
Kube Documentation
Release 0.10.0

Floris Bruynooghe

May 26, 2017

Contents

1 Quickstart 3
1.1 Cluster . 3
1.2 Views and Items . 4

2 Installation 7
2.1 Dependencies . 7

3 Concepts and Terminology 9
3.1 Kubernetes API concepts from 10,000 feet . 9
3.2 How Kube maps these concepts . 10
3.3 How Kube handles Kubernetes API versions . 11
3.4 Additional Terminology . 11

4 Clusters 15

5 Resource Views and Resource Items 17

6 Using Resource Labels 19

7 Using Resource Filters 21

8 Using Resource Watchers 23

9 Testing Kube 25

10 API Reference 27
10.1 Exceptions . 27
10.2 Cluster . 28
10.3 Resources Interface . 31
10.4 Resource Items Interface . 35
10.5 Nodes . 38
10.6 Namespaces . 40
10.7 ReplicaSets . 41
10.8 ReplicationControllers . 42
10.9 Daemonsets . 43
10.10 Deployments . 44
10.11 Pods . 44
10.12 Services . 48

i

10.13 Secrets . 49

11 Glossary 51

12 Indices and tables 53

Python Module Index 55

ii

Kube Documentation, Release 0.10.0

Kube is an opinionated, Python wrapper around the Kubernetes API that enables you to interact with and manage
your Kubernetes cluster. Kube’s primary design goal is to enable easy access to all features offered by the Kubernetes
API using the Python language, while hiding Kubernetes API peculiarities. The result is a consistent and easy to use
pythonic API.

Currently, Kube has the following capabilities:

• Major resources wrapped: Nodes, Namespaces, Pods, ReplicaSets, ReplicationControllers, Daemonsets, De-
ployments, Services, Secrets.

• Good labelling support, you can read and modify resource labels.

• Blocking and non-blocking support for the WATCH API.

• Low-level access to the Kubernetes API.

At the moment creating, deleting and modifying resources in general must be done via the low level access Kube
provides to the actual Kubernetes API however these features are in the process of being added.

Contents:

Contents 1

https://bitbucket.org/cobeio/kube
http://python.org
http://kubernetes.io
https://bitbucket.org/cobeio/kube
https://bitbucket.org/cobeio/kube

Kube Documentation, Release 0.10.0

2 Contents

CHAPTER 1

Quickstart

Before you start you need to make the Kubernetes API available via a proxy, this is the officially recommended method
to connect and the only one supported by kube. To do this, simply run kubectl proxy on the localhost and kube
will use that connection, for example:

$ kubectl proxy
Starting to serve on localhost:8001

When running your kube code in an actual Kubernetes cluster you can simply run the kubectl proxy in a container
in the same pod that your kube code is running in. Finally, if you haven’t already done so, refer to the Installation
chapter and install kube.

Cluster

The main entry point provided by kube is the kube.Cluster class. Creating an instance of this class is central to
gaining access to the objects inside your Kubernetes cluster. The kube.Cluster class assumes the default endpoint
used by kubectl proxy (i.e. http://localhost:8001/api/) so you can simply create an instance as
follows:

import kube

cluster = kube.Cluster()

However if you’re running your proxy at a non-default endpoint then you should instance your kube.Cluster class
using the url parameter as follows:

cluster = kube.Cluster(url='http://localhost:8080/api')

Pretty much all the ways in which you would want to interact with the Kubernetes API are supported by kube,
however a cluster provides a kube.APIServerProxy instance via the kube.Cluster.proxy attribute. This
provides low-level access to the Kubernetes cluster and can be useful to manage API objects, or access objects not yet
wrapped by kube.

3

http://kubernetes.io/docs/user-guide/accessing-the-cluster/

Kube Documentation, Release 0.10.0

Views and Items

kube has two important concepts: views and items. All API objects in Kubernetes have a kind, and views provide
access to Kubernetes resources whose kind ends in List e.g. PodList or NodeList. Items, on the other hand,
provide access to the individual resource items themselves, e.g. a Pod or a Node.

The kube.Cluster instance has appropriately named attributes representing the views that provide access to the
Kubernetes resources for that cluster. So for example, to fetch the ReplicaSet named auth-v3 in the default
namespace you can simply use code like this:

>>> rs = cluster.replicasets.fetch('auth-v3', namespace='default')
>>> assert rs.meta.name == 'auth-v3'
>>> assert rs.meta.namespace = 'default'
>>> assert rs.kind is kube.Kind.ReplicaSet

A view is also an iterator of all the resource items it provides access to. So for example, retrieving the names of all the
namespaces in your cluster can be done using a simple list comprehension:

>>> ns_names = [ns.meta.name for ns in cluster.namespaces]
>>> assert 'default' in ns_names

Note: Kubernetes versions all of its API objects. Whenever anything changes, the version for the resource is updated.
Resource items returned by kube views are snapshots of a resource item’s state at a certain version.

On that note, consider this:

>>> cluster = kube.Cluster()
>>> print([node.meta.version for node in cluster.nodes])
['6434482', '6434483', '6434481']
>>> # A bit later
...
>>> print([node.meta.version for node in cluster.nodes])
['6434485', '6434486', '6434484']

Note: This is just to show you that the metadata attribute carries the resource version and that it is updated when
the resource changes. However comparing versions is not very useful as they are opaque blobs. It is advised that you
compare resource items directly.

