
python-measurement Documentation
Release 1.0

Adam Coddington

Jan 09, 2018

Contents

1 Creating your own Measure Class 3
1.1 Simple Measures . 3
1.2 Bi-dimensional Measures . 4

2 Installation 7

3 Measures 9
3.1 Area . 10
3.2 Distance . 10
3.3 Energy . 10
3.4 Speed . 11
3.5 Temperature . 11
3.6 Time . 12
3.7 Volume . 12
3.8 Weight . 12

4 Using Measurement Objects 13

5 Guessing Measurements 15

6 Indices and tables 17

i

ii

python-measurement Documentation, Release 1.0

Easily use and manipulate unit-aware measurement objects in Python.

django.contrib.gis.measure has these wonderful ‘Distance’ objects that can be used not only for storing a unit-aware
distance measurement, but also for converting between different units and adding/subtracting these objects from one
another.

This module not only provides those Distance and Area measurement objects (courtesy of Django), but also other
measurements including Weight, Volume, and Temperature.

Warning: Measurements are stored internally by converting them to a floating-point number of a (generally) rea-
sonable SI unit. Given that floating-point numbers are very slightly lossy, you should be aware of any inaccuracies
that this might cause.

TLDR: Do not use this in navigation algorithms guiding probes into the atmosphere of extraterrestrial worlds.

Contents:

Contents 1

https://travis-ci.org/coddingtonbear/python-measurement
https://github.com/django/django/blob/master/django/contrib/gis/measure.py
http://en.wikipedia.org/wiki/Mars_Climate_Orbiter

python-measurement Documentation, Release 1.0

2 Contents

CHAPTER 1

Creating your own Measure Class

You can create your own measures easily by subclassing either measurement.base.MeasureBase or
measurement.base.BidimensionalMeasure.

1.1 Simple Measures

If your measure is not a measure dependent upon another measure (e.g speed, distance/time) you can create new
measurement by creating a subclass of measurement.base.MeasureBase.

A simple example is Weight:

from measurement.base import MeasureBase

class Weight(MeasureBase):
STANDARD_UNIT = 'g'
UNITS = {

'g': 1.0,
'tonne': 1000000.0,
'oz': 28.3495,
'lb': 453.592,
'stone': 6350.29,
'short_ton': 907185.0,
'long_ton': 1016000.0,

}
ALIAS = {

'gram': 'g',
'ton': 'short_ton',
'metric tonne': 'tonne',
'metric ton': 'tonne',
'ounce': 'oz',
'pound': 'lb',
'short ton': 'short_ton',
'long ton': 'long_ton',

3

python-measurement Documentation, Release 1.0

}
SI_UNITS = ['g']

Important details:

• STANDARD_UNIT defines what unit will be used internally by the library for storing the value of this measure-
ment.

• UNITS provides a mapping relating a unit of your STANDRD_UNIT to any number of defined units. In the
example above, you will see that we’ve established 28.3495 g to be equal to 1 oz.

• ALIAS provides a list of aliases mapping keyword arguments to UNITS. these values are allowed to be used
as keyword arguments when either creating a new unit or guessing a measurement using measurement.
utils.guess.

• SI_UNITS provides a list of units that are SI Units. Units in this list will automatically have new units and
aliases created for each of the main SI magnitudes. In the above example, this causes the list of UNITS and
ALIAS es to be extended to include the following units (aliases): yg (yottagrams), zg (zeptograms), ag (at-
tograms), fg (femtograms), pg (picograms), ng (nanograms), ug (micrograms), mg (milligrams), kg (kilo-
grams), Mg (megagrams), Gg (gigagrams), Tg (teragrams), Pg (petagrams), Eg (exagrams), Zg (zetagrams),
Yg (yottagrams).

