

python-msp430-tools documentation

This page’s online home is at: http://python-msp430-tools.readthedocs.io

Package home (PyPI): http://pypi.python.org/pypi/python-msp430-tools

Developement / Project page: https://github.com/zsquareplusc/python-msp430-tools

Contents:

	Overview
	NEWS

	Commandline Tools
	msp430-bsl

	msp430-bsl5

	msp430-jtag

	msp430-dco

	msp430-downloader

	Target Tools
	msp430.bsl.target

	msp430.bsl5.hid

	msp430.bsl5.uart

	msp430.jtag.dco

	msp430.jtag.target

	msp430.jtag.profile

	msp430.gdb.target

	Utilities
	msp430.memory.convert

	msp430.memory.compare

	msp430.memory.generate

	msp430.memory.hexdump

	Shell utilities
	msp430.shell.command

	msp430.shell.watch

	Assembler
	Tutorial

	Command line tools

	Forth Cross Compiler

	API Documentation

	Internals
	Target APIs

	Utility APIs

	File format handlers

	License

Indices and tables

	Index

	Module Index

	Search Page

Overview

This is about the python-msp430-tools, that provide a number of tools related
to the MSP430 microcontroller.

Python 2.6 or newer should be used. The Python package “msp430” can be
installed with python setup.py install. These modules can be used as
standalone applications or as library for other programs.

NEWS

Compared to the python-mspgcc-tools:

	new “target” base implementation that all upload/download tools share

	>64k address space support for most tools

	new download tool: msp430.gdb.target. It communicates with a GDB server
for the MSP430 such as msp430-gdbproxy or mspdebug.

	new BSL implementation (F1x, F2x, F4x): msp430.bsl.target

	new BSL implementation (F5x, F6x): msp430.bsl5.hid and
msp430.bsl5.uart

	JTAG tool renamed to: msp430.jtag.target

	renamed command line options -l/--lpt to -p/--port

	new command line option -l/--library-path

	all target tools:

	renamed command line options -P, -V to upper case

	new command line option -U/--upload-by-file

	new command line option -b/--erase-by-file

	multiple files on the command line are merged before downloading
(supporting overlapping areas - last one counts). Useful e.g. if a
boot loader part should be merged with an application part.

	specifying input format is now one option: -i/--input-format

	specifying output format is now one option: -f/--output-format

	new file formats: hex, bin

	new modules:

	msp430.listing (read IAR and mspgcc listing files)

	msp430.gdb (GDB client code for use with GDB servers)

	msp430.shell.command (busybox alike shell commands: mv, cp, rm and more)

	msp430.bsl5 (F5xx/F6xx BSL support)

	msp430.bsl5.hid (USB HID frontend)

	msp430.bsl5.uart (serial frontend)

	new tools:

	msp430.memory.convert (convert hex file formats)

	msp430.memory.generate (create hex files with fill pattern)

	msp430.memory.compare (compare hex files)

	msp430.memory.hexdump (show contents of hex files)

	new license: Simplified BSD License instead of Python License.

There is no longer a separate line frontend for each tool. However tools can be
used as follows:

python -m <module name> [options] [arguments]

e.g.:

python -m msp430.bsl.target -p /dev/ttyUSB0 -e somefile.elf

Commandline Tools

The following sections show the README files of the different command line tools.

Programming tools:

	msp430-bsl: F1x, F2x, F4x BSL

	msp430-bsl5: F5x, F6x BSL

	msp430-jtag: JTAG interface

Other Utilities:

	msp430-dco: clock calibration tool

	msp430-downloader: JTAG download wrapper (GUI)

msp430-bsl

MSP430 Boot Strap Loader software for F1xx, F2xx, F4xx.

Features

	Understands ELF, TI-Text and Intel-hex object files.

	Download to Flash and/or RAM, erase, verify, …

	Reset and wait for key press (to run a device directly from the port
power).

	Load address into R0/PC and run.

	Password file can be any data file, e.g. the one used to program the
device in an earlier session.

	Upload a memory block MSP->PC (output as binary data or hex dump).

	Written in Python, runs on Win32, Linux, BSD (and others).

	Use on command line, or in a Python script.

	Downloadable BSL for larger devices (integrated).

	Baud rate change for newer MSP430-BSLs.

	Test and reset lines can be inverted or exchanged for non standard BSL
hardware. Test singal on TX line is also possible.

Requirements

	Linux, BSD, Un*x or Windows PC

	Python 2.5 or newer

	pySerial (2.4 or newer recommended)

	BSL hardware with an MSP430 device connected to a serial port

Short introduction

First the MSP430 BSL hardware is needed. An example schematics can be found
in the application note “slaa96b” from TI (see references). Then this
program can be used to communicate between the PC and the MSP430 device.

The program can be started by typing “msp430-bsl” in a console.
To run it in the source directory, use “python msp430-bsl”

Usage: msp430.bsl.target [OPTIONS] [FILE [FILE…]]

	Options:

	
	-h, --help

	show this help message and exit

	-d, --debug

	print debug messages and tracebacks (development mode)

	-v, --verbose

	show more messages (can be given multiple times)

	-q, --quiet

	suppress all messages

	--time

	measure time

	-S, --progress

	show progress while programming

	Data input:

	File format is auto detected, unless –input-format is used. Preferred
file extensions are “.txt” for TI-Text format, “.a43” or “.hex” for
Intel HEX. ELF files can also be loaded.

Multiple files can be given on the command line, all are merged before
the download starts. “-” reads from stdin.

	-i TYPE, --input-format=TYPE

	input format name (titext, ihex, bin, hex, elf)

	Flash erase:

	Multiple –erase options are allowed. It is also possible to use
address ranges such as 0xf000-0xf0ff or 0xf000/4k.

NOTE: SegmentA on F2xx is NOT erased with –mass-erase, that must be
done separately with –erase=0x10c0 or –info-erase”.

	-e, --mass-erase

	mass erase (clear all flash memory)

	-m, --main-erase

	erase main flash memory only

	--info-erase

	erase info flash memory only (0x1000-0x10ff)

	-b, --erase-by-file

	erase only Flash segments where new data is downloaded

	--erase=ADDRESS

	selectively erase segment at the specified address or
address range

	Program flow specifiers:

	All these options work against the file(s) provided on the command
line. Program flow specifiers default to “-P” if a file is given.

“-P” usually verifies the programmed data, “-V” adds an additional
verification through uploading the written data for a 1:1 compare.

No default action is taken if “-P”, “-V” or “-E” is given, say
specifying only “-V” does a “check by file” of a programmed device
without programming.

Don’t forget to erase (“-e”, “-b” or “-m”) before programming flash!

	-E, --erase-check

	erase check by file

	-P, --program

	program file

	-V, --verify

	verify by file

	-U, --upload-by-file

	upload the memory that is present in the given file(s)

	Data upload:

	This can be used to read out the device memory. It is possible to use
address ranges such as 0xf000-0xf0ff or 0xf000/256, 0xfc00/1k.

Multiple –upload options are allowed.

	-u ADDRESS, --upload=ADDRESS

	upload a data block, can be passed multiple times

	-o DESTINATION, --output=DESTINATION

	write uploaded data to given file

	-f TYPE, --output-format=TYPE

	output format name (titext, ihex, bin, hex),
default:hex

	Do before exit:

	
	-x ADDRESS, --execute=ADDRESS

	start program execution at specified address, might
only be useful in conjunction with –wait

	-r, --reset

	perform a normal device reset that will start the
program that is specified in the reset interrupt
vector

	-w, --wait

	wait for <ENTER> before closing the port

	--no-close

	do not close port on exit

	Communication settings:

	
	-p PORT, --port=PORT

	Use com-port

	--invert-test

	invert RTS line

	--invert-reset

	invert DTR line

	--swap-reset-test

	exchenage RST and TEST signals (DTR/RTS)

	--test-on-tx

	TEST/TCK signal is muxed on TX line

	BSL settings:

	
	--no-start

	no not use ROM-BSL start pattern on RST+TEST/TCK

	-s SPEED, --speed=SPEED

	change baud rate (default 9600)

	--password=FILE

	transmit password before doing anything else, password
is given in given (TI-Text/ihex/etc) file

	--ignore-answer

	do not wait for answer to BSL commands

	--control-delay=CONTROL_DELAY

	set delay in seconds (float) for BSL start pattern

	--replace-bsl

	download replacement BSL (V1.50) for F1x and F4x
devices with 2k RAM

	--erase-cycles=EXTRA_ERASE_CYCLES

	configure extra erase cycles (e.g. very old F149 chips
require this for –main-erase)

If it says command failed (DATA_NAK) it’s probably because no or a wrong
password was specified, while a ERROR:BSL:Sync failed, aborting... is
typical when the BSL could not be started at all.

Examples

led.txt in the following examples is a place holder for some sort of binary
for the MSP430. A led.txt that contains an example in TI-Text format can be
built from the code in examples/asm/led.

	msp430-bsl -e

	Only erase flash.

	msp430-bsl -eErw led.txt

	Erase flash, erase check, download an executable, run it (reset)
and wait.

Old F149 devices need additional erase cycles! Use the
--erase-cycles option in this case (--erase-cycles 20 will be
OK is most cases)

	msp430-bsl led.txt

	Download of an executable to en empty (new or erased) device.
(Note that in new devices, some of the first bytes in the
information memory are random data. If data should be
downloaded there, specify -e.)

	msp430-bsl --upload 0x0c00/1024 --password led.txt

	Get a memory dump in HEX, from the bootstrap loader (on a device
that was previously programmed with led.txt and therefore needs
a specific password):

	msp430-bsl -rw

	Just start the user program (with a reset) and wait.

	cat led.txt|msp430-bsl -e -

	Pipe the data from “cat” to the BSL to erase and program the
flash. (un*x example, don’t forget the dash at the end of the
line)

	msp430-bsl --replace-bsl -e -s 38400 led.txt

	First download the internal replacement BSL and then use it
to program at 38400 baud. Only works with targets with more
than 1kB of RAM. Newer devices with already know this command, in that
case omit the --replace-bsl

History

	V1.4

	uses improved serial library,
support for BSL download to MSP,
support for higher baudrates (up to 38400)

	V1.5

	ELF file support,
replacement BSLs are now internal

	V2.0

	New implementation. Some command line options have been renamed or
replaced.

References

	Python: http://www.python.org

	pySerial: Serial port extension for Python
http://pypi.python.org/pypi/pyserial

	slaa89.pdf: “Features of the MSP430 Bootstrap Loader in the
MSP430F1121”, TI, http://www.ti.com/msp430

	slaa96b.pdf: “Application of Bootstrap Loader in MSP430 With Flash
Hardware and Software Proposal”, TI

	Texas Instruments MSP430 Homepage, links to data sheets and application
notes: http://www.ti.com/msp430

msp430-bsl5

MSP430 Boot Strap Loader software for F5xx, F6xx.

Features

	Understands ELF, TI-Text and Intel-hex object files.

	Download to Flash and/or RAM, erase, verify, …

	Reset and wait for key press (to run a device directly from the port
power).

	Load address into R0/PC and run.

	Password file can be any data file, e.g. the one used to program the
device in an earlier session.

	Upload a memory block MSP->PC (output as binary data or hex dump).

	Written in Python, runs on Win32, Linux, BSD (and others).

	Use on command line, or in a Python script.

	USB-HID BSL version:

	Automatic detection of HID device.

	UART BSL version:

	Baud rate change

	Test and reset lines can be inverted and/or exchanged for non standard BSL
hardware. Test singal on TX line is also possible.

Requirements

	Linux, BSD, Un*x or Windows PC

	Python 2.6 or newer

	USB support requires:

	“pywinusb” library on Windows

	“rawhid” kernel driver on Linux

	other platforms are currently not supported

	pySerial (2.4 or newer recommended)

	MSP430 F5x / F6x with UART BSL connected to a serial port or a USB capable
device connected to USB.

Short introduction

There are separate command line fontends for the USB and UART version:

	python -m msp430.bsl5.uart - UART version

	python -m msp430.bsl5.hid - USB version

Usage: hid.py [OPTIONS] [FILE [FILE…]]

	Options:

	
	-h, --help

	show this help message and exit

	--debug

	print debug messages and tracebacks (development mode)

	-v, --verbose

	show more messages (can be given multiple times)

	-q, --quiet

	suppress all messages

	--time

	measure time

	-S, --progress

	show progress while programming

	Data input:

	File format is auto detected, unless –input-format is used. Preferred
file extensions are “.txt” for TI-Text format, “.a43” or “.hex” for
Intel HEX. ELF files can also be loaded.

Multiple files can be given on the command line, all are merged before
the download starts. “-” reads from stdin.

	-i TYPE, --input-format=TYPE

	input format name (titext, ihex, bin, hex, elf)

	Flash erase:

	Multiple –erase options are allowed. It is also possible to use
address ranges such as 0xf000-0xf0ff or 0xf000/4k.

NOTE: SegmentA on F2xx is NOT erased with –mass-erase, that must be
done separately with –erase=0x10c0 or –info-erase”.

	-e, --mass-erase

	mass erase (clear all flash memory)

	-m, --main-erase

	erase main flash memory only

	--info-erase

	erase info flash memory only (0x1000-0x10ff)

	-b, --erase-by-file

	erase only Flash segments where new data is downloaded

	--erase=ADDRESS

	selectively erase segment at the specified address or
address range

	Program flow specifiers:

	All these options work against the file(s) provided on the command
line. Program flow specifiers default to “-P” if a file is given.