As you have probably noticed, all resource items have a meta attribute and the version of a resource item is kept
in meta.version. The meta attribute is an instance of the kube.ObjectMeta class and provides convenient
access to a Kubernetes resource item’s metadata. For example, it provides access to the labels defined for a resource
item:

>>> rs = cluster.replicasets.fetch('auth-v3', namespace='default')
>>> if 'mylabel' not in rs.meta.labels:
... curr_rs = rs.meta.labels.set('mylabel', 'value')
... assert curr_rs.meta.labels['mylabel'] == 'value'
... print(rs.meta.version)
... print(curr_rs.meta.version)
... assert rs != curr_rs
...
6530399
6530416

4 Chapter 1. Quickstart

Kube Documentation, Release 0.10.0

There are a few points to note from the above:

• The labels attribute, an instance of kube.ResourceLabels, behaves as a mapping. Both the keys and
values are strings. Note however that the mapping is immutable.

• To modify a resource item, kube will always require that you call a method.

• Any method which modifies a resource item will always return an instance of the newest revision of that resource
item (i.e. curr_rs).

Almost all resource items have a specification and status associated with them. The specification is a copy of the raw
data representing the resource, which for example, could be used to re-create it. The specification is accessible in raw
dict form using an item’s kube.ItemABC.spec() method.

The resource item’s status is exposed directly on appropriately named attributes. So for example:

>>> assert rs.spec()['replicas'] == rs.observed_replicas

That should be enough to get you going, but do read on. The remainder of this documentation describes kube
concepts and terminology in more detail, provides detailed information on using kube in its entirety and gives a full
API reference.

1.2. Views and Items 5

Kube Documentation, Release 0.10.0

6 Chapter 1. Quickstart

CHAPTER 2

Installation

Kube requires Python 3. The current release is published on PyPI and the easiest way to install it is to use pip as
follows:

$ pip install kube

Dependencies

The following libraries will be automatically installed from PyPI:

• requests >=2.5.0,<3.0.0

7

https://pypi.python.org/pypi/kube

Kube Documentation, Release 0.10.0

8 Chapter 2. Installation

CHAPTER 3

Concepts and Terminology

Kubernetes is a large and complex system and the API (and related APIs in the ecosystem) expose it in all of its
glory. Consequently the Kubernetes API can sometimes seem a bit confusing. Kube’s remit is to try and insulate the
developer from most of this complexity and provide a pythonic, intuitive interface to work with, while adhering to the
main Kubernetes API concepts. This chapter outlines these concepts, and in addition describes how and where kube
fits in. Throughout the documentation we will endeavour to consistently use the terminology defined here.

If you are interested in getting a deeper understanding of the concepts employed by the Kubernetes API (and we
strongly recommend that you do) then the Kubernetes API conventions document is a must read.

Kubernetes API concepts from 10,000 feet

Principally, the Kubernetes API defines the following terms:

• Kind: The name of a particular object schema (e.g. Node or Pod kinds that have different attributes and proper-
ties).

• Resource: A representation of a system entity, sent or retrieved as JSON via HTTP to the server. Resources are
represented as:

• Collections: A list of resources of the same type.

• Elements: An individual resource.

Resources typically deal in data of a particular kind. For example, the kind Pod (a kind of resource element) is exposed
as a pods resource (a resource collection with a kind of PodList) that allows end users to create, update, and delete
pods. Kubernetes maintains a convention that resource collection names are all lowercase and plural, whereas kinds
(that are the types of resource elements) are CamelCase and singular. Here are some resource kinds:

• Collections: e.g. PodList, ServiceList, NodeList

• Elements: e.g. Pod, Service, Node

Additionally, by convention the Kubernetes API makes a distinction between the specification of an object, and the
status of an object at the current time.

9

https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/devel/api-conventions.md
https://github.com/kubernetes/kubernetes/blob/release-1.2/docs/devel/api-conventions.md#spec-and-status

Kube Documentation, Release 0.10.0

The specification is a complete description of an object’s desired state, including configuration settings provided by
the user, default values expanded by the system, and properties initialized or otherwise changed after creation by other
ecosystem components (e.g., schedulers, auto-scalers), and is persisted in stable storage with the API object. If the
specification is deleted, the object will be purged from the system.

The status summarises the current state of the object in the system, and is usually persisted with the object by an
automated processes but may be generated on the fly.

When a new version of an object is POSTed or PUT, the specification is updated and available immediately. Over time
the system will work to bring the status into line with the specification. The system will drive toward the most recent
“spec” regardless of previous versions of that stanza.

In other words Kubernetes’ behavior is level-based rather than edge-based which enables robust behavior in the pres-
ence of missed intermediate state changes.

How Kube maps these concepts

Views and Items

kube maintains two important concepts that support the principle Kubernetes API concepts described above: views
and items. As discussed all API objects in Kubernetes have a kind, and views provide access to Kubernetes resources
whose kind ends in List e.g. PodList or NodeList. Note however that a kube View is not exactly the same as
a resource collection; resource collections on the K8s API carry metadata and are versioned, this detail is not exposed
in kube views.