1.1.1 Using formula-based conversions

In some situations, your conversions between units may not be simple enough to be accomplished by using simple
conversions (e.g. temperature); for situations like that, you should use sympy to create expressions relating your
measure’s standard unit and the unit you’re defining:

from sympy import S, Symbol
from measurement.base import MeasureBase

class Temperature(MeasureBase):
SU = Symbol('kelvin')
STANDARD_UNIT = 'k'
UNITS = {

'c': SU - S(273.15),
'f': (SU - S(273.15)) * S('9/5') + 32,
'k': 1.0

}
ALIAS = {

'celsius': 'c',
'fahrenheit': 'f',
'kelvin': 'k',

}

Important details:

• See above ‘Important Details’ under Normal Measures.

• SU must define the symbol used in expressions relating your measure’s STANDARD_UNIT to the unit you’re
defining.

1.2 Bi-dimensional Measures

Some measures are really just compositions of two separate measures – Speed, being a measure of the amount of
distance covered over a unit of time, is one common example of such a measure.

4 Chapter 1. Creating your own Measure Class

python-measurement Documentation, Release 1.0

You can create such measures by subclassing measurement.base.BidimensionalMeasure.

from measurement.base import BidimensionalMeasure

from measurement.measures.distance import Distance
from measurement.measures.time import Time

class Speed(BidimensionalMeasure):
PRIMARY_DIMENSION = Distance
REFERENCE_DIMENSION = Time

ALIAS = {
'mph': 'mi__hr',
'kph': 'km__hr',

}

Important details:

• PRIMARY_DIMENSION is a class that measures the variable dimension of this measure. In the case of ‘miles-
per-hour’, this would be the ‘miles’ or ‘distance’ dimension of the measurement.

• REFERENCE_DIMENSION is a class that measures the unit (reference) dimension of the measure. In the case
of ‘miles-per-hour’, this would be the ‘hour’ or ‘time’ dimension of the measurement.

• ALIAS defines a list of convenient abbreviations for use either when creating or defining a new instance of
this measurement. In the above case, you can create an instance of speed like Speed(mph=10) (equiva-
lent to Speed(mile__hour=10)) or convert to an existing measurement (speed_measurement) into
one of the aliased measures by accessing the attribute named – speed_measurement.kph (equivalent to
speed_measurement.kilometer__hour).

Note: Although unit aliases defined in a bi-dimensional measurement’s ALIAS dictionary can be used either as
keyword arguments or as attributes used for conversion, unit aliases defined in simple measurements (those subclassing
measurement.base.MeasureBase) can be used only as keyword arguments.

1.2. Bi-dimensional Measures 5

python-measurement Documentation, Release 1.0

6 Chapter 1. Creating your own Measure Class

CHAPTER 2

Installation

You can either install from pip:

pip install measurement

or checkout and install the source from the github repository:

git clone https://github.com/coddingtonbear/python-measurement.git
cd python-measurement
python setup.py install

7

https://github.com/coddingtonbear/python-measurement/

python-measurement Documentation, Release 1.0

8 Chapter 2. Installation

CHAPTER 3

Measures

This application provides the following measures:

Note: Python has restrictions on what can be used as a method attribute; if you are not very familiar with python,
the below chart outlines which units can be used only when creating a new measurement object (‘Acceptable as
Arguments’) and which are acceptable for use either when creating a new measurement object, or for converting a
measurement object to a different unit (‘Acceptable as Arguments or Attributes’)

Units that are acceptable as arguments (like the distance measurement term km) can be used like:

>>> from measurement.measures import Distance
>>> distance = Distance(km=10)

or can be used for converting other measures into kilometers:

>>> from measurement.measures import Distance
>>> distance = Distance(mi=10).km

but units that are only acceptable as arguments (like the distance measurement term kilometer) can only be used to
create a measurement:

>>> from measurement.measures import Distance
>>> distance = Distance(kilometer=10)

You also might notice that some measures have arguments having spaces in their name marked as ‘Acceptable as
Arguments’; their primary use is for when using measurement.guess:

