
python-memcached2 Documentation
Release 0.1

Sean Reifschneider

September 22, 2015

Contents

1 Documentation Index 3
1.1 What’s New in python-memcached2 . 3
1.2 Exception as Misses Mapping . 5
1.3 Exception as Misses Mapping . 7
1.4 Hasher Routines . 7
1.5 Selector Routines . 8
1.6 Reconnector Routines . 10
1.7 String-like Memcache Value Object . 10
1.8 Dictionary-like Memcache Value Object . 10
1.9 Low-Level Memcache() Interface . 10
1.10 Low-Level ServerConnection() Interface . 19
1.11 python-memcached2 Exceptions . 21

2 Indices and tables 23

Python Module Index 25

i

ii

python-memcached2 Documentation, Release 0.1

python-memcached2 is a next-generation implementation re-implementation of the python-memcached module. The
primary goals are to get rid of some baggage, improve testability/maintainability/performance, and support Python 3.
This codebase is regularly tested against Python 2.7 and Python 3.3.

The high level interface is dict-like: ExceptionsAreMissesMapping. It looks much like a dictionary but the
back-end storage is memcache servers.

The low level Memcache class is complete and documented, see Memcache Examples for examples of use.

Contents 1

python-memcached2 Documentation, Release 0.1

2 Contents

CHAPTER 1

Documentation Index

1.1 What’s New in python-memcached2

• Renamed SelectorAvailableServers to SelectorRehashDownServers.

Wed Sep 04, 2013

• I’m going to tag this as 0.3, because it’s at a pretty functional state, and I’m going to stat breaking things to work
on separating the server connecting and re-connecting from the server selection.

Sat Aug 31, 2013

• I have finished the implementation of set_multi(), but it could use some more tests, particularly those verifying
what happens on bad server responses.

Mon Aug 26, 2013

• I have completed the implementation of send_multi() and it passes a basic test. Need to decide what I want the
return to be, and do more tests, but it’s on its way.

Mon Jun 12, 2013

• Added a new Selector, SelectorFractalSharding, and removed the
SelectorRestirOnDownServer. The new Selector improves on the old one in pretty much every
way, and is the default for when more than 2 servers are listed.

Mon Jun 10, 2013

• Tagging as 0.2 as the functionality here is usable and stabilized and I want to start working on some significant
changes that may break things for a while.

Sun Jun 09, 2013

• Added SelectorConsistentHashing that implements this algorithm for server selection.

Sun Jun 08, 2013

• Removed SelectorRehashOnDownServer and replaced it with the better
SelectorRestirOnDownServer.

Tue Jun 04, 2013

• Fixing a bug if Memcache(selector+XXX) is used, hasher was not being set.

• Created SelectorRehashOnDownServer which will hash to the same server, unless that server is down in which
case it will rehash among only the up servers.

Wed May 28, 2013

3

python-memcached2 Documentation, Release 0.1

• Adding memcached2.Memcache.delete_all() and memcached2.ValueSuperStr.sdelete_allet().

Wed May 27, 2013

• SelectorAvailableServers now can flush all servers when the topology changes. That’s the situation it is most
suited for, though it’s also ideal for 2 server clusters.

Wed May 25, 2013

• Added get_multi which can get multiple keys at once.

Wed May 22, 2013

• Memcache now has a get_multi() method that will get multiple keys at once.

Wed May 20, 2013

• Memcache.cache() now takes varargs and kwargs, optionally, which will be passed to the compute function.

Wed May 19, 2013

• Memcache.cache() added which will call a function on a cache miss, then put the result in the cache.

Wed May 18, 2013

• Now have a ExceptionsAreMissesMemcache() class for lower-level access that treats exceptions as misses.

Wed May 15, 2013

• ValueSuperStr can now do a CAS refresh on memcached2.ValueSuperStr.set().

Wed May 8, 2013

• MemcacheValue is now called ValueSuperStr, and it is no longer the default return type in Memcache(). It can
be defined by passing ValueMemcache to Memcache() as the “value_wrapper”. There’s also a ValueDictionary
now.

• Adding ValueDictionary class.

• Memcache() class no longer returns MemcacheValue class. It returns a normal string, unless you have specified
a value_wrapper attribute during the creation of the Memcache object.

Tue May 7, 2013

• Adding MANIFEST.in file.

• Adding CASFailure to MemcacheValue methods.

Fri May 3, 2013

• I did a short performance test against the python-memcached library that this is meant to replace. This new
module is around 10% faster (using the Memcache() class) at retrieving 10 byte values, and 16% faster at 1KB
values. I was expecting more, but I also haven’t done any performance tuning. If I just return normal strings
instead of ValueSuperStr, that goes up to 23% faster, so that may be a point of optimization.

• Adding remaining methods to MemcacheValue.

Thu May 2, 2013

• MemcacheValue now has “set()” method.

Wed May 1, 2013

• I’m tagging a 0.2 but still not going to release to pypi yet. Server failure testing, related to ExceptionsAre-
MissesMapping, have located several exceptions that weren’t being caught and translated into local module
exceptions. Current functionality is solid, but I want to add a MemcacheCASValue class, which is kind of an
API change.

4 Chapter 1. Documentation Index

python-memcached2 Documentation, Release 0.1

• Improving Python 2 BrokenPipeError

• Catching more exceptions, more tests.