Items, on the other hand, provide access to the individual resource items (elements) themselves, e.g. a Pod or a Node.

All kube views and items implement the abstract base classes kube.ViewABC and kube.ItemABC respectively,
relating to the Collections and Elements concepts prescribed by the Kubernetes API. Consequently, View and Item
instances that represent them all have a kind property. Additionally:

• As a minimum, Views have a:

• fetch method to get an Item.

• filter method to get a subset of the items in a resource collection.

• watch method to get an iterator that will provide access to watch events that represent updates to items belong-
ing to the view.

• As a minimum, Items have a:

• fetch method to get the latest version of an Item.

• spec method that represents the specification of the Item.

• meta property that provides access to an Item’s metadata.

• watch method to get an iterator that will provide access to any watch events that represent updates to the item.

• resource property that provides name of the Kubernetes API resource.

So as one can see, an Item’s specification is available via any Item instance’s spec method. An Item’s status however,
is represented by a selection attributes particular to the kind of Item. For example, in the case of a Pod, attributes like;
kube.PodItem.phase, kube.PodItem.start_time, kube.PodItem.message.

10 Chapter 3. Concepts and Terminology

Kube Documentation, Release 0.10.0

How Kube handles Kubernetes API versions

kube maintains a list of API base paths for present and past API versions for each resource type. When iterating over
items in a kube view, kube uses the most recent API version base path that is found to be available.

Additional Terminology

Cluster

A Kubernetes cluster is a set of physical or virtual machines and other infrastructure which runs containerised applica-
tions. You would normally interact with the apiserver running on the Kubernetes master node. This is represented
with kube‘s entry-point class kube.Cluster, an instance of which is used to access, among other things, Views
representing resource collections.

API object

The Kubernetes system is almost entirely controllable via the HTTP ReSTful API which provides the standard HTTP
methods to control the API objects using various HTTP verbs. We use the general term API object to refer to collec-
tions (Views) or an element (Item), that is any object which can be retrieved using HTTP GET and has a kind in the
returned JSON.

Object Metadata

The Kubernetes API exposes metadata for API Objects. This includes information like the namespace the object
resides in, its name, any labels set and their values, version, uid and when the object was created. kube carries much
of this information for Items but as discussed, however Views are not exactly the same as collections and only expose
properties for particular metadata items, e.g. namespace.

Global Views

Views come in two flavours: global views and views bound to a namespace. Instances of global views are directly
accessible from an attribute on a kube.Cluster instance. A global view will only contain all resource items of
a certain kind that exist in the cluster, regardless of the namespace they reside in. When using a view bound to a
namespace only the resource items residing in the given namespace are accessible.

Node

A Node is a worker machine in a Kubernetes Cluster. A Node may be a virtual or physical machine, depending on
the cluster. kube exposes a cluster’s NodeList resource via the kube.Cluster.nodes view. Each item in the
view is a kube.NodeItem instance.

Namespace

Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual clusters are called
namespaces. kube exposes a cluster’s NamespaceList resource via the kube.Cluster.namespaces view.
Each item in the view is a kube.NamespaceItem instance. Furthermore kube exposes an API object’s namespace

3.3. How Kube handles Kubernetes API versions 11

Kube Documentation, Release 0.10.0

(if defined) on an instance property. For Views this is on the namespace property, for Items this in on the meta.
namespace property.

Replication Controller

A ReplicationController ensures that a specified number of pod “replicas” are running at any one
time. In other words, a ReplicationController makes sure that a pod or homogeneous set of pods
are always up and available. If there are too many pods, it will kill some. If there are too few, the
ReplicationController will start more. Unlike manually created pods, the pods maintained by a Replication-
Controller are automatically replaced if they fail, get deleted, or are terminated. kube exposes a cluster’s
ReplicationControllerList resource via the Cluster.replicationcontrollers view. Each item
in the view is a kube.ReplicationControllerItem instance.

ReplicaSet

A ReplicaSet is the next-generation Replication Controller. The only difference between a ReplicaSet and a
Replication Controller is the selector support. kube only has views and items representing ReplicaSetLists
and ReplicaSet respectively. kube exposes a cluster’s ReplicaSetList resource via the Cluster.
replicasets view. Each item in the view is a kube.ReplicaSetItem instance.

Daemonset

A DaemonSet ensures that all (or some) nodes run a copy of a pod. As nodes are added to the cluster, pods are added
to them. As nodes are removed from the cluster, those pods are garbage collected. Deleting a DaemonSet will clean
up the pods it created. kube exposes a cluster’s DaemonSetList resource via the Cluster.daemonsets view.
Each item in the view is a kube.DaemonSetItem instance.

Deployment

A Deployment provides declarative updates for Pods and Replica Sets (the next-generation Replication Controller).
You only need to describe the desired state in a Deployment object, and the Deployment controller will change the
actual state to the desired state at a controlled rate for you. You can define Deployments to create new resources,
or replace existing ones by new ones. kube exposes a cluster’s DeploymentList resource via the Cluster.
deployments view. Each item in the view is a kube.DeploymentItem instance.

