

python-pure-cdb

[image: _images/python-pure-cdb.svg]
 [https://travis-ci.com/bbayles/python-pure-cdb][image: _images/9ec23faaf9a4d633c32382b8fead9f12e34643c0.svg]
 [https://python-pure-cdb.readthedocs.io/en/latest/?badge=latest]The python-pure-cdb package (pure-cdb [https://pypi.org/project/pure-cdb/] on PyPI)
is a Python library for working with D.J. Bernstein’s “constant datbases.”
It supports both Python 2.7 and Python 3.

In addition to being able to read and write the database files produced by
other cdb tools, python-pure-cdb can produce and consume “64-bit”
constant databases that don’t have the usual 4 GiB restriction.

For more information on constant databases, see djb’s page [https://cr.yp.to/cdb.html]
and Wikipedia [https://en.wikipedia.org/wiki/Cdb_(software)].

The documentation for this package is available at
https://python-pure-cdb.readthedocs.io.

Contents

	Getting started
	Installation

	Reading existing cdb files

	Writing new cdb files

	Library reference
	The Reader classes

	The Writer classes

	Advanced usage

	Command line tools
	python-pure-cdbmake

	python-pure-cdbdump

	Version history

	Development information
	Contributing

	Python version support

	License

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Installation

Install the library with pip [https://pip.pypa.io/en/stable/]:

pip install pure-cdb

Once the library is installed, import cdblib to use it.

Reading existing cdb files

cdblib.Reader can query an existing database.

Pass it a bytes-like object of the file’s contents to start:

>>> import cdblib
>>> with open('info.cdb', 'rb') as f:
... data = f.read()
>>> reader = cdblib.Reader(data)

Reader instances implement a dict-like interface. To retrieve everything
stored in the database, use the .iteritems() method.

>>> for key, value in reader.iteritems():
... print('+{},{}:{}->{}'.format(len(key), len(value), key, value))

To retrieve the first value stored at a key, use the .get() method.

>>> reader.get(b'some_key')
b'some_value'

Note that all keys and values are bytes objects (str on Python 2).
For more information, see the library documentation.

For “64-bit” database files, use cdblib.Reader64 instead of cdblib.Reader.

Writing new cdb files

cdblib.Writer can create a new database.

Pass it a file-like object (opened in binary write mode) to start.
Then write to the database with the .put() method.

>>> import cdblib
>>> with open('/tmp/new.cdb', 'wb') as f:
... with cdblib.Writer(f) as f:
... writer.put(b'key', b'value')

As with the reader class, all keys and values are bytes objects
(str on Python 2).

For “64-bit” database files, use cdblib.Writer64 instead of cdblib.Writer.

Library reference

The Reader classes

cdblib.Reader reads standard “32-bit” cdb files, such as those produced by the
cdbmake CLI tool. cdblib.Reader64 reads “64-bit” cdb files, which can be
produced by this package.

The Reader classes take one positional argument, a bytes-like object with
a database’s content:

>>> import cdblib
>>> with open('info.cdb', 'rb') as f:
... data = f.read()
>>> reader = cdblib.Reader(data)

An mmap object can be used to avoid reading an entire database into memory -
see below.

Retrieving data

The .items() method returns a list of (key, value) tuples representing
all of the records stored in the database (in insertion order).
Note that a single key can have multiple values associated with it.

>>> reader.items()
[(b'k1', b'v1'), (b'k2', b'v2a'), (b'k2', b'v2b')]

The .iteritems() method is like .items(), but it returns an iterator over
the items rather than a list.

The .keys() method returns a list of the keys stored in the database
(in insertion order). The .iterkeys() method returns an iterator over the
keys. Note that keys will be repeated if a single key has multiple values
associated with it.

The .values() method returns a list of the values stored in the database
(in insertion order). The .itervalues() method returns an iterator over the
values.

Calling len() on a Reader instance returns the number of records (key-value
pairs) stored in the database.

>>> len(reader)
3

The in operator can be used to test whether a key is present in the database.

>>> b'k1' in reader
True
>>> b'k3' in reader
False

The .get() method returns the first value in the database for key.
If the key isn’t in the database, None will be returned. To use a different
default value, use the default keyword:

>>> reader.get(b'k2')
b'v2a'
>>> reader.get(b'missing')
None
>>> reader.get(b'missing', default=b'fallback')
b'fallback'

The .gets() method returns an iterator over all the values associated
with key.

>>> list(reader.gets(b'k2'))
[b'v2a', b'v2b']

Reader instances also support dict-like retrieval of the first value
associated with key. KeyError will be raised if the requested key isn’t in
the database.