Added more extensive testing to ExceptionsAsMissesMapping, including in the cases where the server discon-
nects. Through that, found places where more exceptions needed to be caught.

Tue Apr 30, 2013

• Trapping ServerDisconnected exception.

Mon Apr 29, 2013

• ObliviousMapping renamed ExceptionsAreMissesMapping

ExceptionsAreMissesMapping suggested by Wes Winham. Thanks!

Sat Apr 27, 2013

• The module is usable, but if you do you should expect that the interfaces may change. The high level Memcache
code is basically complete, documented, and well tested.

• Bringing back KeyError because d.get() is preferable.

• Renaming ObliviousDict to ObliviousMapping.

Fri Apr 26, 2013

• Adding ObliviousDict() tests and fixing “in”.

1.2 Exception as Misses Mapping

1.2.1 Introduction

This is a subclass of Memcache which swallows exceptions and treats them like misses. This is meant to allow code
to be a bit simpler, rather than catching all exceptions, you can just do things like the below example.

1.2.2 Examples

Basic example:

>>> import memcached2
>>> mc = memcached2.ExceptionsAreMissesMemcache(('memcached://localhost/',))
>>> data = mc.get('key')
>>> if not data:
>>> data = [compute data]
>>> mc.set('key', data)
>>> [use data]

1.2.3 Object Documentation

class memcached2.ExceptionsAreMissesMemcache(servers, value_wrapper=None, selector=None,
hasher=None, server_pool=None)

A Memcache wrapper class which swallows server exceptions, except in the case of coding errors. This is
meant for situations where you want to keep the code simple, and treat cache misses, server errors, and the like
as cache misses. See memcached2.Memcache() for details of the use of this class, exceptions to that are
noted here.

1.2. Exception as Misses Mapping 5

python-memcached2 Documentation, Release 0.1

The methods that are protected against exceptions are those documented in this class. Everything should other-
wise act like a Memcache instance.

Parameters

• servers (list) – One or more server URIs of the form: “memcache://hostname[:port]/”

• value_wrapper (ValueSuperStr or compatible object.) – (None) This causes val-
ues returned to be wrapped in the passed class before being returned. For example
ValueSuperStr implements many useful additions to the string return.

• selector (SelectorBase) – (None) This code implements the server selector logic. If
not specified, the default is used. The default is to use SelectorFirst if only one server
is specified, and SelectorRehashDownServers if multiple servers are given.

• hasher (HasherBase) – (None) A “Hash” object which takes a key and returns a hash
for persistent server selection. If not specified, it defaults to HasherZero if there is only
one server specified, or HasherCMemcache otherwise.

• server_pool (ServerPool object.) – (None) A server connection pool. If not speci-
fied, a global pool is used.

delete(*args, **kwargs)
Remove this key from the server.

Exceptions are swallowed and treated as memcached misses. See delete() for details on this method.
Changes from the base function are:

Raises Exceptions are swallowed and treated a misses.

get(*args, **kwargs)
Retrieve the specified key from a memcache server.

Exceptions are swallowed and treated as memcached misses. See get() for details on this method.
Changes from the base function are:

Returns None if no value or exception, String, or “value_wrapper” as specified during object
creation such as ~memcached2.ValueSuperStr.

Raises Exceptions are swallowed and treated a misses.

set(*args, **kwargs)
Update the value in the server. See set() for details on this method. Changes from the base function are:

Exceptions are swallowed and treated as memcached misses. See set() for details on this method.
Changes from the base function are:

Raises Exceptions are swallowed and treated a misses.

set_multi(*args, **kwargs)
Update multiple values in the server. See set_multi() for details on this method. Changes from the
base function are:

Exceptions are swallowed and treated as memcached misses. See set() for details on this method.
Changes from the base function are:

Raises Exceptions are swallowed and treated a misses.

6 Chapter 1. Documentation Index

python-memcached2 Documentation, Release 0.1

1.3 Exception as Misses Mapping

1.3.1 Introduction

This is a dictionary-like interface to memcache, but it swallows server exceptions, except in the case of coding errors.
This is meant for situations where you want to keep the code simple, and treat cache misses, server errors, and the like
as cache misses.

On the instantiation you specify the servers, and at that point it can be accessed as a dictionary, including access,
setting, and deleting keys. See the examples for a demonstration.

For functionality beyond what you can get from the dictionary interface, you need to use the memcache attribute,
which is an Memcache instance. See that documentation for access to flusing servers, statistics, and other things not
supported by the mapping interface.

Note that NotImplementedException will be raised for situations where there are code errors. So it’s recom-
mended that you don’t just trap these, either catch and log them, or just let them raise up so that application users can
report the bug.

1.3.2 Examples

Basic example:

>>> import memcached2
>>> mcd = memcached2.ExceptionsAreMissesMapping(('memcached://localhost/',))
>>> 'foo' in mcd
False
>>> mcd['foo'] = 'hello'
>>> 'foo' in mcd
True
>>> mcd['foo']
'hello'
>>> len(mcd)
1
>>> del(mcd['foo'])
>>> len(mcd)
0

1.3.3 Object Documentation

class memcached2.ExceptionsAreMissesMapping(servers, selector=None, hasher=None)
A dictionary-like interface which swallows server exceptions.