Pod

A Pod is the smallest deployable unit of computing that can be created and managed in Kubernetes. It is a group of
one or more containers (such as Docker containers), the shared storage for those containers, and options about how
to run them. Pods model an application-specific “logical host”. kube exposes a cluster’s PodList resource via the
Cluster.pods view. Each item in the view is a kube.PodItem instance.

Container

Containers (for example Docker Containers) are run-times that execute on a Node under the shared context of a Pod.
The Kubernetes API doesn’t represent containers directly as API Objects but indirectly through a Pod’s specification
and status. kube wraps a Pod’s container information up in the kube.PodItem.containers property which
provides a list of kube.Container instances that themselves have properties that are kube.ContainerState
instances for the current and last known container state.

12 Chapter 3. Concepts and Terminology

Kube Documentation, Release 0.10.0

Service

A Kubernetes Service is an abstraction which defines a logical set of fungible Pods and a policy by which to access
them. The set of Pods targeted by a Service is usually determined by a Label Selector. kube exposes a cluster’s
ServiceList resource via the kube.Cluster.services view. Each item in the view is a kube.ServiceItem
instance.

Secret

A Secret is an API object that contains a small amount of sensitive data such as a password, a token, or a key.
kube exposes a cluster’s SecretList resource via the kube.Cluster.secrets view. Each item in the view is a
kube.SecretItem instance.

Watching for changes

kube supports the Kubernetes API Watch capability. All Views and Items provided by kube have a watch method
that returns an iterator of kube.WatchEvent instances. Whenever one of the resources in a view changes, or a
watched Item changes, a kube.WatchEvent instance is yielded.

3.4. Additional Terminology 13

Kube Documentation, Release 0.10.0

14 Chapter 3. Concepts and Terminology

CHAPTER 4

Clusters

15

Kube Documentation, Release 0.10.0

16 Chapter 4. Clusters

CHAPTER 5

Resource Views and Resource Items

17

Kube Documentation, Release 0.10.0

18 Chapter 5. Resource Views and Resource Items

CHAPTER 6

Using Resource Labels

19

Kube Documentation, Release 0.10.0

20 Chapter 6. Using Resource Labels

CHAPTER 7

Using Resource Filters

21

Kube Documentation, Release 0.10.0

22 Chapter 7. Using Resource Filters

CHAPTER 8

Using Resource Watchers

23

Kube Documentation, Release 0.10.0

24 Chapter 8. Using Resource Watchers

CHAPTER 9

Testing Kube

25

Kube Documentation, Release 0.10.0

26 Chapter 9. Testing Kube

CHAPTER 10

API Reference

The full API documentation.

Exceptions

There are a number of common exceptions used.

exception kube.KubeError
The base class for all custom exceptions used by the the kube library.

exception kube.APIError
This is an exception which gets raised whenever there is a problem communicating with the Kubernetes API
server or if the server returns the wrong HTTP status code.

message
An optional custom message for the exception.

response
The requests.Response object of the failed API server communication.

status_code
The HTTP status code of the failed response from the API server. This is a shortcut to the status_code
attribute of the response object itself.

exception kube.StatusError
All resource items, represented by concrete instances of ItemABC, have a number of attributes which represent
the status of the resource item. Not all status items are always available depending on the state of the resource
item. If a status attribute is not available then this exception is used.

exception kube.NamespaceError
This represents the use of an invalid namespace. Some resources do not support namespaces, while others
require a namespace. If the namespace use was wrong this exception will be raised.

27

Kube Documentation, Release 0.10.0

Cluster

The cluster class is the global entry point to a Kubernetes API server. It holds some resources for the cluster it connects
to.

Mostly this provides access to the API objects via the ref:views present as attributes.

class kube.Cluster(url=’http://localhost:8001/’)
A Kubernetes cluster.

The entry point to control a Kubernetes cluster. There is only one connection mechanism, which is via a local
API server proxy. This is normally achieved by running kubectl proxy.

Parameters url (str) – The URL of the API server.

The default of the url parameter coincides with the defaults used by kubectl proxy so will usually be the
correct value.

The cluster instance can also be used as a context manager. When used like this close() will be called
automatically when the context manager exits.

proxy
A APIServerProxy instance for this cluster. This provides low-level access to the API server if you
need it.

nodes
A global NodeView instance providing convenient access to cluster nodes.

namespaces
A global NamespaceView instance providing convenient access to the namespaces present in the cluster.

replicasets
A global ReplicaSetView instance providing convenient access to all ReplicaSet objects present in
the cluster. This view is not bound to a particular namespace.

replicationcontrollers
A global ReplicationControllerView instance providing convenient access to all Replication-
Controller objects present in the cluster. This view is not bound to a particular namespace.

daemonsets
A global DaemonSetView instance providing convenient access to all DaemonSet objects present in the
cluster. This view is not bound to a particular namespace.

deployments
A global DeploymentView instance providing convenient access to all Deployment objects present in
the cluster. This view is not bound to a particular namespace.

pods
A global PodView instance providing convenient access to all Pod objects present in the cluster. This
view is not bound to a particular namespace.

services
A global ServiceView instance providing convenient access to all Service objects present in the cluster.
This view is not bound to a particular namespace.

secrets
A global SecretView instance providing convenient access to all Secret objects present in the cluster.
This view is not bound to a particular namespace.

close()
Close and clean up underlying resources.

