=None, R=None)
Returns the recovery operator (as specified by syndromes_and_recovery_operators()), ex-
pressed as a Qcircuit array.

Parameters

• C (float) – Width (in ems) of each column.

• R (float) – Height (in ems) of each column.

star_decoder(for_enc=None, as_dict=False)
Returns a tuple of a decoding Clifford and a qecc.PauliList specifying the recovery operation to
perform as a function of the result of a 𝑍⊗𝑛−𝑘 measurement on the ancilla register.

For syndromes corresponding to errors of weight greater than the distance, the relevant element of the
recovery list will be set to qecc.Unspecified.

Parameters

• for_enc – If not None, specifies to use a given Clifford operator as the encoder, instead
of the first element yielded by encoding_cliffords().

• as_dict (bool) – If True, returns a dictionary from recovery operators to syndromes
that indicate that recovery.

minimize_distance_from(other, quiet=True)
Reorders the stabilizer group generators of this code to minimize the Hamming distance with the group
generators of another code, using a greedy heuristic algorithm.

stabilizer_subspace()
Returns a 2𝑘 × 2𝑛 array whose rows form a basis for the codespace of this code. Please note that by
necessity, this code is exponentially slow as a function of the numbers of physical and logical qubits.
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block_logical_pauli(P)
Given a Pauli operator 𝑃 acting on 𝑘, finds a Pauli operator 𝑃 on 𝑛𝑘 qubits that corresponds to the logical
operator acting across 𝑘 blocks of this code.

Note that this method is only supported for single logical qubit codes.

measure_gen_onto_ancilla(gen_idx)
Produces a circuit that measures the stabilizer code generator self.group_generators[gen_idx]
onto the qubit labelled by stab.nq (that is, the next qubit not in the physical register used by the code).

Parameters gen_idx (int) – Index of a generator of the stabilizer group, as specified by the
group_generators property of this instance.

Returns qecc.Circuit A circuit that maps a measurement of
group_generators[gen_idx] onto a measurement of 𝑍 on the ancilla qubit
alone.

syndrome_meas_circuit()
Returns a circuit which measures all stabilizer generators onto ancillae, using
measure_gen_onto_ancilla.

permute_gen_ops(perm)
Returns a stabilizer code with generators related to the generators of self, with every instance of {X,Y,Z}
replaced with {perm[0],perm[1],perm[2]}.

Parameters perm (list) – A list containing ‘X’,’Y’, and ‘Z’ in any order, indicating which
permutation is to be applied.

>>> new_stab = StabilizerCode.bit_flip_code(1).permute_gen_ops('ZYX')
>>> assert new_stab.group_generators == StabilizerCode.phase_flip_code(1).
→˓group_generators

concatenate(other)
Returns the stabilizer for a concatenated code, given the stabilizers for two codes. At this point, it only
works for two 𝑘 = 1 codes.

transcoding_cliffords(other)
Returns an iterator onto all qecc.Clifford objects which take states specified by self, and return
states specified by other.

Parameters other – qecc.StabilizerCode

min_len_transcoding_clifford(other)
Searches the iterator provided by transcoding_cliffords for the shortest circuit decomposition.

static ancilla_register(nq=1)
Creates an instance of qecc.StabilizerCode representing an ancilla register of nq qubits, initialized
in the state |0⟩⊗nq.

Return type qecc.StabilizerCode

static unencoded_state(nq_logical=1, nq_ancilla=0)
Creates an instance of qecc.StabilizerCode representing an unencoded register of nq_logical
qubits tensored with an ancilla register of nq_ancilla qubits.

Parameters nq_logical (int) – Number of qubits to

Return type qecc.StabilizerCode

static flip_code(n_correctable, stab_kind=’Z’)
Creates an instance of qecc.StabilizerCode representing a code that protects against weight-
n_correctable flip errors of a single kind.
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This method generalizes the bit-flip and phase-flip codes, corresponding to stab_kind=qecc.Z and
stab_kind=qecc.X, respectively.

Parameters

• n_correctable (int) – Maximum weight of the errors that can be corrected by this
code.