This is a dictionary-like interface to memcache, but it swallows server exceptions, except in the case of coding
errors. This is meant for situations where you want to keep the code simple, and treat cache misses, server
errors, and the like as cache misses.

See ExceptionsAreMissesMapping Introduction and ExceptionsAreMissesMapping Examples for more informa-
tion.

1.4 Hasher Routines

class memcached2.HasherBase
Turn memcache keys into hashes, for use in server selection.

1.3. Exception as Misses Mapping 7

python-memcached2 Documentation, Release 0.1

Normally, the python-memcached2 classes will automatically select a hasher to use. However, for special
circumstances you may wish to use a different hasher or develop your own.

This is an abstract base class, here largely for documentation purposes. Hasher sub-classes such as
HasherZero and HasherCMemcache, implement a hash method which does all the work.

See hash() for details of implementing a subclass.

hash(key)
Hash a key into a number.

This must persistently turn a string into the same value. That value is used to determine which server to
use for this key.

Parameters key (str) – memcache key

Returns int – Hashed version of key.

class memcached2.HasherZero
Hasher that always returns 0, useful only for SelectorFirst.

hash(key)
See memcached2.HasherBase.hash() for details of this function.

class memcached2.HasherCMemcache
Hasher compatible with the C memcache hash function.

hash(key)
See memcached2.HasherBase.hash() for details of this function.

1.5 Selector Routines

class memcached2.SelectorBase
Select which server to use.

These classes implement a variety of algorithms for determining which server to use, based on the key being
stored.

The selection is done based on a key_hash, as returned by the memcached2.HasherBase.hash() func-
tion.

Normally, the python-memcached2 classes will automatically pick a selector to use. However, for special cir-
cumstances you may wish to use a specific Selector or develop your own.

This is an abstract base class, here largely for documentation purposes. Selector sub-classes such as
SelectorFirst and SelectorRehashDownServers, implement a select method which does all the
work.

See select() for details of implementing a subclass.

select(server_uri_list, hasher, key, server_pool)
Select a server bashed on the key_hash.

Given the list of servers and a hash of of key, determine which of the servers this key is associated with on.

Parameters

• server_uri_list (list of server URIs) – A list of the server URIs to select among.

• hasher (memcache2.HasherBase.hash().) – Hasher function, such as
memcache2.HasherBase.hash().

• key (str) – The key to hash.

8 Chapter 1. Documentation Index

python-memcached2 Documentation, Release 0.1

• server_pool (ServerPool object.) – (None) A server connection pool. If not spec-
ified, a global pool is used.

Returns string – The server_uri to use.

Raises NoAvailableServers

class memcached2.SelectorFirst
Server selector that only returns the first server. Useful when there is only one server to select amongst.

select(server_uri_list, hasher, key, server_pool)
See memcached2.SelectorBase.select() for details of this function.

class memcached2.SelectorRehashDownServers(hashing_retries=10)
Select a server, if it is down re-hash up to hashing_retries times.

This was the default in the original python-memcached module. If the server that a key is housed on is down, it
will re-hash the key after adding an (ASCII) number of tries to the key and try that server.

This is most suitable if you want to inter-operate with the old python-memcache client.

If no up server is found after hashing_retries attempts, memcached2.NoAvailableServers is raised.

Parameters hashing_retries (int) – Retry hashing the key looking for another server this
many times.

select(server_uri_list, hasher, key, server_pool)
See memcached2.SelectorBase.select() for details of this function.

class memcached2.SelectorFractalSharding
On a down server, re-partition that servers keyspace to other servers.

This uses an algorithm that basically maps every key in the keyspace to a list of the servers that will answer
queries for it. The first available server in that list will be used. The list is such that the keys that map to a server
when it is up will get distributed across other servers evenly, stabally, and predictably.

I called it Fractal because when a server is down you dig deeper and see a new level of complexity in the
keyspace mapping.

select(server_uri_list, hasher, key, server_pool)
See memcached2.SelectorBase.select() for details of this function.

class memcached2.SelectorConsistentHashing(total_buckets=None)
Predictably select a server, even if its normal server is down.

This implements the Consistent Hash algorithm as http://en.wikipedia.org/wiki/Consistent_hashing

This is done by splitting the key-space up into a number of buckets (more than the number of servers but probably
no more than the number of servers squared). See Wikipedia for details on how this algorithm operates.

The downside of this mechanism is that it requires building a fairly large table at startup, so it is not suited to
short lived code. It also is fairly expensive to add and remove servers from the pool (not implemented in this
code). Note that it is NOT expensive to fail a server, only to completely remove it.

Parameters total_buckets (int) – How many buckets to create. Smaller values decrease the
startup overhead, but also mean that a down server will tend to not evenly redistribute it’s load
across other servers. The default value of None means the default value of the number of servers
squared.

select(server_uri_list, hasher, key, server_pool)
See memcached2.SelectorBase.select() for details of this function.

1.5. Selector Routines 9

http://en.wikipedia.org/wiki/Consistent_hashing

python-memcached2 Documentation, Release 0.1

1.6 Reconnector Routines

1.7 String-like Memcache Value Object

class memcached2.ValueSuperStr
Wrapper around Memcache value results.

This acts as a string normally, containing the value read from the server. However, it is augmented with addi-
tional attributes representing additional data received from the server: flags, key, and cas_unique (which may be
None if it was not requested from the server).