>>> from measurement.utils import guess
>>> unit = 'U.S. Foot'
>>> value = 10
>>> measurement = guess(value, unit)
>>> print measurement
10.0 U.S. Foot

9

python-measurement Documentation, Release 1.0

3.1 Area

• Acceptable as Arguments or Attributes: sq_Em, sq_Gm, sq_Mm, sq_Pm, sq_Tm, sq_Ym,
sq_Zm, sq_am, sq_british_chain_benoit, sq_british_chain_sears_truncated,
sq_british_chain_sears, sq_british_ft, sq_british_yd, sq_chain_benoit,
sq_chain_sears, sq_chain, sq_clarke_ft, sq_clarke_link, sq_cm, sq_dam, sq_dm,
sq_fathom, sq_fm, sq_ft, sq_german_m, sq_gold_coast_ft, sq_hm, sq_inch,
sq_indian_yd, sq_km, sq_link_benoit, sq_link_sears, sq_link, sq_m, sq_mi, sq_mm,
sq_nm_uk, sq_nm, sq_pm, sq_rod, sq_sears_yd, sq_survey_ft, sq_um, sq_yd, sq_ym, sq_zm

• Acceptable as Arguments: British chain (Benoit 1895 B), British chain (Sears
1922 truncated), British chain (Sears 1922), British foot (Sears 1922),
British foot, British yard (Sears 1922), British yard, Chain (Benoit), Chain
(Sears), Clarke's Foot, Clarke's link, Foot (International), German legal
metre, Gold Coast foot, Indian yard, Link (Benoit), Link (Sears), Nautical Mile
(UK), Nautical Mile, U.S. Foot, US survey foot, Yard (Indian), Yard (Sears),
attometer, attometre, centimeter, centimetre, decameter, decametre, decimeter,
decimetre, exameter, exametre, femtometer, femtometre, foot, gigameter, gigametre,
hectometer, hectometre, in, inches, kilometer, kilometre, megameter, megametre,
meter, metre, micrometer, micrometre, mile, millimeter, millimetre, nanometer,
nanometre, petameter, petametre, picometer, picometre, terameter, terametre, yard,
yoctometer, yoctometre, yottameter, yottametre, zeptometer, zeptometre, zetameter,
zetametre

3.2 Distance

• Acceptable as Arguments or Attributes: Em, Gm, Mm, Pm, Tm, Ym, Zm, am, british_chain_benoit,
british_chain_sears_truncated, british_chain_sears, british_ft, british_yd,
chain_benoit, chain_sears, chain, clarke_ft, clarke_link, cm, dam, dm, fathom, fm, ft,
german_m, gold_coast_ft, hm, inch, indian_yd, km, link_benoit, link_sears, link, m, mi,
mm, nm_uk, nm, pm, rod, sears_yd, survey_ft, um, yd, ym, zm

• Acceptable as Arguments: British chain (Benoit 1895 B), British chain (Sears
1922 truncated), British chain (Sears 1922), British foot (Sears 1922),
British foot, British yard (Sears 1922), British yard, Chain (Benoit), Chain
(Sears), Clarke's Foot, Clarke's link, Foot (International), German legal
metre, Gold Coast foot, Indian yard, Link (Benoit), Link (Sears), Nautical Mile
(UK), Nautical Mile, U.S. Foot, US survey foot, Yard (Indian), Yard (Sears),
attometer, attometre, centimeter, centimetre, decameter, decametre, decimeter,
decimetre, exameter, exametre, femtometer, femtometre, foot, gigameter, gigametre,
hectometer, hectometre, inches, kilometer, kilometre, megameter, megametre, meter,
metre, micrometer, micrometre, mile, millimeter, millimetre, nanometer, nanometre,
petameter, petametre, picometer, picometre, terameter, terametre, yard, yoctometer,
yoctometre, yottameter, yottametre, zeptometer, zeptometre, zetameter, zetametre