• stab_kind (qecc.Pauli) – Single-qubit Pauli operator specifying which kind of op-
erators to use for the new stabilizer code.

Return type qecc.StabilizerCode

static bit_flip_code(n_correctable)
Creates an instance of qecc.StabilizerCode representing a code that protects against weight-
n_correctable bit-flip errors.

Parameters n_correctable (int) – Maximum weight of the bit-flip errors that can be cor-
rected by this code.

Return type qecc.StabilizerCode

static phase_flip_code(n_correctable)
Creates an instance of qecc.StabilizerCode representing a code that protects against weight-
n_correctable phase-flip errors.

Parameters n_correctable (int) – Maximum weight of the phase-flip errors that can be
corrected by this code.

Return type qecc.StabilizerCode

static perfect_5q_code()
Creates an instance of qecc.StabilizerCode representing the 5-qubit perfect code.

Return type qecc.StabilizerCode

static steane_code()
Creates an instance of qecc.StabilizerCode representing the 7-qubit Steane code.

Return type qecc.StabilizerCode

static shor_code()
Creates an instance of qecc.StabilizerCode representing the 9-qubit Shor code.

Return type qecc.StabilizerCode

static css_code(C1, C2)
Not yet implemented.

static reed_muller_code(r, t)
Not yet implemented.

static reed_solomon_code(r, t)
Not yet implemented.

1.5 Circuit Manipulation and Simulation

1.5.1 Introduction

Quantum circuits are modeled in QuaEC by a sequence type, qecc.Circuit, that stores zero or more circuit
elements, known as locations. Each location has a kind that indicates if it is a gate, measurement or preparation
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location, as well as which gate, which measurement or which preparation is indicated.

Creating a qecc.Location instance consists of specifying the kind of location along with a sequence of indices
indicating which qubits that location acts upon.

>>> import qecc as q
>>> loc = q.Location('CNOT', 0, 2)

The qecc.Location.as_clifford() method allows converting gate locations back into a qecc.Clifford
representation if applicable.

>>> print loc.as_clifford()
XII |-> +XIX
IXI |-> +IXI
IIX |-> +IIX
ZII |-> +ZII
IZI |-> +IZI
IIZ |-> +ZIZ

When creating a qecc.Circuit, you may specify each location either as an instance of qecc.Location or as a
tuple of arguments to qecc.Location’s constructor.

>>> circ = q.Circuit(('CNOT', 0, 2), ('H', 1), ('X', 0))

Printing a circuit or location results in that instance being represented in the QuASM format, a plaintext representation
of quantum circuits.

>>> print loc
CNOT 0 2

>>> print circ
CNOT 0 2
H 1
X 0

The number of qubits, depth and size of each location and circuit can be found by querying the appropriate properties
of a qecc.Location or qecc.Circuit:

>>> print loc.nq
3
>>> print circ.nq, circ.depth, circ.size, len(circ)
3 2 3 3

Once constructed, a qecc.Circuit can be transformed in several ways, including simplifications and representa-
tions in terms of depth-1 subcircuits.

>>> circ = q.Circuit(('CNOT', 0, 2), ('H', 1), ('X', 0), ('H', 1))
>>> print circ

CNOT 0 2
H 1
X 0
H 1

>>> print circ.cancel_selfinv_gates()
CNOT 0 2
X 0

>>> circ = q.Circuit(('CZ', 0, 2), ('H', 1), ('X', 0))
>>> print circ.replace_cz_by_cnot()

H 2
CNOT 0 2

(continues on next page)
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H 2
H 1
X 0

>>> print "\n --\n".join(map(str, circ.group_by_time()))
H 2
--
CNOT 0 2
--
H 2
H 1
X 0

Note that, except for qecc.Circuit.group_by_time(), each of these transformations mutates the circuit, so
that the original circuit is lost.

>>> print circ
H 2
CNOT 0 2
H 2
H 1
X 0

If a circuit consists entirely of Clifford gate locations, then its entire action may be represented as a qecc.Clifford
instance:

>>> circ = q.Circuit(('CZ', 0, 2), ('H', 1), ('X', 0))
>>> print circ.as_clifford()
XII |-> +XIZ
IXI |-> +IZI
IIX |-> -ZIX
ZII |-> -ZII
IZI |-> +IXI
IIZ |-> +IIZ

Finally, circuits can be exported to QCViewer files (*.qcv) for easy integration with QCViewer’s functionality.