“-P” usually verifies the programmed data, “-V” adds an additional
verification through uploading the written data for a 1:1 compare.

No default action is taken if “-P”, “-V” or “-E” is given, say
specifying only “-V” does a “check by file” of a programmed device
without programming.

Don’t forget to erase (“-e”, “-b” or “-m”) before programming flash!

	-E, --erase-check

	erase check by file

	-P, --program

	program file

	-V, --verify

	verify by file

	-U, --upload-by-file

	upload the memory that is present in the given file(s)

	Data upload:

	This can be used to read out the device memory. It is possible to use
address ranges such as 0xf000-0xf0ff or 0xf000/256, 0xfc00/1k.

Multiple –upload options are allowed.

	-u ADDRESS, --upload=ADDRESS

	upload a data block, can be passed multiple times

	-o DESTINATION, --output=DESTINATION

	write uploaded data to given file

	-f TYPE, --output-format=TYPE

	output format name (titext, ihex, bin, hex),
default:hex

	Do before exit:

	
	-x ADDRESS, --execute=ADDRESS

	start program execution at specified address, might
only be useful in conjunction with –wait

	-r, --reset

	perform a normal device reset that will start the
program that is specified in the reset interrupt
vector

	-w, --wait

	wait for <ENTER> before closing the port

	--no-close

	do not close port on exit

	Communication settings:

	
	-d DEVICE, --device=DEVICE

	device name (default: auto detection)

	BSL settings:

	
	--password=FILE

	transmit password before doing anything else, password
is given in given (TI-Text/ihex/etc) file

The UART version only differs in the options controlling the “Communication”
and “BSL” settings:

	Communication settings:

	
	-p PORT, --port=PORT

	Use com-port

	--invert-test

	invert RTS line

	--invert-reset

	invert DTR line

	--swap-reset-test

	exchenage RST and TEST signals (DTR/RTS)

	--test-on-tx

	TEST/TCK signal is muxed on TX line

	BSL settings:

	
	--no-start

	no not use ROM-BSL start pattern on RST+TEST/TCK

	-s SPEED, --speed=SPEED

	change baud rate (default 9600)

	--password=FILE

	transmit password before doing anything else, password
is given in given (TI-Text/ihex/etc) file

	--ignore-answer

	do not wait for answer to BSL commands

	--control-delay=CONTROL_DELAY

	set delay in seconds (float) for BSL start pattern

Examples

led.txt in the following examples is a place holder for some sort of binary
for the MSP430. A led.txt that contains an example in TI-Text format can be
built from the code in examples/asm/led5x.

	python -m msp430.bsl5.hid -e

	Only erase flash.

	python -m msp430.bsl5.uart -eErw led.txt

	Erase flash, erase check, download an executable, run it (reset)
and wait.

	python -m msp430.bsl5.hid led.txt

	Download of an executable to en empty (new or erased) device.
(Note that in new devices, some of the first bytes in the
information memory are random data. If data should be
downloaded there, specify -e.)

	python -m msp430.bsl5.hid --upload 0xf000/1024 --password led.txt

	Get a memory dump in HEX, from a part of the memory (on a device
that was previously programmed with led.txt and therefore needs
a specific password):

	python -m msp430.bsl5.uart -rw`

	Just start the user program (with a reset) and wait.

	cat led.txt|python -m msp430.bsl5.uart -e -

	Pipe the data from “cat” to the BSL to erase and program the
flash. (un*x example, don’t forget the dash at the end of the
line)

	python -m msp430.bsl5.uart -e -s 38400 led.txt

	Change to faster baud rate for download.

Tips & Tricks

	USB-HID Linux permissions

	The USB HID device simply works when plugged in under Linux and the tool can use
the device when the “rawhid” kernel module is present. It will create
/dev/rawhid* devices. However, those devices are usually only writeable by
root. To automatically change the permissions of the device, the following udev
rule can be applied.

Create a file, e.g. /etc/udev/rules.d/20-msp430-hid.rules with the
following contents:

SUBSYSTEM=="hidraw", ATTRS{idVendor}=="2047", ATTRS{idProduct}=="0200" , MODE="0666"

History

	V1.0

	New tool.

References

	Python: http://www.python.org

	pySerial: Serial port extension for Python
http://pypi.python.org/pypi/pyserial

	pywinusb: USB HID library
http://pypi.python.org/pypi/pywinusb/

	slau319a.pdf: “MSP430 Programming Via the Bootstrap Loader”
http://www.ti.com/msp430

	Texas Instruments MSP430 Homepage, links to data sheets and application
notes: http://www.ti.com/msp430

msp430-jtag

Software to talk to the parallel port and USB JTAG adapters for the MSP430.

Features

	understands ELF, TI-Text and Intel-hex object files

	download to Flash and/or RAM, erase flash, verify

	reset device

	upload a memory block MSP->PC (output as binary data or hex dump, ihex)

	written in Python, runs on Win32, Linux, BSD, …

	use on command line, or in a Python script

	reset and wait for key press (to run a device directly from the port
power)

	TI/3rd party library support for USB JTAG adaptors

Requirements

	Linux, BSD, Un*x or Windows PC

	Python 2.5 or newer

	Parallel JTAG hardware with an MSP430 device connected

	or USB adapter with a corresponding [3rd party] MSP430 library

Short introduction

This software uses the JTAG hardware that comes with the FET kits. It is
connected to the parallel port. Using 3rd party backends it is also possible
to use USB programmers.

The program can be started by typing msp430-jtag when installed correctly
If it’s used from the source directory use “python -m msp430.jtag.target”.

Usage: msp430.jtag.target [OPTIONS] [FILE [FILE…]]

	Options:

	
	-h, --help

	show this help message and exit

	-d, --debug

	print debug messages and tracebacks (development mode)

	-v, --verbose

	show more messages (can be given multiple times)

	-q, --quiet

	suppress all messages

	--time

	measure time

	-S, --progress

	show progress while programming

	--help-backend

	show help about the different backends

	-l LIBRARY_PATH, --library-path=LIBRARY_PATH

	search for libMSP430.so or libMSP430mspgcc.so in this
place first

	Data input:

	File format is auto detected, unless –input-format is used. Preferred
file extensions are “.txt” for TI-Text format, “.a43” or “.hex” for
Intel HEX. ELF files can also be loaded.

Multiple files can be given on the command line, all are merged before
the download starts. “-” reads from stdin.

	-i TYPE, --input-format=TYPE

	input format name (titext, ihex, bin, hex, elf)

	Flash erase:

	Multiple –erase options are allowed. It is also possible to use
address ranges such as 0xf000-0xf0ff or 0xf000/4k.

NOTE: SegmentA on F2xx is NOT erased with –mass-erase, that must be
done separately with –erase=0x10c0 or –info-erase”.

	-e, --mass-erase

	mass erase (clear all flash memory)

	-m, --main-erase

	erase main flash memory only

	--info-erase

	erase info flash memory only (0x1000-0x10ff)

	-b, --erase-by-file

	erase only Flash segments where new data is downloaded

	--erase=ADDRESS

	selectively erase segment at the specified address or
address range

	Program flow specifiers:

	All these options work against the file(s) provided on the command
line. Program flow specifiers default to “-P” if a file is given.

“-P” usually verifies the programmed data, “-V” adds an additional
verification through uploading the written data for a 1:1 compare.

No default action is taken if “-P”, “-V” or “-E” is given, say
specifying only “-V” does a “check by file” of a programmed device
without programming.

Don’t forget to erase (“-e”, “-b” or “-m”) before programming flash!

	-E, --erase-check

	erase check by file

	-P, --program

	program file

	-V, --verify

	verify by file

	-U, --upload-by-file

	upload the memory that is present in the given file(s)

	Data upload:

	This can be used to read out the device memory. It is possible to use
address ranges such as 0xf000-0xf0ff or 0xf000/256, 0xfc00/1k.

Multiple –upload options are allowed.

	-u ADDRESS, --upload=ADDRESS

	upload a data block, can be passed multiple times

	-o DESTINATION, --output=DESTINATION

	write uploaded data to given file

	-f TYPE, --output-format=TYPE

	output format name (titext, ihex, bin, hex),
default:hex

	Do before exit:

	
	-x ADDRESS, --execute=ADDRESS

	start program execution at specified address, might
only be useful in conjunction with –wait

	-r, --reset

	perform a normal device reset that will start the
program that is specified in the reset interrupt
vector

	-w, --wait

	wait for <ENTER> before closing the port

	--no-close

	do not close port on exit

	Connection:

	NOTE: On Windows, use “USB”, “TIUSB” or “COM5” etc if using MSP430.dll
from TI. On other platforms, e.g. Linux, use “/dev/ttyUSB0” etc. if
using libMSP430.so. If a libMSP430.so is found, it is preferred,
otherwise libMSP430mspgcc.so is used.

NOTE: –slowdown > 50 can result in failures for the RAM size auto
detection (use –ramsize option to fix this). Use the –verbose option
and watch the outputs. The DCO clock adjustment and thus the Flash
timing may be inaccurate for large values.

	--backend=BACKEND

	select an alternate backend. See –help-backend for
more information

	-p PORT, --port=PORT

	specify an other parallel port or serial port for the
USBFET (the later requires libMSP430.so instead of
libMSP430mspgcc.so). (defaults to “LPT1”
(“/dev/parport0” on Linux))

	--spy-bi-wire-jtag

	interface is 4 wire on a spy-bi-wire capable device

	--spy-bi-wire

	interface is 2 wire on a spy-bi-wire capable device

	--slowdown=MICROSECONDS

	artificially slow down the communication. Can help
with long lines, try values between 1 and 50 (parallel
port interface with mspgcc’s HIL library only).
(experts only)

	-R BYTES, --ramsize=BYTES

	specify the amount of RAM to be used to program flash
(default: auto detected)

	--unlock-bsl

	unlock Flash BSL (e.g. F5x)

	JTAG fuse:

	WARNING: This is not reversible, use with care! Note: Not supported
with the simple parallel port adapter (7V source required).”,

	--secure

	blow JTAG security fuse

	Examples:

	Mass erase and program from file: “/home/lch/python-mspgcc-
tools/msp430/jtag/target.py -e firmware.elf” Dump information memory:
“/home/lch/python-mspgcc-tools/msp430/jtag/target.py
–upload=0x1000-0x10ff”

Note

Some versions of the Texas Instruments MSP430 Development Tool
require that you give the ‘–no-close’ option to msp430-jtag. This
is because the Texas Instruments tool is powered via the JTAG
adapter; the ‘–no-close’ option prevents msp430-jtag from powering
the adapter off. You may also need to restart the program with
msp430-jtag (using the ‘–no-close’ and ‘-r’ options is sufficient)
after rebooting your machine.

Other development kits that rely on the parallel port for their power
source may also need the ‘–no-close’ option. It is preferable to
try programming the device without the ‘–no-close’ option first,
and introduce this option only if the uploaded code fails to start.

Alternatively, it is possible run msp430-jtag -w to power the
eval board from the JTAG interface.

 Target Tools

Target Tools

msp430.bsl.target

python -m msp430.bsl.target -h [OPTIONS] [FILE [FILE...]]:

Options:
 -h, --help show this help message and exit
 --debug print debug messages and tracebacks (development mode)
 -v, --verbose show more messages (can be given multiple times)
 -q, --quiet suppress all messages
 --time measure time
 -S, --progress show progress while programming

 Data input:
 File format is auto detected, unless --input-format is used. Preferred
 file extensions are ".txt" for TI-Text format, ".a43" or ".hex" for
 Intel HEX. ELF files can also be loaded.

 Multiple files can be given on the command line, all are merged before
 the download starts. "-" reads from stdin.

 -i TYPE, --input-format=TYPE
 input format name (titext, ihex, bin, hex, elf)

 Flash erase:
 Multiple --erase options are allowed. It is also possible to use
 address ranges such as 0xf000-0xf0ff or 0xf000/4k.

 NOTE: SegmentA on F2xx is NOT erased with --mass-erase, that must be
 done separately with --erase=0x10c0 or --info-erase".

 -e, --mass-erase mass erase (clear all flash memory)
 -m, --main-erase erase main flash memory only
 --info-erase erase info flash memory only (0x1000-0x10ff)
 -b, --erase-by-file
 erase only Flash segments where new data is downloaded
 --erase=ADDRESS selectively erase segment at the specified address or
 address range

 Program flow specifiers:
 All these options work against the file(s) provided on the command
 line. Program flow specifiers default to "-P" if a file is given.

 "-P" usually verifies the programmed data, "-V" adds an additional
 verification through uploading the written data for a 1:1 compare.

 No default action is taken if "-P", "-V" or "-E" is given, say
 specifying only "-V" does a "check by file" of a programmed device
 without programming.

 Don't forget to erase ("-e", "-b" or "-m") before programming flash!

 -E, --erase-check erase check by file
 -P, --program program file
 -V, --verify verify by file
 -U, --upload-by-file
 upload the memory that is present in the given file(s)

 Data upload:
 This can be used to read out the device memory. It is possible to use
 address ranges such as 0xf000-0xf0ff or 0xf000/256, 0xfc00/1k.

