
processor
Release 0.9.0

December 06, 2015

Contents

1 Simple rules 1

2 Quick example 3

3 Installation 5

4 Usage 7

5 Ideas for Sources and Outputs 9

6 What is next? 11
6.1 Sources . 11
6.2 Outputs . 14
6.3 Contributing . 16
6.4 Authors . 18
6.5 Changelog . 18

i

ii

CHAPTER 1

Simple rules

Python processor is a tool for creating chained pipelines for dataprocessing. It have very few key concepts:

Data object Any python dict with two required fields: source and type.

Source An iterable sequence of data objects or a function which returns data objects. See full list of
sources in the docs.

Output A function which accepts a data object as input and could output another. See full list of outputs in the
docs. (or same) data object as result.

Predicate Pipeline consists from sources outputs, but predicate decides which data object should be pro-
cessed by which output.

1

processor, Release 0.9.0

2 Chapter 1. Simple rules

CHAPTER 2

Quick example

Here is example of pipeline which reads IMAP folder and sends all emails to Slack chat:

run_pipeline(
sources.imap('imap.gmail.com'

'username',
'password'
'INBOX'),

[prepare_email_for_slack, outputs.slack(SLACK_URL)])

Here you construct a pipeline, which uses sources.imap for reading imap folder “INBOX” of
username@gmail.com. In more complex case outputs.fanout can be used for routing dataobjects to dif-
ferent processors and sources.mix can be used to merge items two or more sources into a one stream.

Functions prepare_email_to_slack and outputs.slack(SLACK_URL) are processors. First one is
a simple function which accepts data object, returned by imap source and transforming it to the data object
which could be used by slack.output. We need that because slack requires a different set of fields. Call to
outputs.slack(SLACK_URL) returns a function which gets an object and send it to the specified Slack’s end-
point.

It is just example, for working snippets, continue reading this documention ;-)

Note: By the way, did you know there is a Lisp dialect which runs on Python virtual machine? It’s name is HyLang,
and python processor is written in this language.

3

processor, Release 0.9.0

4 Chapter 2. Quick example

CHAPTER 3

Installation

Create a virtual environment with python3::

virtualenv --python=python3 env
source env/bin/activate

Install required version of hylang (this step is necessary because Hy syntax is not final yet and frequently changed by
language maintainers)::

pip install -U 'git+git://github.com/hylang/hy.git@a3bd90390cb37b46ae33ce3a73ee84a0feacce7d#egg=hy'

If you are on OSX, then install lxml on OSX separately::

STATIC_DEPS=true pip install lxml

Then install the processor::

pip install processor

5

processor, Release 0.9.0

6 Chapter 3. Installation

CHAPTER 4

Usage

Now create an executable python script, where you’ll place your pipline’s configuration. For example, this simple
code creates a process line which searches new results in Twitter and outputs them to console. Of cause, you can
output them not only to console, but also post by email, to Slack chat or everywhere else if there is an output for it:

#!env/bin/python3
import os
from processor import run_pipeline, sources, outputs
from twiggy_goodies.setup import setup_logging

for_any_message = lambda msg: True

def prepare(tweet):
return {'text': tweet['text'],

'from': tweet['user']['screen_name']}

setup_logging('twitter.log')

run_pipeline(
sources=[sources.twitter.search(

'My Company',
consumer_key='***', consumer_secret='***',
access_token='***', access_secret='***',
)],

rules=[(for_any_message, [prepare, outputs.debug()])])

Running this code, will fetch new results for search by query My Company and output them on the screen. Of course,
you could use any other output, supported by the processor. Browse online documentation to find out which
sources and outputs are supported and for to configure them.

7

processor, Release 0.9.0

8 Chapter 4. Usage

CHAPTER 5

Ideas for Sources and Outputs

• web-hook endpoint (in progress).

• tail source which reads file and outputs lines appeared in a file between invocations or is able to emulate
tail -f behaviour. Python module tailer could be used here.

• grep output – a filter to grep some fields using patterns. With tail and grep you could build a pipeline
which watch on a log and send errors by email or to the chat.

• xmpp output.

• irc output.

• rss/atom feed reader.

• weather source which tracks tomorrow’s weather forecast and outputs a message if it was changed signifi-
cantly, for example from “sunny” to “rainy”.

• github some integrations with github API?

• jira or other task tracker of your choice?