>>> print circ.as_qcviewer()
.v q1 q2 q3
.i q1
.o q1
BEGIN

Z q1 q3
H q2
X q1

END

Note that, by default, qubits in the QCViewer export are named “q1”, “q2” and so on. This may be overriden by
passing a sequence of strings as the qubit_names argument. Which qubits get assigned to the .i and .o headers
in the QCViewer file are controlled by the inputs and outputs arguments, respectively.

>>> print circ.as_qcviewer(inputs=(0,), outputs=(0,), qubit_names=["in1", "anc1",
→˓"anc2"])
.v in1 anc1 anc2
.i in1
.o in1
BEGIN

(continues on next page)
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Z in1 anc2
H anc1
X in1

END

1.5.2 qecc.Location: Class representing locations in a circuit

Class Reference

class qecc.Location(kind, *qubits)
Represents a gate, wait, measurement or preparation location in a circuit.

Note that currently, only gate locations are implemented.

Parameters

• kind (int or str) – The kind of location to be created. Each kind is an abbreviation
drawn from Location.KIND_NAMES, or is the index in Location.KIND_NAMES cor-
responding to the desired location kind.

• qubits (tuple of ints.) – Indicies of the qubits on which this location acts.

KIND_NAMES = ['I', 'X', 'Y', 'Z', 'H', 'R_pi4', 'CNOT', 'CZ', 'SWAP']
Names of the kinds of locations used by QuaEC.

static from_quasm(source)
Returns a qecc.Location initialized from a QuASM-formatted line.

Return type qecc.Location

Returns The location represented by the given QuASM source.

kind
Returns a string defining which kind of location this instance represents. Guaranteed to be a string that is
an element of Location.KIND_NAMES.

qubits
Returns a tuple of ints describing which qubits this location acts upon.

nq
Returns the number of qubits in the smallest circuit that can contain this location without relabeling qubits.
For a qecc.Location loc, this property is defined as 1 + max(loc.nq).

is_clifford
Returns True if and only if this location represents a gate drawn from the Clifford group.

wt
Returns the number of qubits on which this location acts.

as_clifford(nq=None)
If this location represents a Clifford gate, returns the action of that gate. Otherwise, a RuntimeError is
raised.

Parameters nq (int) – Specifies how many qubits to represent this location as acting upon. If
not specified, defaults to the value of the nq property.

Return type qecc.Clifford

as_qcviewer(qubit_names=None)
Returns a representation of this location in a format suitable for inclusion in a QCViewer file.
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Parameters qubit_names – If specified, the given aliases will be used for the qubits involved
in this location when exporting to QCViewer. Defaults to “q1”, “q2”, etc.

Return type str

Note that the identity (or “wait”) location requires the following to be added to QCViewer’s gateLib:

NAME wait
DRAWNAME "1"
SYMBOL I
1 , 0
0 , 1

relabel_qubits(relabel_dict)
Returns a new location related to this one by a relabeling of the qubits. The relabelings are to be indicated
by a dictionary that specifies what each qubit index is to be mapped to.

>>> import qecc as q
>>> loc = q.Location('CNOT', 0, 1)
>>> print loc

CNOT 0 1
>>> print loc.relabel_qubits({1: 2})

CNOT 0 2

Parameters relabel_dict (dict) – If i is a key of relabel_dict, then qubit i will be replaced
by relabel_dict[i] in the returned location.

Return type qecc.Location

Returns A new location with the qubits relabeled as specified by relabel_dict.

1.5.3 qecc.Circuit: Class modeling arrangements of locations

Class Reference

class qecc.Circuit(*locs)

append(newval)
L.append(object) – append object to end

insert(at, newval)
L.insert(index, object) – insert object before index

nq
Returns the number of qubits on which this circuit acts.

size
Returns the number of locations in this circuit. Note that this property is synonymous with len, in that
len(circ) == circ.size for all qecc.Circuit instances.

depth
Returns the minimum number of timesteps required to implement exactly this circuit in parallel.

static from_quasm(source)
Returns a qecc.Circuit object from a QuASM-formatted file, producing one location per line.

as_quasm()
Returns a representation of the circuit in an assmembler-like format. In this format, each location is
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represented by a single line where the first field indicates the kind of location and the remaining fields
indicate the qubits upon which the location acts.