 Multiple --upload options are allowed.

 -u ADDRESS, --upload=ADDRESS
 upload a data block, can be passed multiple times
 -o DESTINATION, --output=DESTINATION
 write uploaded data to given file
 -f TYPE, --output-format=TYPE
 output format name (titext, ihex, bin, hex),
 default:hex

 Do before exit:
 -x ADDRESS, --execute=ADDRESS
 start program execution at specified address, might
 only be useful in conjunction with --wait
 -r, --reset perform a normal device reset that will start the
 program that is specified in the reset interrupt
 vector
 -w, --wait wait for <ENTER> before closing the port
 --no-close do not close port on exit

 Communication settings:
 -p PORT, --port=PORT
 Use com-port
 --invert-test invert RTS line
 --invert-reset invert DTR line
 --swap-reset-test exchenage RST and TEST signals (DTR/RTS)
 --test-on-tx TEST/TCK signal is muxed on TX line

 BSL settings:
 --no-start no not use ROM-BSL start pattern on RST+TEST/TCK
 -s SPEED, --speed=SPEED
 change baud rate (default 9600)
 --password=FILE transmit password before doing anything else, password
 is given in given (TI-Text/ihex/etc) file
 --ignore-answer do not wait for answer to BSL commands
 --control-delay=CONTROL_DELAY
 set delay in seconds (float) for BSL start pattern
 --replace-bsl download replacement BSL (V1.50) for F1x and F4x
 devices with 2k RAM
 --erase-cycles=EXTRA_ERASE_CYCLES
 configure extra erase cycles (e.g. very old F149 chips
 require this for --main-erase)

msp430.bsl5.hid

python -m msp430.bsl5.hid [OPTIONS] [FILE [FILE...]]:

Options:
 -h, --help show this help message and exit
 --debug print debug messages and tracebacks (development mode)
 -v, --verbose show more messages (can be given multiple times)
 -q, --quiet suppress all messages
 --time measure time
 -S, --progress show progress while programming

 Data input:
 File format is auto detected, unless --input-format is used. Preferred
 file extensions are ".txt" for TI-Text format, ".a43" or ".hex" for
 Intel HEX. ELF files can also be loaded.

 Multiple files can be given on the command line, all are merged before
 the download starts. "-" reads from stdin.

 -i TYPE, --input-format=TYPE
 input format name (titext, ihex, bin, hex, elf)

 Flash erase:
 Multiple --erase options are allowed. It is also possible to use
 address ranges such as 0xf000-0xf0ff or 0xf000/4k.

 NOTE: SegmentA on F2xx is NOT erased with --mass-erase, that must be
 done separately with --erase=0x10c0 or --info-erase".

 -e, --mass-erase mass erase (clear all flash memory)
 -m, --main-erase erase main flash memory only
 --info-erase erase info flash memory only (0x1000-0x10ff)
 -b, --erase-by-file
 erase only Flash segments where new data is downloaded
 --erase=ADDRESS selectively erase segment at the specified address or
 address range

 Program flow specifiers:
 All these options work against the file(s) provided on the command
 line. Program flow specifiers default to "-P" if a file is given.

 "-P" usually verifies the programmed data, "-V" adds an additional
 verification through uploading the written data for a 1:1 compare.

 No default action is taken if "-P", "-V" or "-E" is given, say
 specifying only "-V" does a "check by file" of a programmed device
 without programming.

 Don't forget to erase ("-e", "-b" or "-m") before programming flash!

 -E, --erase-check erase check by file
 -P, --program program file
 -V, --verify verify by file
 -U, --upload-by-file
 upload the memory that is present in the given file(s)

 Data upload:
 This can be used to read out the device memory. It is possible to use
 address ranges such as 0xf000-0xf0ff or 0xf000/256, 0xfc00/1k.

 Multiple --upload options are allowed.

 -u ADDRESS, --upload=ADDRESS
 upload a data block, can be passed multiple times
 -o DESTINATION, --output=DESTINATION
 write uploaded data to given file
 -f TYPE, --output-format=TYPE
 output format name (titext, ihex, bin, hex),
 default:hex

 Do before exit:
 -x ADDRESS, --execute=ADDRESS
 start program execution at specified address, might
 only be useful in conjunction with --wait
 -r, --reset perform a normal device reset that will start the
 program that is specified in the reset interrupt
 vector
 -w, --wait wait for <ENTER> before closing the port
 --no-close do not close port on exit

 Communication settings:
 -d DEVICE, --device=DEVICE
 device name (default: auto detection)

 BSL settings:
 --password=FILE transmit password before doing anything else, password
 is given in given (TI-Text/ihex/etc) file

msp430.bsl5.uart

python -m msp430.bsl5.uart -h [OPTIONS] [FILE [FILE...]]:

Options:
 -h, --help show this help message and exit
 --debug print debug messages and tracebacks (development mode)
 -v, --verbose show more messages (can be given multiple times)
 -q, --quiet suppress all messages
 --time measure time
 -S, --progress show progress while programming

 Data input:
 File format is auto detected, unless --input-format is used. Preferred
 file extensions are ".txt" for TI-Text format, ".a43" or ".hex" for
 Intel HEX. ELF files can also be loaded.

 Multiple files can be given on the command line, all are merged before
 the download starts. "-" reads from stdin.

 -i TYPE, --input-format=TYPE
 input format name (titext, ihex, bin, hex, elf)

 Flash erase:
 Multiple --erase options are allowed. It is also possible to use
 address ranges such as 0xf000-0xf0ff or 0xf000/4k.

 NOTE: SegmentA on F2xx is NOT erased with --mass-erase, that must be
 done separately with --erase=0x10c0 or --info-erase".

 -e, --mass-erase mass erase (clear all flash memory)
 -m, --main-erase erase main flash memory only
 --info-erase erase info flash memory only (0x1000-0x10ff)
 -b, --erase-by-file
 erase only Flash segments where new data is downloaded
 --erase=ADDRESS selectively erase segment at the specified address or
 address range

 Program flow specifiers:
 All these options work against the file(s) provided on the command
 line. Program flow specifiers default to "-P" if a file is given.

 "-P" usually verifies the programmed data, "-V" adds an additional
 verification through uploading the written data for a 1:1 compare.

 No default action is taken if "-P", "-V" or "-E" is given, say
 specifying only "-V" does a "check by file" of a programmed device
 without programming.

 Don't forget to erase ("-e", "-b" or "-m") before programming flash!

 -E, --erase-check erase check by file
 -P, --program program file
 -V, --verify verify by file
 -U, --upload-by-file
 upload the memory that is present in the given file(s)

 Data upload:
 This can be used to read out the device memory. It is possible to use
 address ranges such as 0xf000-0xf0ff or 0xf000/256, 0xfc00/1k.

 Multiple --upload options are allowed.

 -u ADDRESS, --upload=ADDRESS
 upload a data block, can be passed multiple times
 -o DESTINATION, --output=DESTINATION
 write uploaded data to given file
 -f TYPE, --output-format=TYPE
 output format name (titext, ihex, bin, hex),
 default:hex

 Do before exit:
 -x ADDRESS, --execute=ADDRESS
 start program execution at specified address, might
 only be useful in conjunction with --wait
 -r, --reset perform a normal device reset that will start the
 program that is specified in the reset interrupt
 vector
 -w, --wait wait for <ENTER> before closing the port
 --no-close do not close port on exit

 Communication settings:
 -p PORT, --port=PORT
 Use com-port
 --invert-test invert RTS line
 --invert-reset invert DTR line
 --swap-reset-test exchenage RST and TEST signals (DTR/RTS)
 --test-on-tx TEST/TCK signal is muxed on TX line

 BSL settings:
 --no-start no not use ROM-BSL start pattern on RST+TEST/TCK
 -s SPEED, --speed=SPEED
 change baud rate (default 9600)
 --password=FILE transmit password before doing anything else, password
 is given in given (TI-Text/ihex/etc) file
 --ignore-answer do not wait for answer to BSL commands
 --control-delay=CONTROL_DELAY
 set delay in seconds (float) for BSL start pattern

msp430.jtag.dco

python -m msp430.jtag.dco [options] frequency:

MSP430 clock calibration utility V1.1

This tool can measure the internal oscillator of F1xx, F2xx and F4xx devices,
display the supported frequencies, or run a software FLL to find the settings
for a specified frequency.

The target device has to be connected to the JTAG interface.

Examples:
 See min and max clock speeds:
 dco.py --measure

 Get clock settings for 2.0MHz +/-1%:
 dco.py --tolerance=0.01 2.0e6

 Write clock calibration for 1.5MHz to the information memory at 0x1000:
 dco.py 1.5e6 BCSCTL1@0x1000 DCOCTL@0x1000

Use it at your own risk. No guarantee that the values are correct.

Options:
 -h, --help show this help message and exit
 -o FILE, --output=FILE
 write result to given file
 --dcor use external resistor
 -d, --debug print debug messages
 -l LPT, --lpt=LPT set the parallel port
 -m, --measure measure min and max clock settings and exit
 -c, --calibrate Restore calibration values on F2xx devices
 -t TOLERANCE, --tolerance=TOLERANCE
 set the clock tolerance as factor. e.g. 0.01 means 1%
 (default=0.005)
 --define output #defines instead of assignments
 --erase=ERASE erase flash page at given address. Use with care!

msp430.jtag.target

python -m msp430.jtag.target [OPTIONS] [FILE [FILE...]]:

Options:
 -h, --help show this help message and exit
 --debug print debug messages and tracebacks (development mode)
 -v, --verbose show more messages (can be given multiple times)
 -q, --quiet suppress all messages
 --time measure time
 -S, --progress show progress while programming
 --help-backend show help about the different backends
 -l LIBRARY_PATH, --library-path=LIBRARY_PATH
 search for libMSP430.so or libMSP430mspgcc.so in this
 place first

 Data input:
 File format is auto detected, unless --input-format is used. Preferred
 file extensions are ".txt" for TI-Text format, ".a43" or ".hex" for
 Intel HEX. ELF files can also be loaded.

 Multiple files can be given on the command line, all are merged before
 the download starts. "-" reads from stdin.

 -i TYPE, --input-format=TYPE
 input format name (titext, ihex, bin, hex, elf)

 Flash erase:
 Multiple --erase options are allowed. It is also possible to use
 address ranges such as 0xf000-0xf0ff or 0xf000/4k.

 NOTE: SegmentA on F2xx is NOT erased with --mass-erase, that must be
 done separately with --erase=0x10c0 or --info-erase".

 -e, --mass-erase mass erase (clear all flash memory)
 -m, --main-erase erase main flash memory only
 --info-erase erase info flash memory only (0x1000-0x10ff)
 -b, --erase-by-file
 erase only Flash segments where new data is downloaded
 --erase=ADDRESS selectively erase segment at the specified address or
 address range

 Program flow specifiers:
 All these options work against the file(s) provided on the command
 line. Program flow specifiers default to "-P" if a file is given.

 "-P" usually verifies the programmed data, "-V" adds an additional
 verification through uploading the written data for a 1:1 compare.

 No default action is taken if "-P", "-V" or "-E" is given, say
 specifying only "-V" does a "check by file" of a programmed device
 without programming.

 Don't forget to erase ("-e", "-b" or "-m") before programming flash!

 -E, --erase-check erase check by file
 -P, --program program file
 -V, --verify verify by file
 -U, --upload-by-file
 upload the memory that is present in the given file(s)

 Data upload:
 This can be used to read out the device memory. It is possible to use
 address ranges such as 0xf000-0xf0ff or 0xf000/256, 0xfc00/1k.

 Multiple --upload options are allowed.

 -u ADDRESS, --upload=ADDRESS
 upload a data block, can be passed multiple times
 -o DESTINATION, --output=DESTINATION
 write uploaded data to given file
 -f TYPE, --output-format=TYPE
 output format name (titext, ihex, bin, hex),
 default:hex

 Do before exit:
 -x ADDRESS, --execute=ADDRESS
 start program execution at specified address, might
 only be useful in conjunction with --wait
 -r, --reset perform a normal device reset that will start the
 program that is specified in the reset interrupt
 vector
 -w, --wait wait for <ENTER> before closing the port
 --no-close do not close port on exit

 Connection:
 NOTE: On Windows, use "USB", "TIUSB" or "COM5" etc if using MSP430.dll
 from TI. On other platforms, e.g. Linux, use "/dev/ttyUSB0" etc. if
 using libMSP430.so. If a libMSP430.so is found, it is preferred,
 otherwise libMSP430mspgcc.so is used.

 NOTE: --slowdown > 50 can result in failures for the RAM size auto
 detection (use --ramsize option to fix this). Use the --verbose option
 and watch the outputs. The DCO clock adjustment and thus the Flash
 timing may be inaccurate for large values.