28 Chapter 10. API Reference

Kube Documentation, Release 0.10.0

create(data, namespace=None)
Create a new resource item.

Parameters

• data (dict) – The specification to create the resource from, this must include the
apiVersion, kind, metadata and spec fields. It is usually simply the de-serialised
YAML but allows you to insert template processing if you require so.

• namespace (str) – Create the resource item in the given namespace. If the spec
includes a namespace this namespace must match or an exception will be raised.

Returns The newly created item.

Return type A kube.ViewABC instance of the right type according to the kind of resource
item created based on the data in the spec.

Raises

• kube.APIError – For errors from the k8s API server.

• kube.KubeError – If the spec is incomplete or the kind is unknown.

classmethod kindimpl(kind)
Return the class which implements the resource kind.

Parameters kind (kube.Kind) – The kube.Kind instance.

Returns A class implementing either kube.ViewABC or kube.ItemABC depending on the
kind.

Raises ValueError – If the kind is not known.

APIServerProxy

This provides low-level access to the Kubernetes cluster. It can be useful to interact with API objects not yet wrapped
by the library.

class kube.APIServerProxy(base_url=’http://localhost:8001/’)
Helper class to directly communicate with the API server.

Since most classes need to communicate with the Kubernetes cluster’s API server in a common way, this class
helps take care of the common logic. It also keeps the requests session alive to enable connection pooling to the
API server.

Parameters base_url (str) – The URL of the API, not including the API version.

Most methods take a variable-length path argument which is used to make up the URL queried. These parts are
joined together and attached to the base URL configured on the class (e.g. http://localhost:8001/)
using the urljoin() method. Thus, to query a namespace at http://localhost:8001/api/v1/
namespaces/default, you would use ['api/v1', 'namespace', 'default'] as path. Like-
wise, ['api/v1', 'namespace', 'default', 'pods', 'foo'] as path would result in a query
to http://localhost:8001/api/v1/namespaces/default/pods/foo.

It is also possible to use the full URL path instead as a single argument. This is useful when using the selfLink
metadata from an API object. So using ['/api/v1/namespaces/default'] as path would also result
in a URL of http://localhost:8001/api/v1/namespaces/default.

close()
Close underlying connections.

Once the proxy has been closed then the it can no longer be used to issue further requests.

10.2. Cluster 29

Kube Documentation, Release 0.10.0

delete(*path, json=None, **params)
HTTP DELETE to the relative path on the API server.

Parameters

• path (str) – Individual relative path components, they will be joined using
urljoin().

• json (collections.abc.Mapping) – The body, which will be JSON-encoded be-
fore posting.

• params (str) – Extra query parameters for the URL of the DELETE request.

Returns The decoded JSON data.

Return type pyrsistent.PMap

Raises kube.APIError – If the response status is not 200 OK.

get(*path, **params)
HTTP GET the path from the API server.

Parameters

• path (str) – Individual API path components, they will be joined using “/”. None of the
path components should include a “/” separator themselves, other than the first component,
the API path, which may.

• params (dict) – Extra query parameters for the URL of the GET request as a dictionary
of strings.

Returns The decoded JSON data.

Return type pyrsistent.PMap

Raises kube.APIError – If the response status is not 200 OK.

patch(*path, patch=None)
HTTP PATCH as application/strategic-merge-patch+json.

This allows using the Strategic Merge Patch to patch a resource on the Kubernetes API server.

Parameters

• path (str) – Individual relative path components, they will be joined using “/”. None
of the path components should include a “/” separator themselves, other than the first
component, the API path, which may - unless you only provide one component, which will
be joined to the base URL using urllib.parse.urljoin(). This case can be useful
to use the links provided by the API itself directly, e.g. from a resource’s metadata.
selfLink field.

• patch (dict) – The decoded JSON object with the patch data.

Returns The decoded JSON object of the resource after applying the patch.

Raises APIError – If the response status is not 200 OK.

post(*path, json=None, **params)
HTTP POST to the relative path on the API server.

Parameters

• path (str) – Individual relative path components, they will be joined using
urljoin().

30 Chapter 10. API Reference

Kube Documentation, Release 0.10.0

• json (collections.abc.Mapping) – The body to post, which will be JSON-
encoded before posting.

• params (str) – Extra query parameters for the URL of the POST request.

Returns The decoded JSON data.

Return type pyrsistent.PMap

Raises kube.APIError – If the response status is not 201 Created.

urljoin(*path)
Wrapper around urllib.parse.urljoin for the configured base URL.

Parameters path – Individual relative path components, they will be joined using “/”. None of
the path components should include a “/” separator themselves, other than the first compo-
nent, the API path, which may.

watch(*path, version=None, fields=None)
Watch a list resource for events.

This issues a request to the API with the watch query string parameter set to true which returns a
chunked response. An iterator is returned which continuously reads from the response, yielding received
lines as bytes.

Parameters

• path – The URL path to the resource to watch. See urljoin().

• version (str) – The resource version to start watching from.

• fields (dict) – A dict of fields which must match their values. This is a limited form
of the full fieldSelector format, it is limited because filtering is done at client side for
consistency.

Returns An special iterator which allows non-blocking iterating using a .next(timeout)
method. Using it as a normal iterator will result in blocking behaviour.