• suggest your ideas!

9

https://pypi.python.org/pypi/tailer/

processor, Release 0.9.0

10 Chapter 5. Ideas for Sources and Outputs

CHAPTER 6

What is next?

Read about sources, outputs and try to build you own pipeline!

And please, send you contributions as pull requests. Writing new sources and outputs is easier than you think!

6.1 Sources

6.1.1 mix

This is a helper to mix data objects from two or more sources into one stream. When mixed, dataobjects are interleaved.
For example:

>>> from processor import sources
>>> source1 = [1,2,3]
>>> source2 = [5,6,7,8]
>>> print(list(sources.mix(source1, source2)))

[1, 5, 2, 6, 3, 7, 8]

Mix source iterates through each given source until it raises StopIteration. That means, if you’ll give it an infinite
sources like a web.hook, then resulting source also will be infinite.

6.1.2 imap

Imap source is able to read new emails from specified folder on IMAP server. All you need is to specify server’s
address, optional port and user credentials:

Example:

from processor import run_pipeline, source, outputs
run_pipeline(

sources.imap("imap.gmail.com",
"username",
"****word",
"Inbox"),

outputs.debug())

This script will read Inbox folder at server imap.gmail.com and print resulting dicts to the terminal’s screen.

11

https://github.com/svetlyak40wt/python-processor

processor, Release 0.9.0

6.1.3 github

Access to private repositories

To have access to private repositories, you need to generate a “personal access token” at the GitHub.

All you need to do this, is to click on the image below and it will open a page with only scopes needed for the Processor:

Then copy this token into the clipboard and pass it as a access_token parameter to each github.**** source.

Note: Access token not only let the processor read from private repositories, but also makes rate limits higher, so you
could poll GitHub’s API more frequently.

Without token you can make only 60 request per hour, but with token – 5000 requests per hour.

github.releases

Outputs new releases of the given repository. On first call, it will output all the most recent releases, then remeber
position on next calls will return only new releases if any were found.

Example:

from processor import run_pipeline, source, outputs

github_creds = dict(access_token='keep-it-in-secret')
run_pipeline(

12 Chapter 6. What is next?

https://github.com/settings/tokens/new?scopes=repo,public_repo
https://github.com/settings/tokens/new?scopes=repo,public_repo

processor, Release 0.9.0

sources.github.releases('https://github.com/mozilla/metrics-graphics', **github_creds),
outputs.debug())

This source returns following fields:

source github.releases

type github.release

payload The object returned by GitHub’s API. See section “Response” at GitHub’s docs on repos/releases.

6.1.4 twitter

Note: To use this source, you need to obtain an access token from twitter. There is a detailed instruction how to do
this Twitter’s documentation. You could encapsulate twitter credentials into a dict:

twitter_creds = dict(consumer_key='***', consumer_secret='***',
access_token='***', access_secret='***')

sources.twitter.search('Some query', **twitter_creds)
sources.twitter.followers(**twitter_creds)

twitter.search

This source runs search by given query in Twitter and returns fresh results:

from processor import run_pipeline, source, outputs
run_pipeline(

sources.twitter.search('iOS release notes', **twitter_creds),
outputs.debug())

It returns following fields:

source twitter.search

type twitter.tweet

other Other fields are same as them returns Twitter API. See section “Example Result” at twitter’s docs on
search/tweets.

twitter.followers

First invocation returns all who you follows, each next – only new followers:

from processor import run_pipeline, source, outputs
run_pipeline(

sources.twitter.followers(**twitter_creds),
outputs.debug())

It returns following fields:

source twitter.followers

type twitter.user

other Other fields are same as them returns Twitter API. See section “Example Result” at twitter’s docs on follow-
ers/list.

6.1. Sources 13

https://developer.github.com/v3/repos/releases/#response
https://dev.twitter.com/oauth/overview/application-owner-access-tokens
https://dev.twitter.com/rest/reference/get/search/tweets
https://dev.twitter.com/rest/reference/get/followers/list
https://dev.twitter.com/rest/reference/get/followers/list

processor, Release 0.9.0

6.1.5 web.hook

This source starts a webserver which listens on a given interface and port. All GET and POST requests are transformed
into the data objects.

Configuration example:

run_pipeline(sources.web.hook(host='0.0.0.0', port=1999),
outputs.debug())

By default, it starts on localhost:8000, but in this case on 0.0.0.0:1999.