 --backend=BACKEND select an alternate backend. See --help-backend for
 more information
 -p PORT, --port=PORT
 specify an other parallel port or serial port for the
 USBFET (the later requires libMSP430.so instead of
 libMSP430mspgcc.so). (defaults to "LPT1"
 ("/dev/parport0" on Linux))
 --spy-bi-wire-jtag interface is 4 wire on a spy-bi-wire capable device
 --spy-bi-wire interface is 2 wire on a spy-bi-wire capable device
 --slowdown=MICROSECONDS
 artificially slow down the communication. Can help
 with long lines, try values between 1 and 50 (parallel
 port interface with mspgcc's HIL library only).
 (experts only)
 -R BYTES, --ramsize=BYTES
 specify the amount of RAM to be used to program flash
 (default: auto detected)

 JTAG fuse:
 WARNING: This is not reversible, use with care! Note: Not supported
 with the simple parallel port adapter (7V source required).",

 --secure blow JTAG security fuse

 Examples:
 Mass erase and program from file: "/home/lch/python-
 msp430-tools/msp430/jtag/target.py -e firmware.elf" Dump information
 memory: "/home/lch/python-msp430-tools/msp430/jtag/target.py
 --upload=0x1000-0x10ff"

msp430.jtag.profile

python -m msp430.jtag.profile [OPTIONS]:

Options:
 -h, --help show this help message and exit
 -v, --verbose show more messages (can be given multiple times)
 -o FILENAME, --output=FILENAME
 write result to given file

msp430.gdb.target

python -m msp430.gdb.target [OPTIONS] [FILE [FILE...]]:

Options:
 -h, --help show this help message and exit
 --debug print debug messages and tracebacks (development mode)
 -v, --verbose show more messages (can be given multiple times)
 -q, --quiet suppress all messages
 --time measure time
 -S, --progress show progress while programming

 Data input:
 File format is auto detected, unless --input-format is used. Preferred
 file extensions are ".txt" for TI-Text format, ".a43" or ".hex" for
 Intel HEX. ELF files can also be loaded.

 Multiple files can be given on the command line, all are merged before
 the download starts. "-" reads from stdin.

 -i TYPE, --input-format=TYPE
 input format name (titext, ihex, bin, hex, elf)

 Flash erase:
 Multiple --erase options are allowed. It is also possible to use
 address ranges such as 0xf000-0xf0ff or 0xf000/4k.

 NOTE: SegmentA on F2xx is NOT erased with --mass-erase, that must be
 done separately with --erase=0x10c0 or --info-erase".

 -e, --mass-erase mass erase (clear all flash memory)
 -m, --main-erase erase main flash memory only
 --info-erase erase info flash memory only (0x1000-0x10ff)
 -b, --erase-by-file
 erase only Flash segments where new data is downloaded
 --erase=ADDRESS selectively erase segment at the specified address or
 address range

 Program flow specifiers:
 All these options work against the file(s) provided on the command
 line. Program flow specifiers default to "-P" if a file is given.

 "-P" usually verifies the programmed data, "-V" adds an additional
 verification through uploading the written data for a 1:1 compare.

 No default action is taken if "-P", "-V" or "-E" is given, say
 specifying only "-V" does a "check by file" of a programmed device
 without programming.

 Don't forget to erase ("-e", "-b" or "-m") before programming flash!

 -E, --erase-check erase check by file
 -P, --program program file
 -V, --verify verify by file
 -U, --upload-by-file
 upload the memory that is present in the given file(s)

 Data upload:
 This can be used to read out the device memory. It is possible to use
 address ranges such as 0xf000-0xf0ff or 0xf000/256, 0xfc00/1k.

 Multiple --upload options are allowed.

 -u ADDRESS, --upload=ADDRESS
 upload a data block, can be passed multiple times
 -o DESTINATION, --output=DESTINATION
 write uploaded data to given file
 -f TYPE, --output-format=TYPE
 output format name (titext, ihex, bin, hex),
 default:hex

 Do before exit:
 -x ADDRESS, --execute=ADDRESS
 start program execution at specified address, might
 only be useful in conjunction with --wait
 -r, --reset perform a normal device reset that will start the
 program that is specified in the reset interrupt
 vector
 -w, --wait wait for <ENTER> before closing the port
 --no-close do not close port on exit

 Connection:
 -c HOST:PORT, --connect=HOST:PORT
 TCP/IP host name or ip and port of GDB server
 (default: localhost:2000)

 Utilities

Utilities

msp430.memory.convert

This is a command line tool that can load multiple hex files, combine them and
output a hex file of the same or different file type.
(run as python -m msp430.memory.convert):

Usage: convert.py [options] [INPUT...]

Simple hex file conversion tool.

It is also possible to specify multiple input files and create a single,
merged output.

Options:
 -h, --help show this help message and exit
 -o DESTINATION, --output=DESTINATION
 write result to given file
 -i TYPE, --input-format=TYPE
 input format name (titext, ihex, bin, hex, elf)
 -f TYPE, --output-format=TYPE
 output format name (titext, ihex, bin, hex)
 -d, --debug print debug messages

msp430.memory.compare

Compare two hex files. The files are loaded and a hex dump is compared. The
diff between the hex dumps is output (unless the --html option is used).
The tool also sets the shell exit code so that it could be used in shell/bat
scripts.

(run as python -m msp430.memory.compare):

Usage: compare.py [options] FILE1 FILE2

Compare tool.

This tool reads binary, ELF or hex input files, creates a hex dump and shows
the differences between the files.

Options:
 -h, --help show this help message and exit
 -o DESTINATION, --output=DESTINATION
 write result to given file
 -d, --debug print debug messages
 -v, --verbose print more details
 -i TYPE, --input-format=TYPE
 input format name (titext, ihex, bin, hex, elf)
 --html create HTML output

msp430.memory.generate

Generate hex files filled with some pattern. The pattern can be a counter or
a useful MSP430 instruction such as JMP $ (0x3fff).

(run as python -m msp430.memory.generate):

Usage: generate.py [options]

 Test File generator.

 This tool generates a hex file, of given size, ending on address
 0xffff if no start address is given.

Options:
 -h, --help show this help message and exit
 -o DESTINATION, --output=DESTINATION
 write result to given file
 -f TYPE, --output-format=TYPE
 output format name (titext, ihex, bin, hex)
 -l SIZE, --length=SIZE
 number of bytes to generate
 -s START_ADDRESS, --start-address=START_ADDRESS
 start address of data generated
 -c, --count use address as data
 --const=CONST use given 16 bit number as data (default=0x3fff)
 --random fill with random numbers

msp430.memory.hexdump

Show hex dump of files. Note that the same can be achieved with
msp430.memory.convert -f hex.

(run as python -m msp430.memory.hexdump):

Usage: hexdump.py [options] [SOURCE...]

Hexdump tool.

This tool generates hex dumps from binary, ELF or hex input files.

What is dumped?
- Intel hex and TI-Text: only data
- ELF: only segments that are programmed
- binary: complete file, address column is byte offset in file

Options:
 -h, --help show this help message and exit
 -o DESTINATION, --output=DESTINATION
 write result to given file
 --debug print debug messages
 -v, --verbose print more details
 -i TYPE, --input-format=TYPE
 input format name (titext, ihex, bin, hex, elf)

 Shell utilities

Shell utilities

The module msp430.shell provides some useful scripts for the shell.

msp430.shell.command

This tool emulates a number of shell utilities. The idea is that makefiles or
similar build tools can use these commands to be OS independent (so that the
same set of commands works on Windows, MacOS, GNU/Linux, etc.).

Command collection:

	cat Show file contents.

	cp Copy files.

	expand Expand shell patterns (“*.c”, “?” etc.).

	false Simply return exit code 1

	list This text.

	mkdir Create directories.

	mv Move/rename files.

	rm Delete files/directories.

	touch Update file date, create file.

	true Simply return exit code 0

More help with “command.py COMMAND –help”

Example:

python -m msp430.shell.command rm -f no_longer_needed.txt
python -m msp430.shell.command cp src.txt dst.txt

msp430.shell.watch

This tool watches one or multiple files for changes. When a change on one file
is detected it runs a given command. This could be used e.g. to automatically
trigger a download when a hex file has changed or trigger compilation when one
of the source files has changed.

Usage: watch.py FILENAME [FILENAME…] –execute “some/program/ –”

	Options:

	
	-h, --help

	show this help message and exit

	-x COMMAND, --execute=COMMAND

	run this command when watched file(s) changed, – is
replaced by FILENAME(s)

 Assembler

Assembler

The module msp430.asm provides an assembler for MSP430 and MSP430X CPUs.
There is also a disassembler.

Additionally a (almost C compatible) preprocessor is provided.

The tutorial and command line sections cover the command line tools and how to
use them. The API section is about the internals of the tools and may be
interesting to developers that extended the tools or use them as a library.

Also available is a Forth cross compiler that can translate Forth programs to
MSP430 assembler.

	Tutorial
	A simple example

	Download
	Notes for JTAG

	Installing header files
	Downloading header files

	Using the msp430mcu package

	More Examples

	Command line tools
	msp43.asm.as
	Command line

	Supported directives

	msp430.asm.ld
	Command line

	msp430.asm.cpp
	Command line

	msp430.asm.disassemble
	Command line

	Forth Cross Compiler
	Available Words

	Command line tools
	msp430.asm.forth

	msp430.asm.h2forth

	Cross compilation

	MSP430 specific features
	Internals

	Limitations

	Thanks

	API Documentation
	Object file format

	MCU Definition file format

	Modules
	msp430.asm.as

	msp430.asm.ld

	msp430.asm.cpp

	msp430.asm.disassemble

	msp430.asm.rpn

	msp430.asm.peripherals

	msp430.asm.mcu_definition_parser

	msp430.asm.infix2postfix

 Tutorial

Tutorial

A simple example

The assembler msp430.asm.as reads source files (*.S) and creates object
files (*.o4). Multiple object files are then linked together and a binary
is created that can be downloaded to the MCU.

For example, led.S:

; Test program for msp430.asm.as and msp430.asm.ld
;
; This one toggles the pin P1.1. This is like the LED flashing example that
; comes preprogrammed on some of the eval boards from TI.

.text
 ; entry point after device reset
RESET: mov #0x5a80, &0x120 ; disable WDT
 bis.b #1, &0x22 ; set pin to output

 ; loop toggling the pin and then doing a delay
.L1: xor.b #1, &0x21 ; toggle pin
 mov #0xc350, R15 ; init delay loop
.L2: dec R15 ; count down
 jnz .L2 ; jump while counter is not zero
 jmp .L1 ; loop the toggling part

; set the reset vector (and all the others) to the program start
.section .vectors
 .word RESET, RESET, RESET, RESET, RESET, RESET, RESET, RESET
 .word RESET, RESET, RESET, RESET, RESET, RESET, RESET
 .word RESET ; reset vector

Assemble, link:

python -m msp430.asm.as led.S -o led.o4
python -m msp430.asm.ld --mcu MSP430G2211 led.o4 -o led.titext

Download

There are several ways to get a program into a MSP430.

	Boot Strap Loader (BSL), Serial

	Using a serial connection and some ROM code in the MSP430 it is possible to
read and write memory, including Flash.

Not all devices support BSL (e.g. the smaller value line (G2) and F2 devices)

Command example (F1x, F2x, F4x):

python -m msp430.bsl.target -e led.titext

Command example (F5x, F6x):

python -m msp430.bsl5.uart -e led.titext

	Boot Strap Loader (BSL), USB HID

	Some MSP430 have a built in USB controller and they also support downloading
through USB.

Command example:

python -m msp430.bsl5.hid -e led.titext

	JTAG, 4-wire

	This interface gives access to the internals of the CPU so that it not only
can be used to up and download memory, it is also possible to set breakpoints,
single step and more debugging.

Some devices have shared GPIO pins, so that a TEST pin switches the
function from normal IO pin to JTAG.

Command example:

python -m msp430.jtag.target -e led.titext

	JTAG, spy-bi-wire

	This is a variation of the JTAG interface that only requires two pins and
does not occupy GPIO pins. The same signals as in a 4-wire connection are
serialized and transmitted over these two lines. This means that the maximum
speed of the spy-bi-wire interface is slower than the 4-wire interface.

Many new MSP430 support this interface (not F1, F4).

Command example:

python -m msp430.jtag.target --spy-bi-wire -e led.titext

The python-msp430-tools also support downloading via remote-GDB-protocol. If a
GDB server is running (same machine or a different one), msp430.gdb.target
can be used. GDB servers are msp430-gdbproxy [http://sourceforge.net/projects/mspgcc/files/Outdated/msp430-gdbproxy/] or mspdebug [http://mspdebug.sf.net]

Notes for JTAG

	Windows

	The MSP430.dll [http://processors.wiki.ti.com/index.php/MSP430_JTAG_Interface_USB_Driver] can be downloaded from TI.
With this installed, USB and parallel port adapters can be used with the
msp430.jtag.target tool.

	Linux / Others

	There is no (recent) MSP430.dll available.

USB JTAG adapters can be used with the tool mspdebug [http://mspdebug.sf.net] (also includes debug support).

Parallel port adapters can be used with MSP430mspgcc [http://mspgcc.cvs.sourceforge.net/viewvc/mspgcc/jtag/] (no debug support).

Command example (Launchpad or ez430-rf2500 kits):

mspdebug rf2500 "prog led.titext" exit

Installing header files

The example above directly used the addresses of the peripheral modules - this
is not comfortable. It is easily possible to use the header files from TI as a C
preprocessor (cpp) is included, however the header files itself are not.

Downloading header files

A download and extraction script is located in the directory
msp430/asm/includes. When executed (python fetch.py) it will download
the msp430mcu archive from http://mspgcc.sf.net. Once downloaded, the files
are extracted to a subdirectory called upstream.