Return type kube._watch.JSONWatcher.

Raises APIError – If there is a problem with the API server.

Resources Interface

ViewABC

Views are central to how the kube API works and are how you get hold of resource items. They give you a view into
the resource items part which are part of the resource. Views are implemented in concrete classes for each resource
type which is wrapped by kube. The view API presented in this abstract base class which all the concrete views have
to implement and provides a consistent API.

Currently views come in two flavours: global views and views bound to a namespace. Instances of global views are
directly accessible from attributes on the Cluster instance. When using a global view it will contain all resource
items of a certain kind which exist in the cluster, regardless of the namespace they reside in. When using a view bound
to a namespace only the resource items residing in the given namespace are accessible.

class kube.ViewABC(cluster, namespace=None)
Represents a view to a collection of resources.

All top-level resources in Kubernetes have a collection, resources of a *List kind, with some common func-
tionality. This ABC defines views to provide access to resources in collections in a uniform way. Note that a

10.3. Resources Interface 31

Kube Documentation, Release 0.10.0

view is not the same as the collection resource, e.g. collections resources have some metadata associated with
them and exist at a particular point in time, they have a metadata.resourceVersion, which views do not have.

It is always possible to create an instance of this without needing to do any requests to the real Kubernetes
cluster.

Parameters

• cluster (kube.Cluster) – The cluster this resource list is part of.

• namespace (str) – The optional namespace this resource list is part of. If the resource list
is not part of a namespace this will be None which means it will be a view to all resources
of a certain type, regardless of their namespace.

Raises kube.NamespaceError – When a namespace is provided but the resource does not sup-
port one.

api_paths
The list of possible Kubernetes API version base paths for resource.

This is a list of the API base path string for each of the existing API versions that could be used in the
construction of the API endpoint for a resource, if available. For example, ['api/v1', '/apis/
extensions/v1beta1']. They are listed in reverse chronological order, the most recent API version
appearing first. kube uses the list to establish and use the most recent API version available.

cluster
The kube.Cluster instance this resource is bound to.

fetch(name, namespace=None)
Retrieve the current version of a single resource item by name.

If the view itself is associated with a namespace, self.namespace is not None, then this
will default to fetching the resource item from this namespace. If the view is not associated with
a namespace, self.namespace is None, and the resource requires a namespace then a kube.
NamespaceError is raised. Note that the default namespace is not automatically used in this case.

Parameters

• name (str) – The name of the resource.

• namespace (str) – The namespace to fetch the resource from.

Returns A single instance representing the resource.

Raises

• LookupError – If the resource does not exist.

• kube.NamespaceError – For an invalid namespace, either because the namespace is
required for this resource but not provided or the resource does not support namespaces
and one was provided.

• kube.APIError – For errors from the k8s API server.

filter(*, labels=None, fields=None)
Return an iterable of a subset of the resources.

Parameters

• labels (dict or str) – A label selector expression. This can either be a dictionary
with labels which must match exactly, or a string label expression as understood by k8s
itself.

• fields (dict or str) – A field selector expression. This can either be a dictionary
with fields which must match exactly, or a string field selector as understood by k8s itself.

32 Chapter 10. API Reference

Kube Documentation, Release 0.10.0

Returns An iterator of kube.ItemABC instances of the correct type for the resrouce which
match the given selector.

Raises

• ValueError – If an empty selector is used. An empty selector is almost certainly not
what you want. Kubernetes treats an empty selector as all items and treats a null selector
as no items.

• kube.APIError – For errors from the k8s API server.

kind
The kind of the underlying Kubernetes resource.

This is a kube.Kind enum.

This should be implemented as a static attribute since it needs to be available on the class as well as on the
instance.

namespace
The optional namespace this view is bound to.

If the view is not bound to a namespace this will be None, including for resources which do not support
namespaces.

resource
The name of the Kubernetes API resource.

The resource name is used in the construction of the API endpoint, e.g. for the API endpoint /
namespaces/default/pods/ the resource name is pods. The resource name is identical for both
the resource as well as the resource item, e.g. both objects with PodList and Pod as kind will have a
resource name of pods.

This should be implemented as a static attribute since it needs to be available on the class as well as on the
instance.

watch()
Watch for changes to any of the resources in the view.

Whenever one of the resources in the view changes a new kube.WatchEvent instance is yielded. You
can currently not control from “when” resources are being watched, other then from “now”. So be aware
of any race conditions with watching.

Returns An iterator of kube.WatchEvent instances.

Raises

• kube.NamespaceError – Whe the namespace no longer exists.

• kube.APIError – For errors from the k8s API server.

ResourceWatcher

A ResourceWatcher is used to watch resources and resource items. It should never be created directly but is
instead returned by the ViewABC.watch() and ItemABC.watch() methods.

This class is also a context manager as it holds open active socket connections to the API server. On exiting the context
manager the connections are closed. Typical usage would be:

cluster = kube.Cluster()
with cluster.pods.watch() as watcher:

10.3. Resources Interface 33

Kube Documentation, Release 0.10.0

for event in watcher:
print(event)

class kube.ResourceWatcher(cluster, jsonwatcher, itemcls)
Watcher for a resource.