>>> reader[b'k2']
b'v2a'
>>> reader[b'missing2']
KeyError: b'missing'

Note that the values retrieved by the .get() and .gets() methods are
bytes objects.

If the values in the database represent integers, you can retrieve them as
Python int objects with the .getint() and .getints() methods.

>>> reader.get(b'key_with_int_value')
b'1'
>>> reader.getint(b'key_with_int_value')
1

Similarly, the .getstring() and .getstrings() methods will retrieve
the values as str objects.

>>> reader.get(b'key_with_str_value')
b'text data'
>>> reader.getstring(b'key_with_str_value')
'text data'

You may specify an encoding with the encoding keyword argument.

>>> reader.get(b'fancy_a_or_f')
b'\xc4'
>>> reader.getstring(b'fancy_a_or_f', encoding='cp1252')
'Ä'
>>> reader.getstring(b'fancy_a_or_f', encoding='mac-roman')
'ƒ'

Encoding and strict mode

Database keys are stored as bytes objects. By default, Reader instances
will attempt to convert text keys (str on Python 3, unicode on Python 2)
and integer keys (int on Python 3, int and long on Python 2)
automatically.

>>> reader.get(b'1') # Binary key
b'value_for_1'
>>> reader.get('1') # Text key
b'value_for_1'
>>> reader.get(1) # Integer key
b'value_for_1'

To disable this behavior, pass strict=True when creating the Reader
instance. This will increase read performance, and is useful when you want to
deal with bytes keys only.

>>> import cdblib
>>> with open('info.cdb', 'rb') as f:
... data = f.read()
>>> reader = cdblib.Reader(data, strict=True)
>>> reader.get(b'1') # Binary key
b'value_for_1'
>>> reader.get(1)
...
TypeError: key must be of type 'bytes'

Limiting memory usage

To avoid having to read a whole database into memory, use cdblib.Reader
(or cdblib.Reader64) with mmap.mmap.

>>> from mmap import mmap, ACCESS_READ
... from cdblib import Reader
...
... with open('info.cdb', 'rb') as f:
... with mmap(f.fileno(), 0, access=ACCESS_READ) as m:
... reader = Reader(m)
... reader.items()

See the Python docs [https://docs.python.org/3/library/mmap.html] for more
information on mmap.

The Writer classes

cdblib.Writer produces standard “32-bit” cdb files, which should be readable
by other cdb tools like cdbget and cdbdump. cdblib.Writer64 produces
“64-bit” cdb files, which can be read by this package.

The Writer classes take one positional argument, a file-like object opened in
binary mode.

>>> import cdblib
...
... with open('info.cdb', 'wb') as f:
... writer = cdblib.Writer(f):
... writer.put(b'k1', b'v1a')
... writer.finalize()

Writer instances don’t create readable databases until their .finalize()
method is called. You should use them as a context manager wherever possible -
this ensures that .finalize() is called.

>>> with open('info.cdb', 'wb') as f:
... with cdblib.Writer(f) as writer:
... writer.put(b'k1', b'v1a')

Storing data

The .put() method is used to create a database record for a binary key
and a binary value.

>>> import io
>>> import cdblib
>>> f = io.BytesIO() # Use an in-memory database
>>> writer = cdblib.writer(f)
>>> writer.put(b'k1', b'v1a')

The .puts() method adds multiple binary values at the same key.

>>> writer.puts(b'k2', [b'v2a', b'v2b'])

To store integer values, use .putint() or .putints().

>>> writer.putint(b'key_with_int_values', 1)
>>> writer.putints(b'key_with_int_values', [2, 3])

To store text data, use .putstring() or .putstrings(), with an optional
encoding keyword argument. The default encoding is ‘utf-8’.

>>> writer.putstring(b'fancy_a', 'Ä') # stores b'\xc3\x84'
>>> writer.putstring(b'fancy_a', 'Ä', encoding='cp1252') # stores b'\xc4'
>>> writer.putstrings(b'boring_a', ['a', 'A'])

As above, don’t forget to call .finalize() to write the database to disk if
you’re not using a context manager.

>>> writer.finalize()

Encoding and strict mode

Database keys are stored as bytes objects. As with Reader instances,
Writer instances will attempt to convert text keys and integer keys
automatically.

To disable this behavior, pass strict=True when creating the Writer
instance. This will increase write performance, and is useful when you want to
deal with bytes keys only.

Advanced usage

Alternate hash functions

By default python-pure-cdb will use the standard cdb hash function
described on djb’s page [https://cr.yp.to/cdb/cdb.txt].