The include and include/upstream directories are part of the search path for
cpp. Files in these directories are found automatically.

Note

The file name that is downloaded is currently hard coded in the
script. It may make sense to check the site online for newer files.

 Command line tools

Command line tools

msp43.asm.as

An assembler for MSP430(X).

Warning

This tool is currently in an experimental stage. Is has been used
to successfully create simple programs but it is not broadly
tested.

 Forth Cross Compiler

Forth Cross Compiler

The package also includes a limited Forth [http://en.wikipedia.org/wiki/Forth_(programming_language)] like language cross compiler.

Warning

This feature is under development.

 API Documentation

API Documentation

This section is about the internals of the msp430.asm module. It may be
interesting for developers that work on this module or who are interested in
using the functions the module provides in their own code.

Object file format

The file format of .o4 files is a bit unusual. It actually contains
something that could be labeled as (specialized) Forth code. So the linker is
some sort of Forth interpreter. This has the advantage that the object files
can be debugged without any special tools, just a text editor. It also makes
the format quite universal; it could produce binaries for all sorts of CPUs
(single special case: the directive JMP is MSP430 specific).

A list of supported words can be found in the following document:

For more details also take a look at the sources of ld.py.

MCU Definition file format

MCU memory definitions can be provided in a file with Forth like
syntax.

A list of supported words can be found in the following document:

For more details also take a look at the sources of mcu_definition_parser.py.

Modules

msp430.asm.as

This module implements the MSP430(X) assembler. When the module is executed
(e.g. using python -m msp430.asm.as), it acts as a command line tool.

	
class msp430.asm.as.MSP430Assembler

	
	
__init__(msp430x=False, debug=False)

	
	Parameters:

	
	msp430x – Set to true to enable MSP430X instruction set.

	debug – When set to true dump some internal data so sys.stderr while compiling.

Create an instance of the assembler.

	
assemble(f, filename=None, output=sys.stdout)

	
	Parameters:

	
	f – A file like object that supports iterating over lines.

	filename – An optional string that is used in error messages.

	output – File like object used to write the object code to.

This method takes assembler source and transforms it to object code
that can be forwarded to the linker.

	
exception msp430.asm.as.AssemblerError

	This instances of this class are raised by the MSP430Assembler in case
of errors in the source. It may be annotated with the source filename
and line number where the error occurred.

	
filename

	

	
line

	

msp430.asm.ld

This module implements the linker. When the module is executed
(e.g. using python -m msp430.asm.ld), it acts as a command line tool.

	
class msp430.asm.ld.Segment

	
	
__init__(name, start_address=None, end_address=None, align=True, programmable=False, little_endian=True, parent=None, mirror_of=None)

	

	
__getitem__(segment_name)

	
	Parameters:

	segment_name – name of an sub segment.

	Raises:

	KeyError – when no segment with given name is found

Easy access to subsegment by name.

	
sort_subsegments(by_address=False)

	
	Parameters:

	by_address – Sort by address if true, otherwise sort by name.

Sort list of subsegments either by order of definition or by order of
start address.

	
clear()

	Clear data. Recursively with all subsegments. Segments are not removed,
just their data.

	
__len__()

	Get the number of data bytes contained in the segment.

	
__cmp__(other)

	Compare function that allows to sort segments by their start_address.

	
__lt__(other)

	Compare function that allows to sort segments by their start_address.

	
print_tree(output, indent='', hide_empty=False)

	
	Parameters:

	
	output – a file like object (supporting write)

	indent – a prefix put before each line.

	hide_empty – when set to true omit empty segments (no data) in output.

Output segment and subsegments.

	
shrink_to_fit(address=None)

	Modify start- and end_address of segment to fit the data that it
contains. Recursively applied to the tree of segments. Typically
called with address=None.

	
write_8bit(value)

	
	Parameters:

	value – an integer (8 significant bits)

Write one byte.

	
write_16bit(value)

	
	Parameters:

	value – an integer (16 significant bits)

Write two bytes. Order in memory depends on endianness of segment.

	
write_32bit(value)

	
	Parameters:

	value – an integer (32 significant bits)

Write four bytes. Order in memory depends on endianness of segment.

	
class msp430.asm.ld.Linker

	
	
__init__(instructions)

	
	Parameters:

	instructions – list of directives for the linker

Initialize a linker instance. The given instructions are essentially
what is read from a .o4 file as sequence of words.

	
segments_from_definition(segment_definitions)

	
	Parameters:

	segment_definitions – dictionary describing the memory map

This sets the memory map used for linking. See
mcu_definition_parser for a way to load this description.

	
update_mirrored_segments()

	Called before writing the final output. In case the memory map contains
segments that mirror the contents of other segments, they are updated.
This is typically used for .data_init which contains the initial
values that are copied by startup code to the .data segment in RAM.

	
pass_one()

	Run the linkers 1st pass. It iterates through the instructions and
places the data into segments.

	
pass_two()

	Run the linkers 2nd pass. It iterates through the instructions and
finds all the labels and saves their position.

	
pass_three()

	Run the linkers 3rd pass. It iterates through the instructions and
creates the final binary with all known labels set to their target
address.

	
exception msp430.asm.ld.LinkError

	Exception object raised when errors during linking occur. May be annotated
with the location of the line within the original source file causing the
error.

	
filename

	

	
lineno

	

	
column

	

msp430.asm.cpp

This module implements the preprocessor. When the module is executed
(e.g. using python -m msp430.asm.cpp), it acts as a command line tool.

	
msp430.asm.cpp.line_joiner(next_line)

	Given an iterator for lines, yield lines. It joins consecutive lines with
the continuation marker (\\) to a single line.

	
class msp430.asm.cpp.AnnoatatedLineWriter

	This object is used by the preprocessor to write out the preprocessed text.
It adds notes in the form #line <line> "<filename>". These notes are
used by the assembler to know where a source line originally came from (as
preprocessed text may contain additional lines etc.)

	
__init__(output, filename)

	
	Parameters:

	
	output – file like object to write to

	filename – the filename used in the notes

	
write(lineno, text)

	
	Parameters:

	
	linno – line number being written

	text – the actual contents of the line

	
class msp430.asm.cpp.Preprocessor

	
	
preprocess(infile, outfile, filename)

	
	Parameters:

	
	infile – file like object to read from

	outfile – file like object to write to

	filename – original file name of the input (infile)

This runs the preprocessor over the given input.

	
exception msp430.asm.cpp.PreprocessorError

	Exception object raised when errors during preprocessing occur.

msp430.asm.disassemble

This module implements the disassembler. When the module is executed (e.g.
using python -m msp430.asm.disassemble), it acts as a command line tool.

	
class msp430.asm.disassemble.MSP430Disassembler

	
	
__init__(memory, msp430x=False, named_symbols=None)

	
	Parameters:

	
	memory – A msp43.memory.Memory instance containing the binary.

	msp430x – Set to true to enable MSP430X instruction set.

	named_symbols – An (optional) instance of NamedSymbols which is used to label peripherals and bits.

Initialize the disassembler with data.

	
disassemble(output, source_only=False)

	
	Parameters:

	
	output – A file like object used for the resulting text.

	source_only – When set to true, the address and data columns are omitted from the output.

Run the disassembler, result is written to output.

msp430.asm.rpn

This module implements the an RPN calculator. The calculator can be tested by
executing the module (e.g. using python -m msp430.asm.rpn).

	
class msp430.asm.rpn.Word(unicode)

	This class is used to wrap words so that their source location can be
tracked. This is useful for error messages.

	
__new__(cls, word, filename, lineno, text)

	
	Parameters:

	
	cls – Class for __new__

	word – The word (unicode)

	filename (unicode or None) – Filename where the word was read from.

	lineno (int or None) – Line number within the file.

	text (unicode or None) – The complete line (or context).

Create new instance with a word that was read from given location.

	
class msp430.asm.rpn.RPN

	An RPN calculator. It provides a data stack and implements a number of
basic operations (arithmetical and stack)

	
interpret(next_word)

	
	Parameters:

	next_word – A function return the next word from input when called.

Interpret a sequence of words given by the iterator next_word.

	
msp430.asm.rpn.annotated_words(sequence, filename=None, lineno=None, offset=None, text=None)

	Create an generator for Word, all annotated with the given
information.

	
msp430.asm.rpn.words_in_string(data, name='<string>')

	
	Parameters:

	
	data – String with (lines) of text.

	name – Optional name, used in error messages.

Create a generator for annotated Word in string (splitlines()
is used).

	
msp430.asm.rpn.words_in_file(filename)

	
	Parameters:

	filename – Name of a file to read from.

Create a generator for annotated Word read from file given by name.

	
msp430.asm.rpn.rpn_function(code)

	
	Parameters:

	code – A string in RPN notation

	Returns:

	A Python function.

Return a wrapper - a function that evaluates the given RPN code when
called. This can be used to insert functions implemented as RPN into the
name space.

	
msp430.asm.rpn.word(name)

	Function decorator used to tag methods that will be visible in the RPN
built-in name space.

	
msp430.asm.rpn.val(words, stack=[], namespace={})

	
	Parameters:

	
	words – Sequence of words.

	stack – Optional initial stack.

	namespace – Optional namespace.

	Returns:

	The top element from the stack

Evaluate sequence of words.

	
msp430.asm.rpn.python_function(code, namespace={})

	
	Parameters:

	
	code – RPN code to execute.

	namespace – Optional namespace.

	Returns:

	A python function that executes code when called.

Create a Python function that will execute given code when called. All
parameters given to the Python function will be placed on the stack and the
top of stack will be returned.

	
msp430.asm.rpn.interpreter_loop(namespace={}, debug=False)

	Run an interactive loop. Can be used as calculator.

	
exception msp430.asm.rpn.RPNError

	Exception type used for errors when parsing or executing RPN code.
It may be annotated with the source position where the word causing the
error came from.

	
filename

	

	
lineno

	

	
offset

	

	
text

	

msp430.asm.peripherals

This module implements a parser for a file format describing the peripherals
and their bits of a MCU. The module can be executed (e.g. using python -m
msp430.asm.peripherals) to test definition files.

	
class msp430.asm.peripherals.SymbolDefinitions(msp430.asm.rpn.RPN)

	This class implements the parser and keeps the result. It inherits from RPN.

	
msp430.asm.peripherals.load_symbols(filename)

	
	Parameters:

	filename – Load symbols from a file named like this.

	Returns:

	instance of SymbolDefinitions

Load definitions from a file of given name.

	
msp430.asm.peripherals.load_internal(name)

	
	Parameters:

	name – Name of an internal file.

	Returns:

	instance of SymbolDefinitions

This tries to load internal data (using pkgutil).

	
exception msp430.asm.peripherals.SymbolError

	Exception object used for errors in the definition file.

msp430.asm.mcu_definition_parser

This module implements the a parser for files describing the memory map of a
CPU. The module can be executed (e.g. using python -m
msp430.asm.mcu_definition_parser) to test definition files.

	
class msp430.asm.mcu_definition_parser.MCUDefintitions(msp430.asm.rpn.RPN)

	This class implements the parser and keeps the result. It inherits from msp430.asm.rpn.RPN.
Loaded definitions may contain the memory maps of many MCUs and also
partial maps (that may depend on each other).

	
msp430.asm.mcu_definition_parser.load_from_file(filename)

	
	Parameters:

	filename – Load definitions from file of given name.

	Returns:

	instance of MCUDefintitions

	
msp430.asm.mcu_definition_parser.load_internal()

	
	Returns:

	instance of MCUDefintitions

Load internal list. The default list is included in
msp430/asm/definitions/msp430-mcu-list.txt

	
msp430.asm.mcu_definition_parser.expand_definition(memory_maps, name)

	
	Parameters:

	
	memory_maps (MCUDefintitions) – Memory map descriptions.

	name – Name of an MCU that should be extracted

	Returns:

	Dictionary with recursively expanded memory map.

Return the memory map of a specific MCU. If the definition depends on
others, it is expanded so that a single, complete description is
returned.

msp430.asm.infix2postfix

This module implements a converter that can translate infix (arithmetical)
notation to postfix notation (RPN). It is used by the preprocessor and
assembler when evaluating expressions.

	
msp430.asm.infix2postfix.infix2postfix(expression, variable_prefix='', scanner=Scanner, precedence=default_precedence)

	
	Parameters:

	
	expression – Input string in infix notation.

	variable_prefix – A string that is prepended to symbols found in the expression.

	scanner – The class that is used to parse the expression.

	precedence – A dictionary returning the priority given an operator as key.

	Returns:

	A string with the expression in postfix notation.

	
msp430.asm.infix2postfix.convert_precedence_list(precedence_list)

	
	Parameters:

	precedence_list – A list of lists that defines operator priorities.

	Returns:

	A dictionary mapping operators to priorities.

Input will look like this:

default_precedence_list = [
 # lowest precedence
 ['or'],
 ['and'],
 ['not'],
 ['<', '<=', '>', '>=', '==', '!='],
 ['|', '^', '&'],
 ['<<', '>>'],
 ['+', '-'],
 ['*', '/', '%'],
 ['~', 'neg', '0 +'],
 ['(', ')'],
 # highest precedence
]

 Internals

Internals

Target APIs

This is the API description for the target tools (up- and download of data to
MCU using different interfaces). See also the individual tools above and
Commandline Tools.