Here is example of data objects, produced by this source when somebody posts JSON:

{'data': {'some-value': 0},
'headers': {'Accept': 'application/json',
'Accept-Encoding': 'gzip, deflate',
'Connection': 'keep-alive',
'Content-Length': '17',
'Content-Type': 'application/json; charset=utf-8',
'Host': '127.0.0.1:1999',
'User-Agent': 'HTTPie/0.8.0'},

'method': 'POST',
'path': '/the-hook',
'query': {'query': ['var']},
'source': 'web.hook',
'type': 'http-request'}

This source returns data objects with following fields:

source web.hook

type http-request

method GET or POST

path Resource path without query arguments

query Query arguments

headers A headers dictionary. Please, note, this is usual dictionary with case sensitive keys.

data Request data, if this was a POST, None for GET. If requests has application/json content type, then data
decoded automatically into the python representation. For other content types, if there is charset part, then data
is decoded from bytes into a string, otherwise, it remains as bytes.

Note: This source runs in blocking mode. This means it blocks run_pipeline execution until somebody interupt
it.

No other sources could be processed together with web.hook.

6.2 Outputs

6.2.1 debug

This output is very useful for debugging you input. All it does right now – returns pprint function, but possible
interface will be extended in future to select which fields to ouput or suppress, cache or something like that.

14 Chapter 6. What is next?

processor, Release 0.9.0

6.2.2 fanout

Fanout output is useful, when you want to feed one data objects stream to two or more pipelines. For example, you
could send some events by email and into the slack chat simultaneously:

run_pipeline(some_source(),
outputs.fanout(

outputs.email('vaily@pupkin.name'),
outputs.slack(SLACK_URL)))

Or if you need to preprocess data objects for each output, then code will looks like this:

run_pipeline(some_source(),
outputs.fanout(

[prepare_email, outputs.email('vaily@pupkin.name')],
[prepare_slack, outputs.slack(SLACK_URL)]))

Where prepare_email and prepare_slack just a functions which return data objects with fields for email and
slack outputs.

6.2.3 email

Sends an email to given address via configured SMTP server. When configuring, you have to specify host, port,
user and password. And also a mail_to, which is an email of recipient who should receive a message and
mail_from which should be a tuple like (name, email) and designate sender. Here is an example:

run_pipeline(
[{'subject': 'Hello from processor',
'body': 'The HTML body.'}],

outputs.email(mail_to='somebody@gmail.com',
mail_from=('Processor', 'processor@yandex.ru'),
host='smtp.yandex.ru',
user='processor',
password='***',
port=465,
ssl=True,

))

Each data object should contain these fields:

subject Email’s subject

body HTML body of the email.

6.2.4 rss

Creates an RSS feed on the disk. Has one required parameter – filename and one optional – limit, which is 10
by default and limiting result feed’s length.

Each data object should contain these fields:

title Feed item’s title.

id (optional) Feed item’s unique identifier. If not provided, then md5 hash from title will be used.

body Any text to be placed inside of rss item’s body.

6.2. Outputs 15

processor, Release 0.9.0

6.2.5 slack

Write a message to Slack chat. A message could be sent to a channel or directly to somebody.

This output has one required parameter url. You could obtain it at the Slack’s integrations page. Select “Incoming
WebHooks” among all available integrations. Add a hook and copy it’s url into the script. Other parameter is
defaults. It is a dict to be merged with each data object and by default it has {"renderer": "markdown",
"username": "Processor"} value.

Each data object should contain these fields:

text Text of the message to be posted. This is only required field. Other fields are optional and described on Slack’s
integration page.

username (optional) A name to be displayed as sender’s name.

icon_url (optional) A link to png icon. It should be 57x57 pixels.

icon_emoji (optional) An emoji string. Choose one at ‘Emoji Cheat Sheet‘_.

channel A public channel can be specified with #other-channel, and a Direct Message with @username.

6.2.6 XMPP

XMPP output sends messages to given jabber id (JID). It connects as a Jabber client to a server and sends messages
through it.

Note: If you use Google’s xmpp, then you will need to add Bot’s JID into your roster. Otherwise, messages will not
be accepted by server.