3.3 Energy

• Acceptable as Arguments or Attributes: C, EJ, Ec, GJ, Gc, J, MJ, Mc, PJ, Pc, TJ, Tc, YJ, Yc, ZJ, Zc, aJ,
ac, cJ, c, cc, dJ, daJ, dac, dc, fJ, fc, hJ, hc, kJ, kc, mJ, mc, nJ, nc, pJ, pc, uJ, uc, yJ, yc, zJ, zc

• Acceptable as Arguments: Calorie, attocalorie, attojoule, calorie, centicalorie,
centijoule, decacalorie, decajoule, decicalorie, decijoule, exacalorie, exajoule,

10 Chapter 3. Measures

python-measurement Documentation, Release 1.0

femtocalorie, femtojoule, gigacalorie, gigajoule, hectocalorie, hectojoule,
joule, kilocalorie, kilojoule, megacalorie, megajoule, microcalorie, microjoule,
millicalorie, millijoule, nanocalorie, nanojoule, petacalorie, petajoule,
picocalorie, picojoule, teracalorie, terajoule, yoctocalorie, yoctojoule,
yottacalorie, yottajoule, zeptocalorie, zeptojoule, zetacalorie, zetajoule

3.4 Speed

Note: This is a bi-dimensional measurement; bi-dimensional measures are created by finding an appropriate unit in
the measure’s primary measurement class, and an appropriate in the measure’s reference class, and using them as a
double-underscore-separated keyword argument (or, if converting to another unit, as an attribute).

For example, to create an object representing 24 miles-per hour:

>>> from measurement.measure import Speed
>>> my_speed = Speed(mile__hour=24)
>>> print my_speed
24.0 mi/hr
>>> print my_speed.km__hr
38.624256

• Primary Measurement: Distance

• Reference Measurement: Time

3.5 Temperature

• Acceptable as Arguments or Attributes: c, f, k

• Acceptable as Arguments: celsius, fahrenheit, kelvin

Warning: Be aware that, unlike other measures, the zero points of the Celsius and Farenheit scales are arbitrary
and non-zero.

If you attempt, for example, to calculate the average of a series of temperatures using sum, be sure to supply your
‘start’ (zero) value as zero Kelvin (read: absolute zero) rather than zero degrees Celsius (which is rather warm
comparatively):

>>> temperatures = [Temperature(c=10), Temperature(c=20)]
>>> average = sum(temperatures, Temperature(k=0)) / len(temperatures)
>>> print average # The value will be shown in Kelvin by default since that is the
→˓starting unit
288.15 k
>>> print average.c # But, you can easily get the Celsius value
15.0
>>> average.unit = 'c' # Or, make the measurement report its value in Celsius by
→˓default
>>> print average
15.0 c

3.4. Speed 11

python-measurement Documentation, Release 1.0

3.6 Time

• Acceptable as Arguments or Attributes: Esec, Gsec, Msec, Psec, Tsec, Ysec, Zsec, asec, csec,
dasec, day, dsec, fsec, hr, hsec, ksec, min, msec, nsec, psec, sec, usec, ysec, zsec

• Acceptable as Arguments: attosecond, centisecond, day, decasecond, decisecond,
exasecond, femtosecond, gigasecond, hectosecond, hour, kilosecond, megasecond,
microsecond, millisecond, minute, nanosecond, petasecond, picosecond, second,
terasecond, yoctosecond, yottasecond, zeptosecond, zetasecond

3.7 Volume

• Acceptable as Arguments or Attributes: El, Gl, Ml, Pl, Tl, Yl, Zl, al, cl, cubic_centimeter,
cubic_foot, cubic_inch, cubic_meter, dal, dl, fl, hl, imperial_g, imperial_oz,
imperial_pint, imperial_qt, imperial_tbsp, imperial_tsp, kl, l, ml, nl, pl, ul, us_cup,
us_g, us_oz, us_pint, us_qt, us_tbsp, us_tsp, yl, zl