The Target class defines an interface that is implemented by all the
Target connections described here. This interface could be used for example in
custom programming tools or testing equipment in manufacturing.

Target base class

	
msp430.target.identify_device(device_id, bsl_version)

	
	Parameters:

	
	device_id (int) – 16 bit number identifying the device

	bsl_version (int) – 16 bit number identifying the ROM-BSL version

	Returns:

	F1x, F2x or F4x

Identification of F1x, F2x, F4x devices.

	
class msp430.target.Target(object)

	This class implements a high level interface to targets. It also provides
common code for command line tools so that e.g. the JTAG and BSL tools have
a similar set of options.

	
memory_read(address, length)

	Read from memory

	
memory_write(address, data)

	Write to memory.

	
mass_erase()

	Clear all Flash memory.

	
main_erase()

	Clear main Flash memory (excl. infomem).

	
erase(address)

	Erase Flash segment containing the given address.

	
execute(address)

	Start executing code on the target.

	
version()

	The 16 bytes of the ROM that contain chip and BSL info are returned.

	
reset()

	Reset the device.

Additional methods that can be override in subclass.

	
open_connection()

	Open the connection.

	
def close_connection()

	Close the connection.

High level functions.

	
flash_segment_size(address)

	
	Parameters:

	address – Address within MCU Flash memory

	Returns:

	segment size in bytes

Determine the Flasg segment size for a given address.

	
get_mcu_family()

	
	Returns:

	F1x, F2x or F4x

Get MCU family. It calls Version() to read from the device.

	
erase_infomem()

	Erase all infomem segments of the device.

	
upload(start, end)

	
	Parameters:

	
	start – Start address of memory range (inclusive)

	end – End address of memory range (inclusive)

Upload given memory range and store it in upload_data.

	
def upload_by_file()

	Upload memory areas and store it in upload_data. The
ranges uploaded are determined by download_data.

	
program_file(download_data=None)

	
	Parameters:

	download_data – If not None, download this. Otherwise download_data is used.

Download data from download_data or the optional parameter.

	
verify_by_file()

	Upload and compare to download_data.

Raises an exception when data differs.

	
erase_check_by_file()

	Upload address ranges used in download_data and check if memory is erased (0xff).
Raises an exception if not all memory is cleared.

	
erase_by_file()

	Erase Flash segments that will be used by the data in self.download_data.

Command line interface helper functions.

	
create_option_parser()

	
	Returns:

	an optparse.OptionParser instance.

Create an option parser, populated with a basic set of options for
reading and writing files, upload, download and erase options.

	
parse_args()

	Parse sys.argv now.

	
main()

	Entry point for command line tools.

	
add_extra_options()

	The user class can add items to parser.

	
parse_extra_options()

	The user class can process options he added.

Actions list. This list is build and then processed in the command line tools.

	
add_action(function, *args, **kwargs)

	Store a function to be called and parameters in the list of actions.

	
remove_action(function)

	Remove a function from the list of actions.

	
do_the_work()

	Process the list of actions

	
exception msp430.target.UnsupportedMCUFamily

	Exception that may be raised by Target when the connected MCU is
not compatible.

	
msp430.target.F1x

	

	
msp430.target.F2x

	

	
msp430.target.F4x

	

BSL Target

Interface to the BSL in F1x, F2x, F4x.

	
class msp430.bsl.bsl.BSL(object)

	Implement low-level BSL commands as well as high level commands.

	
MAXSIZE

	Maximum size of a block that can be read or written using low level
commands.

	
checksum(data)

	
	Parameters:

	data – A byte string with data

	Returns:

	16 checksum (int)

Calculate the 16 XOR checksum used by the BSL over given data.

Low level functions.

	
BSL_TXBLK(address, data)

	
	Parameters:

	
	address – Start address of block

	data – Contents (byte string)

Write given data to target. Size of data must be smaller than
MAXSIZE

	
BSL_RXBLK(address, length)

	
	Parameters:

	
	address – Start address of block

	length – Size of block to read

	Returns:

	uploaded data (byte string)

Read data from target. Size of data must be smaller than
MAXSIZE

	
BSL_MERAS()

	Execute the mass erase command.

	
BSL_ERASE(address, option=0xa502)

	
	Parameters:

	
	address – Address within the segment to erase.

	option – FCTL1 settings.

Execute a segment or main-erase command.

	
BSL_CHANGEBAUD(bcsctl, multiply)

	
	Parameters:

	
	bcsctl – BCSCTL1 settings for desired baud rate

	multiply – Baud rate multiplier (compared to 9600)

Change the baud rate.

	
BSL_SETMEMOFFSET(address_hi_bits)

	
	Parameters:

	address_hi_bits – Bits 16..19.

For devices with >64kB address space, set the high bits of all
addresses for BSL_TXBLK, BSL_RXBLK and BSL_LOADPC.

	
BSL_LOADPC(address)

	
	Parameters:

	address – The address to jump to.

Start executing code at given address. There is no feedback if the jump
was successful.

	
BSL_TXPWORD(password)

	Transmit password to get access to protected functions.

	
BSL_TXVERSION()

	Read device and BSL info (byte string of length 16). Older
ROM-BSL do not support this command.

High level functions.

	
check_extended()

	Check if device has address space >64kB (BSL_SETMEMOFFSET needs to be
used).

See also msp430.target.Target for high level functions

	
version()

	Read version. It tries BSL_TXVERSION() and if that fails
BSL_RXBLK() from address 0x0ff0. The later only word if
the device has been unlocked (password transmitted).

	
reset()

	Try to reset the device. This is done by a write to the WDT module,
setting it for a reset within a few milliseconds.

	
exception msp430.bsl.bsl.BSLException(Exception)

	Errors from the slave.

	
exception msp430.bsl.bsl.BSLTimeout(BSLException)

	Got no answer from slave within time.

	
exception msp430.bsl.bsl.BSLError(BSLException)

	Command execution failed.

msp430.bsl.target

This module can be executed as command line tool (python
-m msp430.bsl.target). It implements the BSL target tool.

	
class msp430.bsl.target.SerialBSL(bsl.BSL)

	Implement the serial port access.

	
open(port=0, baudrate=9600, ignore_answer=False)

	
	Parameters:

	
	port – Port name or number

	ignore_answer – If set to true enables a mode where answers are not read.

Open given serial port (pySerial).

When ignore_answer is enabled, no answer will be read for any
command. Instead a small delay will be made. This can be used for
targets where only the TX line is connected. However no upload and or
verification of downloaded data is possible.

	
close()

	Close serial port

	
bsl(cmd, message=b'', expect=None)

	
	Parameters:

	
	cmd – Command number to send

	message – Byte string with data to send.

	expect – The number of bytes expected in a data reply or None to disable check.

	Returns:

	None on success with simple answers or a byte string for data answers.

	Raises:

	
	bsl.BSLError – In case of unknown commands, broken packets

	bsl.BSLTimeout – If no answer was received within time

Implement the low level transmit-receive operation for BSL commands
over the serial port. The cmd is filled in the data header,
message appended and the checksum calculated for the sent packet.

Received answers are checked. If expect is set a data reply must be
received and its length must match the given number, otherwise a
bsl.BSLError is raised.

	
set_RST(level=True)

	
	Parameters:

	level – Signal level

Set the RST pin to given level

	
set_TEST(level=True)

	
	Parameters:

	level – Signal level

Set the TEST or TCK pin to given level

	
set_baudrate(baudrate)

	
	Parameters:

	baudrate – New speed (e.g. 38400)

Send the change baud rate command and if successful change the baud
rate of the serial port to the same value.

	
class msp430.bsl.target.SerialBSLTarget(SerialBSL, msp430.target.Target)

	Combine the serial BSL backend and the common target code.

	
add_extra_options()

	Adds extra options to configure the serial port and the usage of the
control lines for RST and TEST/TCK.

	
parse_extra_options()

	Used to output additional tool version info.

	
close_connection()

	Close serial port.

	
open_connection()

	Open serial port, using the options from the command line (in
options). This will also execute the mass erase command
and/or transmit the password so that executing other actions
is possible.

This is also the place to download replacement BSL or the patch.

	
BSL_TXBLK()

	Override the block write function to activate the patch if needed.

	
BSL_RXBLK()

	Override the block read function to activate the patch if needed.

	
reset()

	Override the reset methods to use the RST control line signal (instead
of the WDT access)

BSL5 Target

Interface to the BSL in F5x and F6x devices. UART and USB-HID are supported.

	
class msp430.bsl5.bsl5.BSL5

	
	
check_answer(data)

	
	Parameters:

	data – the data received from the target

	Returns:

	None

	Raises:

	BSL5Error with the corresponding message if data contained an error code.

Note that the length for the following memory read/write functions is
limited by the packet size of the interface (USB-HID, UART).

	
BSL_RX_DATA_BLOCK(address, data)

	
	Parameters:

	
	address – Location in target memory

	data – Byte string with data to write

Write given data to target memory.

	
BSL_RX_DATA_BLOCK_FAST(address, data)

	
	Parameters:

	
	address – Location in target memory

	data – Byte string with data to write

Write given data to target memory. The target will not perform any
checks and no respons is sent back.

	
BSL_TX_DATA_BLOCK(address, length)

	
	Parameters:

	
	address – Location in target memory.

	length – Number of bytes to read.

	Returns:

	Byte string with memory contents.

Read from target memory.

def BSL_MASS_ERASE()

Execute the mass erase command.

def BSL_ERASE_SEGMENT(address)

	param address:

	An address within the segment to erase.

Erase a single Flash memory segment.

	
BSL_LOAD_PC(address)

	
	Parameters:

	address – Location in target memory.

Start executing at given address. There is no check if the command is
successful as the execution starts immediately.

	
BSL_RX_PASSWORD(password)

	
	Parameters:

	password – Byte string with password (32 bytes)

Transmit the password in order to unlock protected function of the BSL.

	
BSL_VERSION()

	
	Returns:

	A tuple with 5 numbers.

The return value contains the following numbers:

	BSL vendor information

	Command interpreter version

	API version

	Peripheral interface version

	
BSL_BUFFER_SIZE()

	
	Returns:

	The maximal supported buffer size from the BSL.

	
BSL_LOCK_INFO()

	Toggle lock flag of infomem segment A (the one with calibration data).

	
BSL_CRC_CHECK(XXX)

	

High level functions.

	
detect_buffer_size()

	Auto detect buffer size. Saved the result in buffer_size.
Silently ignores if the command is not successful and keeps the old
value.

	
memory_read(address, length)

	
	Parameters:

	
	address – Location in target memory.

	length – The number of bytes to read.

	Returns:

	A byte string with the memory contents.

	Raises:

	BSL5Error – when buffer_size is undefined

Read from memory. It creates multiple BSL_TX_DATA_BLOCK commands
internally when the size is larger than the block size.

	
mass_erase()

	Clear all Flash memory.

	
erase(address)

	
	Parameters:

	address – Address within the segment to erase.

Erase Flash segment containing the given address

	#~ def main_erase(self):

	#~ Erase Flash segment containing the given address.

	
execute(address)

	
	Parameters:

	address – Location in target memory.

Start executing code on the target.

	
password(password)

	
	Parameters:

	password – Byte string with password (32 bytes)

Transmit the BSL password.

	
version()

	Get the BSL version. The 16 bytes of the ROM that contain chip and
BSL info are returned.

	
reset()

	Reset target using the WDT module.

	
exception msp430.bsl5.bsl5.BSL5Exception(Exception)

	Common base class for errors from the slave

	
exception msp430.bsl5.bsl5.BSL5Timeout(BSL5Exception)

	Got no answer from slave within time.

	
exception msp430.bsl5.bsl5.BSL5Error(BSL5Exception)

	

msp430.bsl5.hid

This module can be executed as command line tool (python -m
msp430.bsl5.hid). It implements the BSL protocol over USB-HID supported by
F5xx devices with buil-in USB hardware.

Currently implementations for Windows (pywinusb) and GNU/Linux are provided
(hidraw).

	
class msp430.bsl5.hid.HIDBSL5Base

	
	
bsl(cmd, message=b'', expect=None, receive_response=True)

	
	Parameters:

	
	cmd – BSL command number.

	message – Byte string with data for command.

	expect – Enable optional check of response length.

	receive_response – When set to false, do not receive response.

Low level access to the HID communication.

This function sends a command and waits until it receives an answer
(including timeouts). It will return a string with the data part of
the answer. The first byte will be the response code from the BSL

If the parameter “expect” is not None, “expect” bytes are expected in
the answer, an exception is raised if the answer length does not match.
If “expect” is None, the answer is just returned.

Frame format:

+------+-----+-----------+
| 0x3f | len | D1 ... DN |
+------+-----+-----------+

	
class msp430.bsl5.hid.HIDBSL5

	
	
open(device=None)

	
	Parameters:

	device – Name of device to use or None for auto detection.

Connect to target device.

Auto detection searches for a device with USB VID:PID: 2047:0200.
It may pick a random one if multiple devices with that ID are connected.

Examples for the device parameter under GNU/Linux: /dev/hidraw4.
Windows currently does not support passing an explicit device (only
auto detection).

	
close()

	Close connection to target.

	
write_report(data)

	
	Parameters:

	data – Byte string with report for target. 1st byte is the report number.