If this is constructed with the memcache ServerConnection instance, then additional methods may be used
to update the value via this object. If cas_unique is given, these updates are done using the CAS value.

1.8 Dictionary-like Memcache Value Object

class memcached2.ValueDictionary(value, key, flags, cas_unique=None, memcache=None)
Encode the response as a dictionary.

This is a simple dictionary of the result data from the memcache server, including keys: “key”, “value”, “flags”,
and “cas_unique”. This is a way of getting additional data from the memcache server for use in things like CAS
updates.

Instantiate new instance.

Parameters

• value (str) – The memcache value, which is the value of this class when treated like a
string.

• key (str) – The key associated with the value retrieved.

• flags (int) – flags associated with the value retrieved.

• cas_unique (int) – The cas_unique value, if it was queried, or None if no CAS informa-
tion was retrieved.

• memcache (ServerConnection) – The memcache server instance, used for future op-
erations on this key.

Returns ValueSuperStr instance

1.9 Low-Level Memcache() Interface

1.9.1 Introduction

This is a low-level interface to a group of memcache servers. This code tends to either return the requested data, or
raises an exception if the data is not available or there is any sort of an error. If you want high level control, this is
probably the interface for you. However, if you want something easy, like the old python-memcached module, you
will want to wait for the higher level interfaces to be implemented.

10 Chapter 1. Documentation Index

python-memcached2 Documentation, Release 0.1

1.9.2 Examples

Basic get() and exception example:

>>> import memcached2
>>> memcache = memcached2.Memcache(('memcached://localhost/',))
>>> try:
... result = memcache.get('session_id')
... print('Got cached results: {0}'.format(repr(result)))
... except memcached2.NoValue:
... print('Cached value not available, need to recompute it')
...
Cached value not available, need to recompute it

Demonstrating set(), get() and ValueSuperStr:

>>> memcache.set('session_id', 'TEST SESSSION DATA')
>>> result = memcache.get('session_id')
>>> print('Got cached results: {0}'.format(repr(result)))
Got cached results: 'TEST SESSSION DATA'
>>> result.key
'session_id'
>>> result.flags
0

Example of get_multi() to retrieve multiple keys quickly:

>>> memcache.set('foo', '1')
>>> memcache.set('bar', '2')
>>> result = memcache.get_multi(['foo', 'bar', 'baz'])
>>> result.get('foo')
'1'
>>> result.get('bar')
'2'
>>> result.get('baz')
None

Usage of cache() to automatically cache values:

>>> numbers = range(10)
>>> calculate = lambda x: str(numbers.pop())
>>> memcache.flush_all()
>>> memcache.cache('foo', calculate)
'9'
>>> memcache.cache('foo', calculate)
'9'
>>> memcache.set('foo', 'hello')
>>> memcache.cache('foo', calculate)
'hello'
>>> memcache.flush_all()
>>> memcache.cache('foo', calculate)
'8'

Showing flags and expiration time and touch():

>>> memcache.set('foo', 'xXx', flags=12, exptime=30)
>>> result = memcache.get('foo')
>>> result
'xXx'
>>> result.key

1.9. Low-Level Memcache() Interface 11

python-memcached2 Documentation, Release 0.1

'foo'
>>> result.flags
12
>>> import time
>>> time.sleep(30)
>>> result = memcache.get('foo')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "memcached2.py", line 411, in get
raise NoValue()

memcached2.NoValue
>>> memcache.set('foo', 'bar', exptime=1)
>>> memcache.touch('foo', exptime=30)
>>> time.sleep(2)
>>> memcache.get('foo')
'bar'

Usage of replace(), append(), and prepend():

>>> memcache.replace('unset_key', 'xyzzy')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "memcached2.py", line 502, in replace
self._storage_command(command, key)

File "memcached2.py", line 945, in _storage_command
raise NotStored()

memcached2.NotStored
>>> memcache.set('unset_key', 'old_data', exptime=30)
>>> memcache.replace('unset_key', 'xyzzy')
>>> memcache.get('unset_key')
'xyzzy'
>>> memcache.append('unset_key', '>>>')
>>> memcache.prepend('unset_key', '<<<')
>>> memcache.get('unset_key')
'<<<xyzzy>>>'

Example of using CAS (Check And Set) atomic operations:

>>> memcache.set('foo', 'bar')
>>> result = memcache.get('foo', get_cas=True)
>>> result.cas_unique
5625
>>> memcache.set('foo', 'baz', cas_unique=result.cas_unique)
>>> memcache.get('foo', get_cas=True)
'baz'
>>> memcache.set('foo', 'qux', cas_unique=result.cas_unique)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "memcached2.py", line 464, in set
self._storage_command(command, key)

File "memcached2.py", line 947, in _storage_command
raise CASFailure()

memcached2.CASFailure
>>> memcache.get('foo', get_cas=True)
'baz'

Usage of incr()/decr():

12 Chapter 1. Documentation Index

python-memcached2 Documentation, Release 0.1

>>> memcache.incr('incrtest', 1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "memcached2.py", line 878, in incr
return self._incrdecr_command(command, key)

File "memcached2.py", line 915, in _incrdecr_command
raise NotFound()

memcached2.NotFound
>>> memcache.set('incrtest', 'a')
>>> memcache.incr('incrtest', 1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "memcached2.py", line 878, in incr
return self._incrdecr_command(command, key)