• Acceptable as Arguments: Imperial Gram, Imperial Ounce, Imperial Pint, Imperial
Quart, Imperial Tablespoon, Imperial Teaspoon, US Cup, US Fluid Ounce, US
Gallon, US Ounce, US Pint, US Quart, US Tablespoon, US Teaspoon, attoliter,
attolitre, centiliter, centilitre, cubic centimeter, cubic foot, cubic inch,
cubic meter, decaliter, decalitre, deciliter, decilitre, exaliter, exalitre,
femtoliter, femtolitre, gigaliter, gigalitre, hectoliter, hectolitre, kiloliter,
kilolitre, liter, litre, megaliter, megalitre, microliter, microlitre, milliliter,
millilitre, nanoliter, nanolitre, petaliter, petalitre, picoliter, picolitre,
teraliter, teralitre, yoctoliter, yoctolitre, yottaliter, yottalitre, zeptoliter,
zeptolitre, zetaliter, zetalitre

3.8 Weight

• Acceptable as Arguments or Attributes: Eg, Gg, Mg, Pg, Tg, Yg, Zg, ag, cg, dag, dg, fg, g, hg, kg, lb,
long_ton, mg, ng, oz, pg, short_ton, stone, tonne, ug, yg, zg

• Acceptable as Arguments: attogram, centigram, decagram, decigram, exagram, femtogram,
gigagram, gram, hectogram, kilogram, long ton, mcg, megagram, metric ton, metric
tonne, microgram, milligram, nanogram, ounce, petagram, picogram, pound, short ton,
teragram, ton, yoctogram, yottagram, zeptogram, zetagram

12 Chapter 3. Measures

CHAPTER 4

Using Measurement Objects

You can import any of the above measures from measurement.measures and use it for easily handling measurements
like so:

>>> from measurement.measures import Weight
>>> w = Weight(lb=135) # Represents 135lbs
>>> print w
135.0 lb
>>> print w.kg
61.234919999999995

You can create a measurement unit using any compatible unit and can transform it into any compatible unit. See
Measures for information about which units are supported by which measures.

To access the raw integer value of a measurement in the unit it was defined in, you can use the ‘value’ property:

>>> print w.value
135.0

13

python-measurement Documentation, Release 1.0

14 Chapter 4. Using Measurement Objects

CHAPTER 5

Guessing Measurements

If you happen to be in a situation where you are processing a list of value/unit pairs (like you might find at the beginning
of a recipe), you can use the guess function to give you a measurement object.:

>>> from measurement.utils import guess
>>> m = guess(10, 'mg')
>>> print repr(m)
Weight(mg=10.0)

By default, this will check all built-in measures, and will return the first measure having an appropriate unit. You
may want to constrain the list of measures checked (or your own measurement classes, too) to make sure that your
measurement is not mis-guessed, and you can do that by specifying the measures keyword argument:

>>> from measurement.measures import Distance, Temperature, Volume
>>> m = guess(24, 'f', measures=[Distance, Volume, Temperature])
>>> print repr(m)
Temperature(f=24)

Warning: It is absolutely possible for this to misguess due to common measurement abbreviations overlapping
– for example, both Temperature and Energy accept the argument c for representing degrees celsius and calories
respectively. It is advisible that you constrain the list of measurements to check to ones that you would consider
appropriate for your input data.

If no match is found, a ValueError exception will be raised:

>>> m = guess(24, 'f', measures=[Distance, Volume])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "measurement/utils.py", line 61, in guess
', '.join([m.__name__ for m in measures])

ValueError: No valid measure found for 24 f; checked Distance, Volume

15

python-measurement Documentation, Release 1.0

16 Chapter 5. Guessing Measurements

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

	Creating your own Measure Class
	Simple Measures
	Bi-dimensional Measures

	Installation
	Measures
	Area
	Distance
	Energy
	Speed
	Temperature
	Time
	Volume
	Weight

	Using Measurement Objects
	Guessing Measurements
	Indices and tables