Write given data to the target device. The first bye of the data has to
be the HID report number.

	
read_report()

	
	Returns:

	Byte string with report from target. 1st byte is the report number.

Read a HID report from the target. May block if no data is sent by the
device.

	
class msp430.bsl5.hid.HIDBSL5Target(HIDBSL5, msp430.target.Target)

	Combine the HID BSL5 backend and the common target code.

	
add_extra_options()

	Populate the option parser with options for the USB HID connection and password.

	
close_connection()

	Close connection to target.

	
open_connection()

	connect to USB HID device using the options from the command line (in
options). This will also execute the mass erase command
and/or transmit the password so that executing other actions
is possible.

As USB devices only have a stub BSL, this also downloads a full
BSL to the device RAM. The BSL is kept in the package as
RAM_BSL.00.06.05.34.txt (loaded using pkgdata).

	
reset()

	Try to reset the device. This is done by a write to the WDT module,
setting it for a reset within a few milliseconds.

msp430.bsl5.uart

This module can be executed as command line tool (python -m
msp430.bsl5.uart). It implements the BSL target tool for F5xx/F6xx devices
w/o USB hardware (it uses the UART).

	
msp430.bsl5.uart.crc_update(crc, byte)

	Calculate the 16 bit CRC that is used by the BSL. Input is byte-wise.
The function can be used with reduce:

crc = reduce(crc_update, b"data", 0)

	
class msp430.bsl5.uart.SerialBSL5(bsl5.BSL5)

	
	
extra_timeout

	Extend timeout for responses by given number of seconds (int).

	
invertRST

	Invert signal on RST line (bool).

	
invertTEST

	Invert signal on TEST/TCK line (bool).

	
swapResetTest

	Exchange the control lines on the serial port (RTS/DTR) which are used
for RST and TEST/TCK.

	
testOnTX

	Send BREAK condition on TX line (bool), additionally to use of TEST/TCK
control line.

	
blindWrite

	Do not receive and responses (bool).

	
control_delay

	Delay in seconds (float) that is waited after each change of RTS or
TEST/TCK line change.

	
open(port=0, baudrate=9600, ignore_answer=False)

	Initialize connection to a serial BSL.

	
close()

	Close serial port.

	
BSL_CHANGE_BAUD_RATE(multiply)

	
	Parameters:

	multiply – Multiplier of baud rate compared to 9600.

Low level command to change the BSL baud rate on the target.

	
bsl(cmd, message=b'', expect=None)

	
	Parameters:

	
	cmd – BSL command number.

	message – Byte string with data for command.

	expect – Enable optional check of response length.

	receive_response – When set to false, do not receive response.

Low level access to the serial communication.

This function sends a command and waits until it receives an answer
(including timeouts). It will return a string with the data part of
the answer. In case of a failure read timeout or rejected commands by
the slave, it will raise an exception.

If the parameter “expect” is not None, “expect” bytes are expected in
the answer, an exception is raised if the answer length does not match.
If “expect” is None, the answer is just returned.

Frame format:

+-----+----+----+-----------+----+----+
| HDR | LL | LH | D1 ... DN | CL | CH |
+-----+----+----+-----------+----+----+

	
set_RST(level=True)

	
	Parameters:

	level – Signal level.

Controls RST/NMI pin (0: GND; 1: VCC; unless inverted flag is set)

	
set_TEST(level=True)

	
	Parameters:

	level – Signal level.

Controls TEST pin (inverted on board: 0: VCC; 1: GND; unless inverted
flag is set)

	
set_baudrate(baudrate)

	Change the BSL baud rate on the target and switch the serial port.

	
start_bsl()

	Start the ROM-BSL using the pulse pattern on TEST and RST.

	
class msp430.bsl5.uart.SerialBSL5Target(SerialBSL5, msp430.target.Target)

	Combine the serial BSL backend and the common target code.

	
add_extra_options()

	Populate the option parser with options for the serial port and password.

	
parse_extra_options()

	Prints additional version info.

	
close_connection()

	Close connection to target.

	
open_connection()

	Open serial port, using the options from the command line (in
options). This will also execute the mass erase command
and/or transmit the password so that executing other actions
is possible.

	
reset()

	Try to reset the device. This is done by a write to the WDT module,
setting it for a reset within a few milliseconds.

JTAG Target

interface to JTAG adapters (USB and parallel port).

msp430.jtag.clock

Note

This module is currently only supported with parallel port JTAG adapters and MSP430mspgcc.dll/so

 License

License

This is the simplified BSD license.

Copyright (c) 2001-2017 Chris Liechti <cliechti@gmx.net>
All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.

 * Neither the name of the copyright holder nor the names of its
 contributors may be used to endorse or promote products derived
 from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Note:
Individual files contain the following tag instead of the full license text.

 SPDX-License-Identifier: BSD-3-Clause

This enables machine processing of license information based on the SPDX
License Identifiers that are here available: http://spdx.org/licenses/

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 msp430	

 	
 	
 msp430.asm	

 	
 	
 msp430.asm.as	

 	
 	
 msp430.asm.cpp	

 	
 	
 msp430.asm.disassemble	

 	
 	
 msp430.asm.infix2postfix	

 	
 	
 msp430.asm.ld	

 	
 	
 msp430.asm.mcu_definition_parser	

 	
 	
 msp430.asm.peripherals	

 	
 	
 msp430.asm.rpn	

 	
 	
 msp430.bsl.bsl	

 	
 	
 msp430.bsl.target	

 	
 	
 msp430.bsl5.bsl5	

 	
 	
 msp430.bsl5.hid	

 	
 	
 msp430.bsl5.uart	

 	
 	
 msp430.gdb.gdb	

 	
 	
 msp430.gdb.target	

 	
 	
 msp430.jtag.clock	

 	
 	
 msp430.jtag.dco	

 	
 	
 msp430.jtag.jtag	

 	
 	
 msp430.jtag.profile	

 	
 	
 msp430.jtag.target	

 	
 	
 msp430.listing	

 	
 	
 msp430.memory	

 	
 	
 msp430.memory.bin	

 	
 	
 msp430.target	

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__cmp__() (msp430.asm.ld.Segment method)

 	(msp430.memory.Segment method)

 	__getitem__() (msp430.asm.ld.Segment method)

 	(msp430.memory.Memory method)

 	(msp430.memory.Segment method)

 	__init__() (msp430.asm.as.MSP430Assembler method)

 	(msp430.asm.cpp.AnnoatatedLineWriter method)

 	(msp430.asm.disassemble.MSP430Disassembler method)

 	(msp430.asm.ld.Linker method)

 	(msp430.asm.ld.Segment method)

 	(msp430.gdb.gdb.ClientSocketConnector method)

 	(msp430.gdb.gdb.GDBClient method)

 	(msp430.memory.DataStream method)

 	(msp430.memory.Memory method)

 	(msp430.memory.Segment method)

 	
 	__len__() (msp430.asm.ld.Segment method)

 	(msp430.memory.Memory method)

 	(msp430.memory.Segment method)

 	__lt__() (msp430.asm.ld.Segment method)

 	__new__() (msp430.asm.rpn.Word method)

A

 	
 	add_action() (msp430.target.Target method)

 	add_extra_options() (msp430.bsl.target.SerialBSLTarget method)

 	(msp430.bsl5.hid.HIDBSL5Target method)

 	(msp430.bsl5.uart.SerialBSL5Target method)

 	(msp430.gdb.target.GDB method)

 	(msp430.jtag.target.JTAG method)

 	(msp430.target.Target method)

 	
 	address (msp430.memory.DataStream attribute)

 	adjust_clock() (in module msp430.jtag.dco)

 	AnnoatatedLineWriter (class in msp430.asm.cpp)

 	annotated_words() (in module msp430.asm.rpn)

 	append() (msp430.memory.Memory method)

 	assemble() (msp430.asm.as.MSP430Assembler method)

 	AssemblerError

B

 	
 	blindWrite (msp430.bsl5.uart.SerialBSL5 attribute)

 	BSL (class in msp430.bsl.bsl)

 	bsl() (msp430.bsl.target.SerialBSL method)

 	(msp430.bsl5.hid.HIDBSL5Base method)

 	(msp430.bsl5.uart.SerialBSL5 method)

 	BSL5 (class in msp430.bsl5.bsl5)

 	BSL5Error

 	BSL5Exception

 	BSL5Timeout

 	BSL_BUFFER_SIZE() (msp430.bsl5.bsl5.BSL5 method)

 	BSL_CHANGE_BAUD_RATE() (msp430.bsl5.uart.SerialBSL5 method)

 	BSL_CHANGEBAUD() (msp430.bsl.bsl.BSL method)

 	BSL_CRC_CHECK() (msp430.bsl5.bsl5.BSL5 method)

 	BSL_ERASE() (msp430.bsl.bsl.BSL method)

 	BSL_LOAD_PC() (msp430.bsl5.bsl5.BSL5 method)

 	BSL_LOADPC() (msp430.bsl.bsl.BSL method)

 	
 	BSL_LOCK_INFO() (msp430.bsl5.bsl5.BSL5 method)

 	BSL_MERAS() (msp430.bsl.bsl.BSL method)

 	BSL_RX_DATA_BLOCK() (msp430.bsl5.bsl5.BSL5 method)

 	BSL_RX_DATA_BLOCK_FAST() (msp430.bsl5.bsl5.BSL5 method)

 	BSL_RX_PASSWORD() (msp430.bsl5.bsl5.BSL5 method)

 	BSL_RXBLK() (msp430.bsl.bsl.BSL method)

 	(msp430.bsl.target.SerialBSLTarget method)

 	BSL_SETMEMOFFSET() (msp430.bsl.bsl.BSL method)

 	BSL_TX_DATA_BLOCK() (msp430.bsl5.bsl5.BSL5 method)

 	BSL_TXBLK() (msp430.bsl.bsl.BSL method)

 	(msp430.bsl.target.SerialBSLTarget method)

 	BSL_TXPWORD() (msp430.bsl.bsl.BSL method)

 	BSL_TXVERSION() (msp430.bsl.bsl.BSL method)

 	BSL_VERSION() (msp430.bsl5.bsl5.BSL5 method)

 	BSLError

 	BSLException

 	BSLTimeout

C

 	
 	calibrate_clock() (in module msp430.jtag.dco)

 	check_answer() (msp430.bsl5.bsl5.BSL5 method)

 	check_extended() (msp430.bsl.bsl.BSL method)

 	checksum() (msp430.bsl.bsl.BSL method)

 	clear() (msp430.asm.ld.Segment method)

 	ClientSocketConnector (class in msp430.gdb.gdb)

 	close() (msp430.bsl.target.SerialBSL method)

 	(msp430.bsl5.hid.HIDBSL5 method)

 	(msp430.bsl5.uart.SerialBSL5 method)

 	(msp430.gdb.target.GDBTarget method)

 	(msp430.jtag.target.JTAGTarget method)

 	close_connection() (msp430.bsl.target.SerialBSLTarget method)

 	(msp430.bsl5.hid.HIDBSL5Target method)

 	(msp430.bsl5.uart.SerialBSL5Target method)

 	(msp430.gdb.target.GDB method)

 	(msp430.jtag.target.JTAG method)

 	
 	column (msp430.asm.ld.LinkError attribute)

 	cont() (msp430.gdb.gdb.GDBClient method)

 	cont_with_signal() (msp430.gdb.gdb.GDBClient method)

 	control_delay (msp430.bsl5.uart.SerialBSL5 attribute)

 	convert_precedence_list() (in module msp430.asm.infix2postfix)

 	crc_update() (in module msp430.bsl5.uart)

 	create_option_parser() (msp430.target.Target method)

 	CTYPES_MSPGCC (in module msp430.jtag.jtag)

 	CTYPES_TI (in module msp430.jtag.jtag)

 	cycle_step() (msp430.gdb.gdb.GDBClient method)

D

 	
 	DataStream (class in msp430.memory)

 	detect_buffer_size() (msp430.bsl5.bsl5.BSL5 method)

 	
 	disassemble() (msp430.asm.disassemble.MSP430Disassembler method)

 	do_the_work() (msp430.target.Target method)

E

 	
 	erase() (msp430.bsl5.bsl5.BSL5 method)

 	(msp430.gdb.target.GDBTarget method)

 	(msp430.jtag.target.JTAGTarget method)

 	(msp430.target.Target method)

 	erase_by_file() (msp430.target.Target method)

 	erase_check_by_file() (msp430.target.Target method)

 	
 	erase_infomem() (msp430.target.Target method)

 	execute() (msp430.bsl5.bsl5.BSL5 method)

 	(msp430.gdb.target.GDBTarget method)

 	(msp430.jtag.target.JTAGTarget method)

 	(msp430.target.Target method)

 	expand_definition() (in module msp430.asm.mcu_definition_parser)

 	extra_timeout (msp430.bsl5.uart.SerialBSL5 attribute)

F

 	
 	F1x (in module msp430.target)

 	F2x (in module msp430.target)

 	F4x (in module msp430.target)

 	
 	filename (msp430.asm.as.AssemblerError attribute)

 	(msp430.asm.ld.LinkError attribute)

 	(msp430.asm.rpn.RPNError attribute)

 	flash_segment_size() (msp430.target.Target method)

G

 	
 	GDB (class in msp430.gdb.target)