File "memcached2.py", line 919, in _incrdecr_command
raise NonNumeric()

memcached2.NonNumeric
>>> memcache.set('incrtest', '1')
>>> memcache.incr('incrtest', 1)
2
>>> memcache.decr('incrtest', 1)
1
>>> memcache.get('incrtest')
'1'

Statistics sample information:

>>> import pprint
>>> pprint.pprint(memcache.stats())
[{'accepting_conns': '1',

'auth_cmds': 0,
'auth_errors': 0,
'bytes': 201,
'bytes_read': 173542,
'bytes_written': 516341,
'cas_badval': 49,
'cas_hits': 49,
'cas_misses': 0,
'cmd_flush': 1154,
'cmd_get': 880,
'cmd_set': 5778,
'cmd_touch': '148',
'conn_yields': 0,
'connection_structures': 9,
'curr_connections': 5,
'curr_items': 3,
'decr_hits': 49,
'decr_misses': 48,
'delete_hits': 49,
'delete_misses': 49,
'evicted_unfetched': 0,
'evictions': 0,
'expired_unfetched': 0,
'get_hits': '681',
'get_misses': '199',
'hash_bytes': 262144,
'hash_is_expanding': '0',
'hash_power_level': 16,
'incr_hits': 49,

1.9. Low-Level Memcache() Interface 13

python-memcached2 Documentation, Release 0.1

'incr_misses': 49,
'libevent': '2.0.19-stable',
'limit_maxbytes': 67108864,
'listen_disabled_num': '0',
'pid': 22356,
'pointer_size': 32,
'reclaimed': 0,
'reserved_fds': 20,
'rusage_system': 7.568473,
'rusage_user': 8.904556,
'threads': 4,
'time': 1366722131,
'total_connections': 1545,
'total_items': 5634,
'touch_hits': 98,
'touch_misses': 50,
'uptime': 370393,
'version': '1.4.14'}]

>>> pprint.pprint(memcache.stats_settings())
[{'auth_enabled_sasl': 'no',

'binding_protocol': 'auto-negotiate',
'cas_enabled': True,
'chunk_size': 48,
'detail_enabled': False,
'domain_socket': 'NULL',
'evictions': 'on',
'growth_factor': 1.25,
'hashpower_init': 0,
'inter': '127.0.0.1',
'item_size_max': 1048576,
'maxbytes': 67108864,
'maxconns': 1024,
'maxconns_fast': False,
'num_threads': 4,
'num_threads_per_udp': 4,
'oldest': 216734,
'reqs_per_event': 20,
'slab_automove': False,
'slab_reassign': False,
'stat_key_prefix': ':',
'tcp_backlog': 1024,
'tcpport': 11211,
'udpport': 11211,
'umask': 700,
'verbosity': 0}]

>>> pprint.pprint(memcache.stats_items())
[{'1': {'age': 766,

'evicted': 0,
'evicted_nonzero': 0,
'evicted_time': 0,
'evicted_unfetched': 0,
'expired_unfetched': 0,
'number': 3,
'outofmemory': 0,
'reclaimed': 0,
'tailrepairs': 0}}]

>>> pprint.pprint(memcache.stats_sizes())
[[(64, 1), (96, 2)]]

14 Chapter 1. Documentation Index

python-memcached2 Documentation, Release 0.1

>>> pprint.pprint(memcache.stats_slabs())
[{'active_slabs': 1,

'slabs': {'1': {'cas_badval': 49,
'cas_hits': 49,
'chunk_size': 80,
'chunks_per_page': 13107,
'cmd_set': 5778,
'decr_hits': 49,
'delete_hits': 49,
'free_chunks': 13104,
'free_chunks_end': 0,
'get_hits': 681,
'incr_hits': 49,
'mem_requested': 201,
'total_chunks': 13107,
'total_pages': 1,
'touch_hits': 98,
'used_chunks': 3}},

'total_malloced': 1048560}]

How to delete(), flush_all(), and close() the connection:

>>> memcache.delete('foo')
>>> memcache.flush_all()
>>> memcache.close()

1.9.3 Object Documentation

class memcached2.Memcache(servers, value_wrapper=None, selector=None, hasher=None,
server_pool=None)

Create a new memcache connection, to the specified servers.

The list of servers, specified by URL, are consulted based on the hash of the key, effectively “sharding” the key
space.

This is a low-level memcache interface. This interface will raise exceptions when backend connections occur,
allowing a program full control over handling of connection problems.

Example:

>>> from memcached2 import * # noqa
>>> mc = Memcache(['memcached://localhost:11211/'])
>>> mc.set('foo', 'bar')
>>> mc.get('foo')
'bar'

Extensive examples including demonstrations of the statistics output is available in the documentation for Mem-
cache Examples

Parameters

• servers (list) – One or more server URIs of the form: “memcache://hostname[:port]/”

• value_wrapper (ValueSuperStr or compatible object.) – (None) This causes val-
ues returned to be wrapped in the passed class before being returned. For example
ValueSuperStr implements many useful additions to the string return.

• selector (SelectorBase) – (None) This code implements the server selector logic. If
not specified, the default is used. The default is to use SelectorFirst if only one server
is specified, and SelectorRehashDownServers if multiple servers are given.