You can substitute in your own hash function when using a Writer instance,
if you’re so inclined. This will of course require you to use the same hash
function when reading the database.

>>> import io
... import zlib
...
... import cdblib
...
...
... def custom_hash(x):
... return zlib.adler32(x) & 0xffffffff
...
...
... with io.BytesIO() as f:
... with cdblib.Writer(f, hashfn=custom_hash) as writer:
... writer.put(b'k1', b'v1a')
... writer.puts(b'k2', [b'v2a', b'v2b'])
...
... reader = cdblib.Reader(f.getvalue(), hashfn=custom_hash)
... reader.items()
[(b'k1', b'v1a'), (b'k2', b'v2a'), (b'k2', b'v2b')]

C extension hash function

When using CPython, you can build a C Extension that speeds up using the
cdb hash function.

Set the ENABLE_DJB_HASH_CEXT environment variable when executing setup.py
to enable the extension:

$ ENABLE_DJB_HASH_CEXT=1 python setup.py install

Command line tools

The python-pure-cdb package contains Python implementations of the
cdbmake and cdbdump programs [https://cr.yp.to/cdb/cdbmake.html].

python-pure-cdbmake should be able to create databases that are compatible
with other implementations, including the standard one.
It can also create “64-bit” databases that don’t have the usual 4 GiB
restriction.

Similarly, python-pure-cdbdump should be able to read databases produced
by other implementations, including the standard one.
It can also read the “64-bit” databases produced by this package.

python-pure-cdbmake

This utility creates a database file from text records using the following
format:

+klen,dlen:key->data

	Where:

	
	klen is the length of key (in bytes)

	dlen is the length of data (in bytes)

	key can be any string of characters

	data can be any string of characters

Each record must end with a newline character. For example:

+1,2:a->bb
+2,1:aa->b

python-pure-cdbmake reads these records from stdin. When invoking the
utility, you have to specify two file paths:

	The first (cdb) is the ultimate location of the database.

	The second (cdb.tm) is a temporary location to use when creating the
database. It will be moved to the ultimate location after completion.

$ <records_file.txt python-pure-cdbmake ~/records_db.cdb /tmp/records_db.tmp

Use the -64 switch to enable “64-bit” mode, which can write larger database
files at the expense of compatibility with other cdb packages.

python-pure-cdbdump

This utility creates a text export of the contents of a database file.

The output format is the same as the one used by python-pure-cdbmake for
input - see above.

python-pure-cdbdump reads the database from stdin and prints to stdout.

$ <~records_db.cdb python-pure-cdbdump
+1,2:a->bb
+2,1:aa->b

Use the -64 switch to read databases created by this package using “64-bit”
mode.

Version history

	
	Version 2.2.0 [https://github.com/dw/python-pure-cdb/releases/tag/v2.2.0]

	
	Added non-strict mode for convenience when using non-binary keys.

	API docs are now available at ReadTheDocs.

	
	Version 2.1.0 [https://github.com/dw/python-pure-cdb/releases/tag/v2.1.0]

	
	Python 3 support

	Writer and Writer64 can now act as context managers.

	A Python implementation of cdbdump (python-pure-cdbdump) is now included.

	The Python implementation of cdbmake was renamed python-pure-cdbmake and some bugs were fixed.

Development information

Development for python-pure-cdb takes place
on GitHub [https://github.com/dw/python-pure-cdb].

Contributing

To file a bug report or make a suggestion, please create a
GitHub issue [https://github.com/dw/python-pure-cdb/issues].

To contribute a patch, please create a
GitHub pull request [https://github.com/dw/python-pure-cdb/pulls].

Python version support

python-pure-cdb supports the versions of Python currently being maintained
by the PSF. If you find a bug when using an older version, feel free to
file an issue about it, but note that it might not get fixed.

License

This project uses the
MIT License [https://github.com/dw/python-pure-cdb/blob/master/LICENSE].

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 python-pure-cdb

 		
 Getting started

 		
 Installation

 		
 Reading existing cdb files

 		
 Writing new cdb files

 		
 Library reference

 		
 The Reader classes

 		
 Retrieving data

 		
 Encoding and strict mode

 		
 Limiting memory usage

 		
 The Writer classes

 		
 Storing data

 		
 Encoding and strict mode

 		
 Advanced usage

 		
 Alternate hash functions

 		
 C extension hash function

 		
 Command line tools

 		
 python-pure-cdbmake

 		
 python-pure-cdbdump

 		
 Version history

 		
 Development information

 		
 Contributing

 		
 Python version support

 		
 License

_static/up-pressed.png

_static/up.png