 	GDBClient (class in msp430.gdb.gdb)

 	GDBException

 	GDBRemoteError

 	GDBRemoteTimeout

 	GDBRemoteTooManyFailures

 	GDBTarget (class in msp430.gdb.target)

 	
 	GDBUnknownCommandError

 	get() (msp430.memory.Memory method)

 	get_mcu_family() (msp430.target.Target method)

 	get_range() (msp430.memory.Memory method)

 	getDCOFreq() (in module msp430.jtag.clock)

 	getDCOPlusFreq() (in module msp430.jtag.clock)

 	getErrorCode() (msp430.gdb.gdb.GDBRemoteError method)

H

 	
 	handle_packet() (msp430.gdb.gdb.GDBClient method)

 	handle_partial_data() (msp430.gdb.gdb.GDBClient method)

 	help_on_backends() (msp430.jtag.target.JTAG method)

 	
 	HIDBSL5 (class in msp430.bsl5.hid)

 	HIDBSL5Base (class in msp430.bsl5.hid)

 	HIDBSL5Target (class in msp430.bsl5.hid)

I

 	
 	identify_device() (in module msp430.target)

 	infix2postfix() (in module msp430.asm.infix2postfix)

 	init_backend() (in module msp430.jtag.jtag)

 	interpret() (msp430.asm.rpn.RPN method)

 	
 	interpreter_loop() (in module msp430.asm.rpn)

 	interrupt() (msp430.gdb.gdb.GDBClient method)

 	invertRST (msp430.bsl5.uart.SerialBSL5 attribute)

 	invertTEST (msp430.bsl5.uart.SerialBSL5 attribute)

J

 	
 	JTAG (class in msp430.jtag.jtag)

 	(class in msp430.jtag.target)

 	
 	JTAGException

 	JTAGTarget (class in msp430.jtag.target)

L

 	
 	label_address_map() (in module msp430.listing)

 	last_signal() (msp430.gdb.gdb.GDBClient method)

 	line (msp430.asm.as.AssemblerError attribute)

 	line_joiner() (in module msp430.asm.cpp)

 	lineno (msp430.asm.ld.LinkError attribute)

 	(msp430.asm.rpn.RPNError attribute)

 	Linker (class in msp430.asm.ld)

 	
 	LinkError

 	load() (in module msp430.listing)

 	(in module msp430.memory)

 	load_from_file() (in module msp430.asm.mcu_definition_parser)

 	load_internal() (in module msp430.asm.mcu_definition_parser)

 	(in module msp430.asm.peripherals)

 	load_symbols() (in module msp430.asm.peripherals)

 	locate_library() (in module msp430.jtag.jtag)

M

 	
 	main() (in module msp430.jtag.profile)

 	(in module msp430.jtag.target)

 	(msp430.target.Target method)

 	main_erase() (msp430.gdb.target.GDBTarget method)

 	(msp430.jtag.target.JTAGTarget method)

 	(msp430.target.Target method)

 	mass_erase() (msp430.bsl5.bsl5.BSL5 method)

 	(msp430.gdb.target.GDBTarget method)

 	(msp430.target.Target method)

 	MAXSIZE (msp430.bsl.bsl.BSL attribute)

 	MCUDefintitions (class in msp430.asm.mcu_definition_parser)

 	measure_clock() (in module msp430.jtag.dco)

 	Memory (class in msp430.memory)

 	memory_read() (msp430.bsl5.bsl5.BSL5 method)

 	(msp430.gdb.target.GDBTarget method)

 	(msp430.target.Target method)

 	memory_write() (msp430.gdb.target.GDBTarget method)

 	(msp430.jtag.target.JTAGTarget method)

 	(msp430.target.Target method)

 	merge() (msp430.memory.Memory method)

 	monitor() (msp430.gdb.gdb.GDBClient method)

 	msp430.asm (module)

 	msp430.asm.as (module)

 	msp430.asm.cpp (module)

 	
 	msp430.asm.disassemble (module)

 	msp430.asm.infix2postfix (module)

 	msp430.asm.ld (module)

 	msp430.asm.mcu_definition_parser (module)

 	msp430.asm.peripherals (module)

 	msp430.asm.rpn (module)

 	msp430.bsl.bsl (module)

 	msp430.bsl.target (module)

 	msp430.bsl5.bsl5 (module)

 	msp430.bsl5.hid (module)

 	msp430.bsl5.uart (module)

 	msp430.gdb.gdb (module)

 	msp430.gdb.target (module)

 	msp430.jtag.clock (module)

 	msp430.jtag.dco (module)

 	msp430.jtag.jtag (module)

 	msp430.jtag.profile (module)

 	msp430.jtag.target (module)

 	msp430.listing (module)

 	msp430.memory (module)

 	msp430.memory.bin (module)

 	msp430.target (module)

 	MSP430Assembler (class in msp430.asm.as)

 	MSP430Disassembler (class in msp430.asm.disassemble)

N

 	
 	next() (msp430.memory.DataStream method)

O

 	
 	offset (msp430.asm.rpn.RPNError attribute)

 	open() (msp430.bsl.target.SerialBSL method)

 	(msp430.bsl5.hid.HIDBSL5 method)

 	(msp430.bsl5.uart.SerialBSL5 method)

 	(msp430.gdb.target.GDBTarget method)

 	open_connection() (msp430.bsl.target.SerialBSLTarget method)

 	(msp430.bsl5.hid.HIDBSL5Target method)

 	(msp430.bsl5.uart.SerialBSL5Target method)

 	(msp430.gdb.target.GDB method)

 	(msp430.jtag.target.JTAG method)

 	(msp430.target.Target method)

 	
 	output() (msp430.gdb.gdb.GDBClient method)

P

 	
 	PARJTAG (in module msp430.jtag.jtag)

 	parse_args() (msp430.target.Target method)

 	parse_extra_options() (msp430.bsl.target.SerialBSLTarget method)

 	(msp430.bsl5.uart.SerialBSL5Target method)

 	(msp430.jtag.target.JTAG method)

 	(msp430.target.Target method)

 	pass_one() (msp430.asm.ld.Linker method)

 	pass_three() (msp430.asm.ld.Linker method)

 	
 	pass_two() (msp430.asm.ld.Linker method)

 	password() (msp430.bsl5.bsl5.BSL5 method)

 	preprocess() (msp430.asm.cpp.Preprocessor method)

 	Preprocessor (class in msp430.asm.cpp)

 	PreprocessorError

 	print_tree() (msp430.asm.ld.Segment method)

 	program_file() (msp430.target.Target method)

 	python_function() (in module msp430.asm.rpn)

Q

 	
 	query() (msp430.gdb.gdb.GDBClient method)

R

 	
 	read_memory() (msp430.gdb.gdb.GDBClient method)

 	read_register() (msp430.gdb.gdb.GDBClient method)

 	read_registers() (msp430.gdb.gdb.GDBClient method)

 	read_report() (msp430.bsl5.hid.HIDBSL5 method)

 	remove_action() (msp430.target.Target method)

 	remove_breakpoint() (msp430.gdb.gdb.GDBClient method)

 	reset() (msp430.bsl.bsl.BSL method)

 	(msp430.bsl.target.SerialBSLTarget method)

 	(msp430.bsl5.bsl5.BSL5 method)

 	(msp430.bsl5.hid.HIDBSL5Target method)

 	(msp430.bsl5.uart.SerialBSL5Target method)

 	(msp430.gdb.target.GDBTarget method)

 	(msp430.jtag.target.JTAGTarget method)

 	(msp430.target.Target method)

 	
 	RPN (class in msp430.asm.rpn)

 	rpn_function() (in module msp430.asm.rpn)

 	RPNError

S

 	
 	save() (in module msp430.listing)

 	(in module msp430.memory)

 	Segment (class in msp430.asm.ld)

 	(class in msp430.memory)

 	segments_from_definition() (msp430.asm.ld.Linker method)

 	SerialBSL (class in msp430.bsl.target)

 	SerialBSL5 (class in msp430.bsl5.uart)

 	SerialBSL5Target (class in msp430.bsl5.uart)

 	SerialBSLTarget (class in msp430.bsl.target)

 	set() (msp430.gdb.gdb.GDBClient method)

 	(msp430.memory.Memory method)

 	set_baudrate() (msp430.bsl.target.SerialBSL method)

 	(msp430.bsl5.uart.SerialBSL5 method)

 	set_breakpoint() (msp430.gdb.gdb.GDBClient method)

 	
 	set_extended() (msp430.gdb.gdb.GDBClient method)

 	set_RST() (msp430.bsl.target.SerialBSL method)

 	(msp430.bsl5.uart.SerialBSL5 method)

 	set_TEST() (msp430.bsl.target.SerialBSL method)

 	(msp430.bsl5.uart.SerialBSL5 method)

 	setDCO() (in module msp430.jtag.clock)

 	setDCOPlus() (in module msp430.jtag.clock)

 	shrink_to_fit() (msp430.asm.ld.Segment method)

 	sort_subsegments() (msp430.asm.ld.Segment method)

 	start_bsl() (msp430.bsl5.uart.SerialBSL5 method)

 	step_with_signal() (msp430.gdb.gdb.GDBClient method)

 	stream_merge() (in module msp430.memory)

 	swapResetTest (msp430.bsl5.uart.SerialBSL5 attribute)

 	SymbolDefinitions (class in msp430.asm.peripherals)

 	SymbolError

T

 	
 	Target (class in msp430.target)

 	
 	testOnTX (msp430.bsl5.uart.SerialBSL5 attribute)

 	text (msp430.asm.rpn.RPNError attribute)

U

 	
 	UnsupportedMCUFamily

 	
 	update_mirrored_segments() (msp430.asm.ld.Linker method)

 	upload() (msp430.target.Target method)

V

 	
 	val() (in module msp430.asm.rpn)

 	verify_by_file() (msp430.target.Target method)

 	version() (msp430.bsl.bsl.BSL method)

 	(msp430.bsl5.bsl5.BSL5 method)

 	(msp430.gdb.target.GDBTarget method)

 	(msp430.jtag.target.JTAGTarget method)

 	(msp430.target.Target method)

W

 	
 	Word (class in msp430.asm.rpn)

 	word() (in module msp430.asm.rpn)

 	words_in_file() (in module msp430.asm.rpn)

 	words_in_string() (in module msp430.asm.rpn)

 	write() (msp430.asm.cpp.AnnoatatedLineWriter method)

 	(msp430.gdb.gdb.ClientSocketConnector method)

 	write_16bit() (msp430.asm.ld.Segment method)

 	
 	write_32bit() (msp430.asm.ld.Segment method)

 	write_8bit() (msp430.asm.ld.Segment method)

 	write_memory() (msp430.gdb.gdb.GDBClient method)

 	write_memory_binary() (msp430.gdb.gdb.GDBClient method)

 	write_register() (msp430.gdb.gdb.GDBClient method)

 	write_registers() (msp430.gdb.gdb.GDBClient method)

 	write_report() (msp430.bsl5.hid.HIDBSL5 method)

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 python-msp430-tools documentation

 		
 Overview

 		
 NEWS

 		
 Commandline Tools

 		
 msp430-bsl

 		
 Features

 		
 Requirements

 		
 Short introduction

 		
 Examples

 		
 History

 		
 References

 		
 msp430-bsl5

 		
 Features

 		
 Requirements

 		
 Short introduction

 		
 Examples

 		
 Tips & Tricks

 		
 History

 		
 References

 		
 msp430-jtag

 		
 Features

 		
 Requirements

 		
 Short introduction

 		
 Backends

 		
 Examples

 		
 USB JTAG adapters

 		
 History

 		
 References

 		
 msp430-dco

 		
 Features

 		
 Requirements

 		
 Short introduction

 		
 Variables

 		
 Examples

 		
 Known Issues

 		
 History

 		
 References

 		
 msp430-downloader

 		
 Features

 		
 Short introduction

 		
 Target Tools

 		
 msp430.bsl.target

 		
 msp430.bsl5.hid

 		
 msp430.bsl5.uart

 		
 msp430.jtag.dco

 		
 msp430.jtag.target

 		
 msp430.jtag.profile

 		
 msp430.gdb.target

 		
 Utilities

 		
 msp430.memory.convert

 		
 msp430.memory.compare

 		
 msp430.memory.generate

 		
 msp430.memory.hexdump

 		
 Shell utilities

 		
 msp430.shell.command

 		
 msp430.shell.watch

 		
 Assembler

 		
 Tutorial

 		
 A simple example

 		
 Download

 		
 Installing header files

 		
 More Examples

 		
 Command line tools

 		
 msp43.asm.as

 		
 msp430.asm.ld

 		
 msp430.asm.cpp

 		
 msp430.asm.disassemble

 		
 Forth Cross Compiler

 		
 Available Words

 		
 Command line tools

 		
 Cross compilation

 		
 MSP430 specific features

 		
 Limitations

 		
 Thanks

 		
 API Documentation

 		
 Object file format

 		
 MCU Definition file format

 		
 Modules

 		
 Internals

 		
 Target APIs

 		
 Target base class

 		
 BSL Target

 		
 BSL5 Target

 		
 JTAG Target

 		
 GDB Target

 		
 Utility APIs

 		
 msp430.memory

 		
 msp430.listing

 		
 File format handlers

 		
 Overvie