1.9. Low-Level Memcache() Interface 15

python-memcached2 Documentation, Release 0.1

• hasher (HasherBase) – (None) A “Hash” object which takes a key and returns a hash
for persistent server selection. If not specified, it defaults to HasherZero if there is only
one server specified, or HasherCMemcache otherwise.

• server_pool (ServerPool object.) – (None) A server connection pool. If not speci-
fied, a global pool is used.

add(key, value, flags=0, exptime=0)
Store, but only if the server doesn’t already hold data for it.

Parameters

• key (str) – Key used to store value in memcache server and hashed to determine which
server is used.

• value (str) – Value stored in memcache server for this key.

• flags (int (32 bits)) – If specified, the same value will be provided on get().

• exptime (int) – If non-zero, it specifies the expriation time, in seconds, for this value.

append(key, value)
Store data after existing data associated with this key.

Parameters

• key (str) – Key used to store value in memcache server and hashed to determine which
server is used.

• value (str) – Value stored in memcache server for this key.

close()
Close the connection to all the backend servers.

decr(key, value=1)
Decrement the value for the key, treated as a 64-bit unsigned value.

Parameters

• key (str) – Key used to store value in memcache server and hashed to determine which
server is used.

• value (int (64 bit)) – A numeric value (default=1) to add to the existing value.

Returns int – (64 bits) The new value after the decrement.

Raises NotFound, NonNumeric, NotImplementedError

delete(key)
Delete the key if it exists.

Parameters key (str) – Key used to store value in memcache server and hashed to determine
which server is used.

Returns Boolean indicating if key was deleted.

Raises NotImplementedError, NoAvailableServers

flush_all()
Flush the memcache servers.

Note: An attempt is made to connect to all backend servers before running this command.

Raises NotImplementedError

16 Chapter 1. Documentation Index

python-memcached2 Documentation, Release 0.1

get(key, get_cas=False)
Retrieve the specified key from a memcache server.

Parameters

• key (str) – The key to lookup in the memcache server.

• get_cas (bool) – If True, the “cas unique” is queried and the return object has the
“cas_unique” attribute set.

Returns String, or “value_wrapper” as specified during object creation such as ~mem-
cached2.ValueSuperStr.

Raises NoValue, NotImplementedError, NoAvailableServers

incr(key, value=1)
Increment the value for the key, treated as a 64-bit unsigned value.

Parameters

• key (str) – Key used to store value in memcache server and hashed to determine which
server is used.

• value (int (64 bit)) – A numeric value (default=1) to add to the existing value.

Returns int – (64 bits) The new value after the increment.

Raises NotFound, NonNumeric, NotImplementedError

prepend(key, value)
Store data before existing data associated with this key.

Parameters

• key (str) – Key used to store value in memcache server and hashed to determine which
server is used.

• value (str) – Value stored in memcache server for this key.

replace(key, value, flags=0, exptime=0)
Store data, but only if the server already holds data for it.

Parameters

• key (str) – Key used to store value in memcache server and hashed to determine which
server is used.

• value (str) – Value stored in memcache server for this key.

• flags (int (32 bits)) – If specified, the same value will be provided on get().

• exptime (int) – If non-zero, it specifies the expriation time, in seconds, for this value.

set(key, value, flags=0, exptime=0, cas_unique=None)
Set a key to the value in the memcache server.

Parameters

• key (str) – Key used to store value in memcache server and hashed to determine which
server is used.

• value (str) – Value stored in memcache server for this key.

• flags (int (32 bits)) – If specified, the same value will be provided on get().

• exptime (int) – If non-zero, it specifies the expriation time, in seconds, for this value.

1.9. Low-Level Memcache() Interface 17

python-memcached2 Documentation, Release 0.1

• cas_unique (int (64 bits)) – If specified as the 64-bit integer from get() with
cas_unique=True, the value is only stored if the value has not been updated since the
get() call.

stats()
Get general statistics about memcache servers.

Examples of the results of this function is available in the documentation as Memcache Statistics Examples

Note: An attempt is made to connect to all servers before issuing this command.

Returns

list – The statistics data is a dictionary of key/value pairs representing information about the
server.

This data is returned as a list of statistics, one item for each server. If the server is not
connected, None is returned for its position, otherwise data as mentioned above.

stats_items()
Get statistics about item storage per slab class from the memcache servers.

Examples of the results of this function is available in the documentation as Memcache Statistics Examples

Note: An attempt is made to connect to all servers before issuing this command.

Returns

list – The statistic information is a dictionary keyed by the “slab class”, with the value another
dictionary of key/value pairs representing the slab information.

This data is returned as a list of statistics, one item for each server. If the server is not
connected, None is returned for its position, otherwise data as mentioned above.

stats_settings()
Gets statistics about settings (primarily from processing command-line arguments).

Examples of the results of this function is available in the documentation as Memcache Statistics Examples

Note: An attempt is made to connect to all servers before issuing this command.

Returns

list – The statistic information is a dictionary of key/value pairs.

This data is returned as a list of statistics, one item for each server. If the server is not
connected, None is returned for its position, otherwise data as mentioned above.

stats_sizes()
Get statistics about object sizes.

Examples of the results of this function is available in the documentation as Memcache Statistics Examples

Warning: This operation locks the cache while it iterates over all objects. Returns a list of (size,count)
tuples received from the server.