This output is configured by three parameters jid, password and host. They are used to connect to a server as a
jabber client. Optionally, you could specify port (which is 5222 by default) and recipients – a list of who need
to be notified. Recipients list could be overriden if data object contains field recipients.

Each data object should contain these fields:

text Text of the message to be posted.

recipients (optional) A list of JIDs to be notified.

6.3 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

6.3.1 Bug reports

When reporting a bug please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

16 Chapter 6. What is next?

https://github.com/svetlyak40wt/python-processor/issues

processor, Release 0.9.0

6.3.2 Documentation improvements

processor could always use more documentation, whether as part of the official processor docs, in docstrings, or even
on the web in blog posts, articles, and such.

6.3.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/svetlyak40wt/python-processor/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

6.3.4 Development

To set up python-processor for local development:

1. Fork python-processor on GitHub.

2. Clone your fork locally:

git clone git@github.com:your_name_here/python-processor.git

3. Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

tox

5. Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

1. Include passing tests (run tox) 1.

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG.rst about the changes.

1 If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.

It will be slower though ...

6.3. Contributing 17

https://github.com/svetlyak40wt/python-processor/issues
https://github.com/svetlyak40wt/python-processor/fork
http://tox.readthedocs.org/en/latest/install.html
https://travis-ci.org/svetlyak40wt/python-processor/pull_requests

processor, Release 0.9.0

4. Add yourself to AUTHORS.rst.

Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

6.4 Authors

• Alexander Artemenko - http://dev.svetlyak.ru

6.5 Changelog

6.5.1 0.9.0 (2015-12-06)

Code was fixed to work with HyLang from a3bd90390cb37b46ae33ce3a73ee84a0feacce7d commit.
Please, use this pinned version of HyLang and subscribe on future release notes to know when this requirement
will change.

6.5.2 0.8.0 (2015-11-16)

• Code was fixed to work with latest Hy, from GitHub.

• Added twitter.mentions source, to read stream of mentions from the Twitter.

• Fixed a way how number of messages from IMAP folder is limited. Previously limit was applied even when
we already know an ID of the last seen message, but now limit is ignored in this case and only applied when
visiting the folder first time.

6.5.3 0.7.0 (2015-05-05)

New output – XMPP was added and now processor is able to notify Jabber users.

6.5.4 0.6.0 (2015-05-01)

The biggest change in this release is a new source – github.releases. It is able to read all new releases in given
repository and send them into processing pipeline. This works as for public repositories, and for private too. Read the
docs for futher details.

Other changes are:

• Storage backend now saves JSON database nicely pretty printed for you could read and edit it in your favorite
editor. This is Emacs, right?

18 Chapter 6. What is next?

http://dev.svetlyak.ru
https://allmychanges.com/p/python/processor/
https://python-processor.readthedocs.org/en/latest/sources.html#github-releases
https://python-processor.readthedocs.org/en/latest/sources.html#github-releases

processor, Release 0.9.0

• Twitter.search source now saves state after the tweet was processed. This way processor shouldn’t loose tweets
if there was exception somewhere in processing pipeline.

• IMAP source was fixed and now is able to fetch emails from really big folders.

6.5.5 0.5.0 (2015-04-15)

Good news, everyone! New output was added - email. Now Processor is able to notify you via email about any
event.

6.5.6 0.4.0 (2015-04-06)

• Function run_pipline was simplified and now accepts only one source and one ouput. To implement more
complex pipelines, use sources.mix and outputs.fanout helpers.

6.5.7 0.3.0 (2015-04-01)

• Added a web.hook source.

• Now source could be not only a iterable object, but any function which returns values.

6.5.8 0.2.1 (2015-03-30)

Fixed error in import-or-error macro, which prevented from using 3-party libraries.

6.5.9 0.2.0 (2015-03-30)

Most 3-party libraries are optional now. If you want to use some extension which requires external library, it will issue
an error and call sys.exit(1) until you satisfy this requirement.

This should make life easier for thouse, who does not want to use rss output which requires feedgenwhich requires
lxml which is hard to build because it is C extension.

6.5.10 0.1.0 (2015-03-18)

• First release on PyPI.

6.5. Changelog 19

https://python-processor.readthedocs.org/en/latest/sources.html#web-hook

	Simple rules
	Quick example
	Installation
	Usage
	Ideas for Sources and Outputs
	What is next?
	Sources
	Outputs
	Contributing
	Authors
	Changelog