This is an iterator yielding watch events in either a blocking or non-blocking way, for non-blocking use .
next(timeout=0). It uses a JSONWatcher instance for retrieving the actual events, which must be con-
figured correctly to return events for the same resource as this watcher is for.

Parameters

• cluster (kube.Cluster) – The cluster instance.

• jsonwatcher (JSONWatcher) – A correctly configured watcher instance which yields
the decoded JSON objects.

• itemcls (A callable, usually a class.) – A constructor for the resource item
being watched.

close()
Close the iterator and release it’s resources.

This releases the underlying socket.

next(*, timeout=None)
Return the next watch event.

Parameters timeout (int or float) – The maximum time to wait for a new event. Not
specifying this will block forever until a new event arrives, otherwise a TimeoutError is
raised if no new event was received in time.

Raises TimeoutError – When no new event is available after the specified timeout.

WatchEvent

The namedtuple yielded by a ResourceWatcher.

class kube.WatchEvent
Events returned by the ResourceWatcher iterator, this is a namedtuple with the following fields:

evtype [field 0]
The first field of the tuple, representing the type of event, a kube.WatchEventType enum instance.

item [field 1]
The second field of the tuple, representing the API object itself. This will be a concrete instance of
ItemABC.

MODIFIED
Shortcut to kube.WatchEventType.MODIFIED.

ADDED
Shortcut to kube.WatchEventType.ADDED.

DELETED
Shortcut to kube.WatchEventType.DELETED.

ERROR
Shortcut to kube.WatchEventType.ERROR.

34 Chapter 10. API Reference

Kube Documentation, Release 0.10.0

WatchEventType

The types of watch events as an enum.

class kube.WatchEventType

MODIFIED

ADDED

DELETED

ERROR

Resource Items Interface

ItemABC

Individual resource items are always represented by a class implementing the ItemABC interface. Like with views
each resource item is implemented in it’s own concrete class but the abstract base class gives a consistent API.

Instances of an item represent the state of that resource item as a snaphot in time. All API objects in a Kubernetes
cluster have a resource version associated with them and this particular version is what is represented by an item
instance and thus an item instance is immutable. Items can and do implement methods which change the state of the
resource item, in these cases a new instance of the item is returned by the method, representing the resource item in
the state after the mutations have happened.

class kube.ItemABC(cluster, raw)
Representation for a kubernetes resource.

This is the interface all resource items must implement.

Parameters

• cluster (kube.Cluster) – The cluster this resource is bound to.

• raw (dict) – The decoded JSON representing the resource.

api_paths
The list of possible Kubernetes API version base paths for resource.

This is a list of the API base path string for each of the existing API versions that could be used in the
construction of the API endpoint for a resource, if available. For example, ['api/v1', '/apis/
extensions/v1beta1']. They are listed in reverse chronological order, the most recent API version
appearing first. kube uses the list to establish and use the most recent API version available.

cluster
The kube.Cluster instance this resource is bound to.

delete()
Delete the resource item.

Return type None

Raises APIError – For errors from the k8s API server.

fetch()
Fetch the current version of the resource item.

10.4. Resource Items Interface 35

Kube Documentation, Release 0.10.0

This will return a new instance of the current resource item at it’s latest version. This is useful to see any
changes made to the object since it was last retrieved.

Returns An instance of the relevant ItemABC subclass.

Raises kube.APIError – For errors from the k8s API server.

kind
The Kubernetes resource kind of the resource.

This is a kube.Kind enum.

This should be implemented as a static attribute since it needs to be available on the class as well as on the
instance.

meta
The resource’s metadata as a kube.ObjectMeta instance.

raw
The raw decoded JSON representing the resource.

This behaves like a dict but is actually an immutable view of the dict.

resource
The name of the Kubernetes API resource.

The resource name is used in the construction of the API endpoint, e.g. for the API endpoint /
namespaces/default/pods/ the resource name is pods. The resource name is identical for both
the resource as well as the resource item, e.g. both objects with PodList and Pod as kind will have a
resource name of pods.

This should be implemented as a static attribute since it needs to be available on the class as well as on the
instance.

spec()
The spec of this node’s resource.

This returns a copy of the raw, decoded JSON data representing the spec of this resource which can be
used to re-create the resource.

watch()
Watch the resource item for changes.

Only changes after the current version will be part of the iterator. However it can not be guaranteed that
every change is returned, if the current version is rather old some changes might no longer be available.

Returns An iterator of kube.WatchEvents instances for the resource item.

Raises kube.APIError – For errors from the k8s API server.

Kind

All API Objects in Kubernetes have a kind. The kind is represented as an enum instance where both the associated
name and value matches the string used to describe the kind on the Kubernetes JSON API.

class kube.Kind

DaemonSet

DaemonSetList

Deployment

36 Chapter 10. API Reference

Kube Documentation, Release 0.10.0

DeploymentList

Node

NodeList

Namespace

NamespaceList

Pod

PodList

ReplicaSet

ReplicaSetList

ReplicationController

ReplicationControllerList

Service

ServiceList

Secret

SecretList

ObjectMeta

Each instance of a concrete ItemABC class represents the metadata of the resource item in a kube.ItemABC.meta
attribute. This attribute is always an instance of this ObjectMeta class to provide convenient access to the metadata.
You would not normally create an instance manually.

class kube.ObjectMeta(resource)
Common metadata for API objects.