Note: An attempt is made to connect to all servers before issuing this command.

18 Chapter 1. Documentation Index

python-memcached2 Documentation, Release 0.1

Returns

list – Each statistic is a dictionary of of size:count where the size is rounded up to 32-byte
ranges.

This data is returned as a list of statistics, one item for each server. If the server is not
connected, None is returned for its position, otherwise data as mentioned above.

stats_slabs()
Gets information about each of the slabs created during memcached runtime. Returns a dictionary of slab
IDs, each contains a dictionary of key/value pairs for that slab.

Examples of the results of this function is available in the documentation as Memcache Statistics Examples

Note: An attempt is made to connect to all servers before issuing this command.

Returns

list – The statistic information is a dictionary keyed by the “slab class”, with the value another
dictionary of key/value pairs representing statistic information about each of the slabs created
during the memcace runtime.

This data is returned as a list of statistics, one item for each server. If the server is not
connected, None is returned for its position, otherwise data as mentioned above.

touch(key, exptime)
Update the expiration time on an item.

Parameters

• key (str) – Key used to store value in memcache server and hashed to determine which
server is used.

• exptime (int) – If non-zero, it specifies the expriation time, in seconds, for this value.
Note that setting exptime=0 causes the item to not expire based on time.

Raises NotFound, NotImplementedError, NoAvailableServers

1.10 Low-Level ServerConnection() Interface

class memcached2.ServerConnection(uri)
Low-level communication with the memcached server.

Data should be passed in as strings, and that is converted to bytes for sending to the backend, encoded as ASCII,
if necessary. Data returned is likewise converted from bytes, also encoded as ASCII, if necessary.

This implments the connection to a server, sending messages and reading responses. This is largely intended to
be used by other modules in the memcached2 module such as Memcache() rather than directly by consumers.

Note that this class buffers data read from the server, so you should never read data directly from the underlying
socket, as it may confuse other software which uses this interface.

Parameters uri (str) – The URI of the backend server.

connect()
Connect to memcached server.

1.10. Low-Level ServerConnection() Interface 19

python-memcached2 Documentation, Release 0.1

If already connected, this function returns immmediately. Otherwise, the connection is reset and a connec-
tion is made to the backend.

Raises UnknownProtocol

consume_from_buffer(length)
Retrieve the specified number of bytes from the buffer.

Parameters length (int) – Number of bytes of data to consume from buffer.

Returns str – Data from buffer.

parse_uri()
Parse a server connection URI.

Parses the uri attribute of this object.

Currently, the only supported URI format is of the form:

•memcached://<hostname>[:port]/ – A TCP socket connection to the host, optionally on the specified
port. If port is not specified, port 11211 is used.

Returns dict – A dictionary with the key protocol and other protocol-specific keys. For mem-
cached protocol the keys include host, and port.

Raises InvalidURI

read_length(length)
Read the specified number of bytes.

Parameters length (int) – Number of bytes of data to read.

Returns str – Data read from socket. Converted from bytes (as read from backend) with ASCII
encoding, if necessary.

Raises ServerDisconnect

read_until(search=’\r\n’)
Read data from the server until “search” is found.

Data is read in blocks, any remaining data beyond search is held in a buffer to be consumed in
the future.

param search Read data from the server until search is found. This defaults to ‘

‘, so it acts like readline().

type search str

returns str – Data read, up to and including search. Converted from bytes (as read from
backend) with ASCII encoding, if necessary.

raises ServerDisconnect

reset()
Reset the connection.

Flushes buffered data and closes the backend connection.

send_command(command)
Write an ASCII command to the memcached server.

Parameters command (str) – Data that is sent to the server. This is converted to a bytes type
with ASCII encoding if necessary for sending across the socket.

20 Chapter 1. Documentation Index

python-memcached2 Documentation, Release 0.1

Raises ServerDisconnect

1.11 python-memcached2 Exceptions

1.11.1 Overview

The classes that throw exceptions all tend to raise exceptions that are children of the MemcachedException. For
storage-related exceptions, they are children of StoreException, and for retrieval they are children of RetrieveExcep-
tion.

If you use the exception-exposing interfaces (“Memcache()”), will need to catch these exceptions as part of your code.
They are thrown on exceptional conditions, read the description of the exceptions for details on when they may be
thrown.

In specific error cases that likely indicate bugs in the python-memcached2 module, or where the server replies with
unexpected data, the NotImplementedError is raised. These situations are extremely unusual and almost certainly
should be reported to the developers of either this python-memcached2 module or the developers of the memcached
server you are using. You probably don’t want to catch these

1.11.2 Exceptions

class memcached2.MemcachedException
Base exception that all other exceptions inherit from. This is never raised directly.

class memcached2.UnknownProtocol
An unknown protocol was specified in the memcached URI. Sublcass of MemcachedException.

class memcached2.InvalidURI
An error was encountered in parsing the server URI. Subclass of MemcachedException.

class memcached2.ServerDisconnect
The connection to the server closed. Subclass of MemcachedException.

class memcached2.NoAvailableServers
There are no servers available to cache on, probably because all are disconnected. This exception typically
occurs after the code which would do a reconnection is run. Subclass of MemcachedException.

class memcached2.StoreException
Base class for storage related exceptions. Never raised directly. Subclass of MemcachedException.

class memcached2.MultiStorageException(message=None, results={})
During a SET operation the server returned CLIENT_ERROR. This is probably due to too long of a key being
used. Subclass of StoreException.

class memcached2.NotStored
Item was not stored, but not due to an error. Normally means the condition for an “add” or “replace” was not
met.. Subclass of StoreException.

class memcached2.CASFailure
Item you are trying to store with a “cas” command has been modified since you last fetched it (result=EXISTS).
Subclass of StoreException.

class memcached2.CASRefreshFailure
When trying to refresh a CAS from the memcached, the retrieved value did not match the value sent with the
last update. This may happen if another process has updated the value. Subclass of CASFailure.