>>> import qecc as q
>>> circ = q.Circuit(('CNOT', 0, 2), ('H', 2), ('SWAP', 1, 2), ('I', 0))
>>> print circ.as_quasm()

CNOT 0 2
H 2
SWAP 1 2
I 0

as_qcviewer(inputs=(0, ), outputs=(0, ), qubit_names=None)
Returns a string representing this circuit in the format recognized by QCViewer.

Parameters

• inputs (tuple) – Specifies which qubits should be marked as inputs in the exported
QCViewer circuit.

• outputs (tuple) – Specifies which qubits should be marked as outputs in the exported
QCViewer circuit.

• qubit_names – Names to be used for each qubit when exporting to QCViewer.

as_qcircuit(C=None, R=None)
Typesets this circuit using the Qcircuit package for LATEX.

Parameters

• C (float) – Width (in ems) of each column.

• R (float) – Height (in ems) of each column.

Return type str

Returns A string containing LATEX source code for use with Qcircuit.

as_clifford()
If this circuit is composed entirely of Clifford operators, converts it to a qecc.Clifford instance
representing the action of the entire circuit. If the circuit is not entirely Clifford gates, this method raises a
RuntimeError.

cancel_selfinv_gates(start_at=0)
Transforms the circuit, removing any self-inverse gates from the circuit if possible. Note that not all
self-inverse gates are currently supported by this method.

Parameters start_at (int) – Specifies which location to consider first. Any locations before
start_at are not considered for cancelation by this method.

replace_cz_by_cnot()
Changes all controlled-𝑍 gates in this circuit to controlled-NOT gates, adding Hadamard locations as
required.

group_by_time(pad_with_waits=False)
Returns an iterator onto subcircuits of this circuit, each of depth 1.

Parameters pad_with_waits (bool) – If True, each subcircuit will have wait locations
added such that every qubit is acted upon in every subcircuit.

Yields each depth-1 subcircuit, corresponding to time steps of the circuit

pad_with_waits()
Returns a copy of the qecc.Circuit self, which contains explicit wait locations.
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relabel_qubits(relabel_dict)
Returns a new circuit related to this one by a relabeling of the qubits. The relabelings are to be indicated
by a dictionary that specifies what each qubit index is to be mapped to.

>>> import qecc as q
>>> loc = q.Location('CNOT', 0, 1)
>>> print loc

CNOT 0 1
>>> print loc.relabel_qubits({1: 2})

CNOT 0 2

Parameters relabel_dict (dict) – If i is a key of relabel_dict, then qubit i will be replaced
by relabel_dict[i] in the returned circuit.

Return type qecc.Circuit

Returns A new circuit with the qubits relabeled as specified by relabel_dict.

Functions Acting on qecc.Circuit

qecc.propagate_fault(circuitlist, fault)
Given a list of circuits representing a list of timesteps (see qecc.Circuit.group_by_time()) and a
Pauli fault, propagates that fault through the remainder of the time-sliced circuit.

Parameters

• circuitlist (list) – A list of qecc.Circuit instances representing the timesteps
of a larger circuit.

• fault (qecc.Pauli) – A Pauli fault to occur immediately before timestep timestep.

• timestep (int) – The timestep immediately following when the fault to be propagated
occured.

Return type qecc.Pauli

Returns The effective fault after propagating fault through the remainder of circuitlist.

qecc.possible_faults(circuit)
Takes a sub-circuit which has been padded with waits, and returns an iterator onto Paulis which may occur as
faults after this sub-circuit.

Parameters circuit (qecc.Circuit) – Subcircuit to in which faults are to be considered.

qecc.possible_output_faults(circuitlist)
Gives an iterator onto all possible effective faults due to 1-fault paths occuring within circuitlist, assuming
it has been padded with waits.

