Python Mock Tutorial Documentation
Release 0.1

Javier Collado

Nov 14, 2017

Contents

Introduction 3
Mock 5
2.1 Whatisamock object?. e e 5
2.2 What makes mock objects useful for testing? e 6
2.3 Howare methods mocked? e e e 6

Indices and tables 9

Python Mock Tutorial Documentation, Release 0.1

Contents:

Contents 1

Python Mock Tutorial Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

mock is a python library than can be used together with unittest write better tests for your code. This document’s goal
is to get the reader started quickly using mock. None of the examples below will be difficult to follow, but a basic
knowledge of python and unittest library is recommended.

http://mock.readthedocs.org/en/latest/mock.html
https://docs.python.org/2/library/unittest.html
http://mock.readthedocs.org/en/latest/mock.html
https://docs.python.org/2/library/unittest.html

Python Mock Tutorial Documentation, Release 0.1

4 Chapter 1. Introduction

CHAPTER 2

Mock

2.1 What is a mock object?

A mock object is an instance of the Mock class or any of its subclasses:

>>> from mock import Mock
>>> my_mock = Mock ()

It supports attribute access and method calls:

>>> my_mock.attribute

<Mock name='mock.attribute' id='...'>
>>> my_mock.method ()
<Mock name='mock.method()' id='...'>

Index access is no supported by default because magic methods, those whose names are surrounded by double un-
derscores, require a special configuration because of the way they are looked up internally in python. However, there
is a special subclass of Mock called MagicMock that provides a default implementation for most magic methods
including __getitem__:

>>> from mock import MagicMock

>>> my_mock = MagicMock ()
>>> my_mock['index']
<MagicMock name='mock.__getitem__ ()' id='...'>

Given that index access is usually required in test cases and that MagicMock provides that functionality out of the
box, it’s common to use MagicMock as an alias of Mock by default using import ... as:

>>> from mock import MagicMock as Mock
>>> my_mock.attribute

<MagicMock name='mock.attribute' id='...'>
>>> my_mock.method ()
<MagicMock name='mock.method()' id='..."'>

Python Mock Tutorial Documentation, Release 0.1

>>> my_mock['index']
<MagicMock name='mock.__getitem__ ()' id='...'>

2.2 What makes mock objects useful for testing?

As you may have noticed from the examples above, when an attribute is accessed (or any other of the supported
operations), another mock object is returned. What you may have not noticed,though, is that always the same mock
object is returned, that is, on the first call a new mock object is created that is cached and returned on any subsequent
calls:

>>> mock_attribute_1 = my_mock.attribute
>>> mock_attribute_2 = my_mock.attribute
>>> mock_attribute_1 is mock_attribute_2
True

This is a useful property because it makes possible to get the mock objects that are going to be used in the unit under
test in advance to configure them properly depending on the need of each test case.

2.3 How are methods mocked?

2.3.1 Setting return values

Sometimes when a call is made on a mock object that pretends to be a method, the desired return value is not another
mock object, but a python object that makes sense for a given test case. One way to set a return value, is to set the
return_value attribute of a mock object to the desired value.

For example:

>>> my_mock.answer.return_value = 42
>>> my_mock.answer ()
42

2.3.2 Setting side effects

Some other times, when a method is called, an exception is supposed to be raised to simulate an error situation that
the code being tested is expected to handle. In that case, the side_effect attribute provide the expected behavior:

>>> my_mock.error.side_effect = ValueError ('Error message')
>>> my_mock.error ()
Traceback (most recent call last):

ValueError: Error message

Additionally, the side_effect attribute can be used when different values are expected to be returned for each method
call using an iterable:

>>> my_mock.get_next.side_effect = [1, 2, 3]
>>> my_mock.get_next ()

1

>>> my_mock.get_next ()

6 Chapter 2. Mock

Python Mock Tutorial Documentation, Release 0.1

2
>>> my_mock.get_next ()
3

‘When a more advanced behavior is needed, instead of an iterable, a callable can be used to return whatever is needed.
However, this is not commonly used.

2.3.3 Assertions

Given that they are used for testing, mock objects are usually involved in assertions as well. In particular, they are
commonly used to make sure that a method from an external dependency was called.

One simple way to do this is just look at the called attribute:

>>> my_mock.method ()

<MagicMock name='mock.method()' id="...'>
>>> my_mock.method.called
True

However, that’s not usually enough, since we need to figure out not only if a method was called, but also if it was
called with the right arguments. In such a case, assert_called_with is a great helper method:

>>> my_mock.method (1, 2, 3, a=4, b=5, c=6)
<MagicMock name='mock.method()' id="...'>
>>> my_mock.method.assert_called_with (1, 2, 3, a=4, b=5, c=6)

Of course, if the method wasn’t called with the expected arguments an AssertionError will be raised:

>>> my_mock.method.assert_called_with('some', 'other', 'arguments')
Traceback (most recent call last):

AssertionError: Expected call: method('some', 'other', 'arguments')
Actual call: method(1l, 2, 3, a=4, c=6, b=))

There are other helper methods that I recommend that can be used and are well described in the documentation. One
that is particularly useful is assert_called_once_with that works exactly in the same way, but will fail if the
method has been called more than once.

2.3. How are methods mocked? 7

Python Mock Tutorial Documentation, Release 0.1

8 Chapter 2. Mock

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

	Introduction
	Mock
	What is a mock object?
	What makes mock objects useful for testing?
	How are methods mocked?

	Indices and tables