1.11. python-memcached2 Exceptions 21

python-memcached2 Documentation, Release 0.1

class memcached2.NotFound
Item you are trying to store with a “cas” command does not exist.. Subclass of StoreException.

class memcached2.NonNumeric
The item you are trying to incr/decr is not numeric.. Subclass of StoreException.

class memcached2.RetrieveException
Base class for retrieve related exceptions. This is never raised directly.. Subclass of MemcachedException.

class memcached2.NoValue
Server has no data associated with this key.. Subclass of RetrieveException.

22 Chapter 1. Documentation Index

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

23

python-memcached2 Documentation, Release 0.1

24 Chapter 2. Indices and tables

Python Module Index

m
memcached2, 21

25

python-memcached2 Documentation, Release 0.1

26 Python Module Index

Index

A
add() (memcached2.Memcache method), 16
append() (memcached2.Memcache method), 16

C
CASFailure (class in memcached2), 21
CASRefreshFailure (class in memcached2), 21
close() (memcached2.Memcache method), 16
connect() (memcached2.ServerConnection method), 19
consume_from_buffer() (memcached2.ServerConnection

method), 20

D
decr() (memcached2.Memcache method), 16
delete() (memcached2.ExceptionsAreMissesMemcache

method), 6
delete() (memcached2.Memcache method), 16

E
ExceptionsAreMissesMapping (class in memcached2), 7
ExceptionsAreMissesMemcache (class in memcached2),

5

F
flush_all() (memcached2.Memcache method), 16

G
get() (memcached2.ExceptionsAreMissesMemcache

method), 6
get() (memcached2.Memcache method), 16

H
hash() (memcached2.HasherBase method), 8
hash() (memcached2.HasherCMemcache method), 8
hash() (memcached2.HasherZero method), 8
HasherBase (class in memcached2), 7
HasherCMemcache (class in memcached2), 8
HasherZero (class in memcached2), 8

I
incr() (memcached2.Memcache method), 17
InvalidURI (class in memcached2), 21

M
Memcache (class in memcached2), 15
memcached2 (module), 21
MemcachedException (class in memcached2), 21
MultiStorageException (class in memcached2), 21

N
NoAvailableServers (class in memcached2), 21
NonNumeric (class in memcached2), 22
NotFound (class in memcached2), 21
NotStored (class in memcached2), 21
NoValue (class in memcached2), 22

P
parse_uri() (memcached2.ServerConnection method), 20
prepend() (memcached2.Memcache method), 17

R
read_length() (memcached2.ServerConnection method),

20
read_until() (memcached2.ServerConnection method), 20
replace() (memcached2.Memcache method), 17
reset() (memcached2.ServerConnection method), 20
RetrieveException (class in memcached2), 22

S
select() (memcached2.SelectorBase method), 8
select() (memcached2.SelectorConsistentHashing

method), 9
select() (memcached2.SelectorFirst method), 9
select() (memcached2.SelectorFractalSharding method),

9
select() (memcached2.SelectorRehashDownServers

method), 9
SelectorBase (class in memcached2), 8
SelectorConsistentHashing (class in memcached2), 9

27

python-memcached2 Documentation, Release 0.1

SelectorFirst (class in memcached2), 9
SelectorFractalSharding (class in memcached2), 9
SelectorRehashDownServers (class in memcached2), 9
send_command() (memcached2.ServerConnection

method), 20
ServerConnection (class in memcached2), 19
ServerDisconnect (class in memcached2), 21
set() (memcached2.ExceptionsAreMissesMemcache

method), 6
set() (memcached2.Memcache method), 17
set_multi() (memcached2.ExceptionsAreMissesMemcache

method), 6
stats() (memcached2.Memcache method), 18
stats_items() (memcached2.Memcache method), 18
stats_settings() (memcached2.Memcache method), 18
stats_sizes() (memcached2.Memcache method), 18
stats_slabs() (memcached2.Memcache method), 19
StoreException (class in memcached2), 21

T
touch() (memcached2.Memcache method), 19

U
UnknownProtocol (class in memcached2), 21

V
ValueDictionary (class in memcached2), 10
ValueSuperStr (class in memcached2), 10

28 Index

	Documentation Index
	What's New in python-memcached2
	Exception as Misses Mapping
	Exception as Misses Mapping
	Hasher Routines
	Selector Routines
	Reconnector Routines
	String-like Memcache Value Object
	Dictionary-like Memcache Value Object
	Low-Level Memcache() Interface
	Low-Level ServerConnection() Interface
	python-memcached2 Exceptions

	Indices and tables
	Python Module Index