Parameters circuitlist (list) – A list of qecc.Circuit instances representing timesteps
in a larger circuit. See qecc.Circuit.group_by_time().

Yields qecc.Pauli instances representing possible effective faults due to 1-fault paths within the
circuit represented by circuitlist.
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1.6 Constraint Solvers

1.6.1 Commutation Constraints

qecc.solve_commutation_constraints(commutation_constraints=[], anticommuta-
tion_constraints=[], search_in_gens=None,
search_in_set=None)

Given commutation constraints on a Pauli operator, yields an iterator onto all solutions of those constraints.

Parameters

• commutation_constraints – A list of operators {𝐴𝑖} such that each solution 𝑃
yielded by this function must satisfy [𝐴𝑖, 𝑃 ] = 0 for all 𝑖.

• anticommutation_constraints – A list of operators {𝐵𝑖} such that each solution
𝑃 yielded by this function must satisfy {𝐵𝑖, 𝑃} = 0 for all 𝑖.

• search_in_gens – A list of operators {𝑁𝑖} that generate the group in which to search
for solutions. If None, defaults to the elementary generators of the pc.Pauli group on 𝑛
qubits, where 𝑛 is given by the length of the commutation and anticommutation constraints.

• search_in_set – An iterable of operators to which the search for satisfying assignments
is restricted. This differs from search_in_gens in that it specifies the entire set, not a
generating set. When this parameter is specified, a brute-force search is executed. Use only
when the search set is small, and cannot be expressed using its generating set.

Returns An iterator it such that list(it) contains all operators within the group 𝐺 =
⟨𝑁1, . . . , 𝑁𝑘⟩ given by search_in_gens, consistent with the commutation and anticom-
mutation constraints.

This function is based on finding the generators of the centralizer groups of each commutation constraint, and is
thus faster than a predicate-based search over the entire group of interest. The resulting iterator can be used in
conjunction with other filters, however.

>>> import qecc as q
>>> list(q.solve_commutation_constraints(q.PauliList('XXI', 'IZZ', 'IYI'), q.
→˓PauliList('YIY')))
[i^0 XII, i^0 IIZ, i^0 YYX, i^0 ZYY]
>>> from itertools import ifilter
>>> list(ifilter(lambda P: P.wt <= 2, q.solve_commutation_constraints(q.PauliList(
→˓'XXI', 'IZZ', 'IYI'), q.PauliList('YIY'))))
[i^0 XII, i^0 IIZ]

1.7 Predicates and Filters

1.7.1 qecc.Predicate: Class representing predicate functions

The qecc package provides a class Predicate to represent a predicate function; that is, a function which returns a
bool.

class qecc.Predicate(fn)
Class representing a predicate function on one or more arguments.

>>> from qecc import Predicate
>>> p = Predicate(lambda x: x > 0)

(continues on next page)
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>>> p(1)
True
>>> p(-1)
False

Instances can also be constructed by logical operations on existing Predicate instances:

>>> q = Predicate(lambda x: x < 3)
>>> (p & q)(1)
True
>>> (p | q)(-1)
True
>>> (~p)(2)
False

combine(other, outer_fn)
Returns a new Predicate that combines this predicate with another predicate using a given function to
combine the results.

>>> gt_2 = Predicate(lambda x: x > 2)
>>> even = Predicate(lambda x: x % 2 == 0)
>>> nand = lambda x, y: not (x and y)
>>> r = gt_2.combine(even, nand)
>>> map(r, range(1,5))
[True, True, True, False]

Specific Predicates

Several useful predefined predicates are provided by qecc.

class qecc.SetMembershipPredicate(S)
Given an iterable S, constructs a predicate that returns True if and only if its argument is in S.

>>> from qecc import SetMembershipPredicate
>>> p = SetMembershipPredicate(range(4))
>>> map(p, range(-1, 5))
[False, True, True, True, True, False]

class qecc.PauliMembershipPredicate(S, ignore_phase=True)
Given a set S of Pauli operators represented as qecc.Pauli instances, constructs a predicate that returns
True for a Pauli P if and only if P is in S.

If the keyword argument ignore_phase is True, then the comparison to determine whether P is in S only
considers the operator part of P.

In addition, utility functions are provided for constructing predicates based on commutation properties of the Pauli
group.

qecc.commutes_with(*paulis)
Returns a predicate that checks whether a Pauli P commutes with each of a given list of Pauli operators.

qecc.in_group_generated_by(*paulis)
Returns a predicate that selects Pauli operators in the group generated by a given list of generators.
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Usage Examples

Predicate functions can be used to quickly generate collections of qecc.Pauli operators having a given set of
properties.

>>> from qecc import commutes_with, in_group_generated_by, pauli_group
>>> print filter(
... commutes_with('XX', 'ZZ') & ~in_group_generated_by('XX'),
... pauli_group(2)
... )
[i^0 YY, i^0 ZZ]

Since searching in this way requires examining every element of a given iterator, it can be significantly faster to instead
use constraint solvers such as those documented in Constraint Solvers.

1.8 Misc. Utility Functions and Classes

1.8.1 Matrix Manipulation

qecc.directsum(A, B)
Given two matrices 𝐴 and 𝐵 with two indices each, returns the direct sum 𝐴⊕𝐵.

Return type ndarray, shape (sA[0] + sB[0], sA[1] + sB[1])

Returns 𝐴⊕𝐵

qecc.parity(bitarray)

Parameters bitarray (list) – a list containing integers of value 0 or 1.

Returns True if bitarray is of odd parity, False if it is of even parity.

Return type bool

1.9 Exceptions and Warnings

1.9.1 qecc.InvalidCliffordError Reference

class qecc.InvalidCliffordError
We raise this exception wherever an automated procedure has produced a list of output Pauli matrices that does
not commute as the result of an automorphism on the Paulis, or where some other idiocy has occurred.

1.10 Bibliography
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CHAPTER 2

Introduction

QuaEC is a library for working with quantum error correction and fault-tolerance. In particular, QuaEC provides
support for maniuplating Pauli and Clifford operators, as well as binary symplectic representations of each.

QuaEC is intended to provide easy, automated analysis of error-correcting protocols based on stabilizer codes. for
example, one can define a stabilizer code from a pre-existing library, and produce an object representing a circuit to
encode data into that code:

>>> import qecc as q
>>> perfect_code=q.StabilizerCode.perfect_5q_code()
>>> print perfect_code.encoding_cliffords().next().circuit_decomposition()

CNOT 1 0
CNOT 3 0
CNOT 4 0
CNOT 2 1
CNOT 3 2
CNOT 4 2
CNOT 4 3
H 0
H 1
H 2
H 3
H 4
CZ 0 1
CZ 0 2
CZ 1 2
CZ 0 3
CZ 1 4
CZ 3 4
H 0
H 1
H 2
H 3
H 4
H 4

(continues on next page)
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SWAP 3 4
H 4
CNOT 0 4
CNOT 0 3
CNOT 0 2
CNOT 0 1
X 1
X 2
Z 3
Y 4
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CHAPTER 3

Getting Started with QuaEC

3.1 Obtaining QuaEC

Currently, QuaEC is hosted on GitHub. The latest unstable version of QuaEC is available for download as a ZIP there.
Stable releases can be found on the downloads page, including installation packages for Windows and common Linux
distributions.

QuaEC is available via PyPI as well. To obtain it, run easy_install quaec at the terminal or in the Windows
command line.

3.2 Installation

Once you have obtained QuaEC, installation is straightforward using the included setup.py script or the installation
packages.

To use setup.py on Unix-like systems, run the following commands from the command line:

$ cd /path/to/quaec/
$ sudo python setup.py install

To use setup.py on Windows, run cmd.exe, then enter the following commands:

C:\> cd C:\path\to\quaec\
C:\path\to\quaec\> python setup.py install

You may be prompted for permission by User Access Control, as the installer attempts to install QuaEC into the
system-wide packages directory.

Once QuaEC has been installed, it is made available as the qecc package:

>>> import qecc as q
>>> print q.Pauli('XYZ', phase=2)
i^2 XYZ
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CHAPTER 4

Indices and tables

• genindex

• modindex

• search
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