Parameters resource (kube._base.ItemABC) – The object representing the Kubernetes re-
source which this metadata describes.

created
The created timestamp as a datetime.datetime instance.

labels
The labels as a ResourceLabels instance.

link
A link to the resource itself.

This is currently an absolute URL without the hostname, but you don’t have to care about that. The
kube.APIServerProxy will be just fine with it as it’s path argument.

name
The name of the object.

namespace
Namespace the object resides in, or None.

uid
The Universal ID of the item.

This is unique for this resource kind.

10.4. Resource Items Interface 37

Kube Documentation, Release 0.10.0

version
The opaque resource version.

ResourceLabels

This class is a collections.abc.Mapping of the labels applied to a resource item. It is not created manually
but instead accessed via the ObjectMeta class.

Manipulation of the labels is supported using explicit method calls.

class kube.ResourceLabels(resource)
The labels applied to an API resource item.

This allows introspecting the labels as a normal mapping and provides a few methods to directly manipulate the
labels on the resource item.

delete(key)
Delete a label.

This will remove the label for a given key from the resource.

Returns A new instance of the resource.

Raises kube.APIError – If there is a problem with the API server.

set(key, value)
Set a (new) label.

This will set or update the label’s value on the resource.

Returns A new instance of the resource.

Raises kube.APIError – If there is a problem with the API server.

Nodes

NodeView

class kube.NodeView(cluster, namespace=None)
View of all the Node resource items in the cluster.

Parameters

• cluster (kube.Cluster) – The cluster instance.

• namespace (NoneType) – Limit the view to resource items in this namespace. This is
here for the kube.ViewABC compatibility but can not be used for the NodeList resource.
A kube.NamespaceError is raised when this is not None.

Raises kube.NamespaceError – If instantiated using a namespace.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

• cluster – The kube.Cluster instance.

38 Chapter 10. API Reference

Kube Documentation, Release 0.10.0

fetch(name, namespace=None)
Retrieve an individual node by name.

This returns the current verison of the resource item.

Parameters

• name (str) – The name of the node to retrieve.

• namespace (str) – Must be None or a kube.NamespaceError is raised. Here only
for compatibility with the ABC.

Returns A single kube.NodeItem instance.

Raises

• LookupError – If the node does not exist.

• kube.APIError – For errors from the k8s API server.

• kube.NamespaceError – If a namespace is used.

NodeItem

class kube.NodeItem(cluster, raw)
A node in the Kubernetes cluster.

See http://kubernetes.io/docs/admin/node/ for details.

Parameters

• cluster (kube.Cluster) – The cluster this node belongs to.

• raw (pyrsistent.PMap) – The raw data of the resource item.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

addresses
An iterator of the addresses for this node.

Each address is a namedtuple with (type, addr) as fields. Known types are in the kube.
AddressType enumeration.

An empty list is returned if there are not yet any addresses associated with the node.

According to the K8s API spec (and K8s code) the node address array may contain addresses of the types
defined by kube.AddressType. The Hostname address type, while unlikely, may present itself for
certain cloud providers and will contain a hostname string, not an IP address.

capacity
The capacity of the node.

CPU is expressed in cores and can use fractions of cores, while memory is expressed in bytes.

conditions
List of conditions.

10.5. Nodes 39

http://kubernetes.io/docs/admin/node/

Kube Documentation, Release 0.10.0

Namespaces

NamespaceView

class kube.NamespaceView(cluster, namespace=None)
View of all the Namespace resource items in the cluster.

Parameters

• cluster (kube.Cluster) – The cluster instance.

• namespace (NoneType) – Limit the view to resource items in this namespace. This is
here for the kube.ViewABC compatibility, namespaces can not be used for the Names-
paceList resource. A kube.NamespaceError is raised when this is not None.

Raises kube.NamespaceError – If instantiated using a namespace.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

fetch(name, namespace=None)
Retrieve an individual Namespace resource item by name.

This returns the current version of the resource item.

Parameters

• name (str) – The name of the namespace resource item to retrieve.

• namespace (str) – Must be None or a kube.NamespaceError is raised. Here only
for compatibility with the ABC.

Returns A kube.NamespaceItem instance.

Raises

• LookupError – If the namespace does not exist.

• kube.APIError – For errors from the k8s API server.

• kube.NamespaceError – If a namespace is used.

NamespaceItem

class kube.NamespaceItem(cluster, raw)
A namespace in the Kubernetes cluster.

See http://kubernetes.io/docs/admin/namespaces/ for details.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

• NamespacePhase – Convenience alias of NamespacePhase.

class NamespacePhase
Enumeration of all possible namespace phases.

This is aliased to NamespaceResource.NamespacePhase for convenience.

40 Chapter 10. API Reference

http://kubernetes.io/docs/admin/namespaces/

Kube Documentation, Release 0.10.0

NamespaceItem.delete()
Delete the namespace resource item.

For Namespace deletion K8s may have some work to do and could return a 409 (Conflict) instead of a 404
(Not Found) when a subsequent delete call occurs while status is trying to catch up with spec. We hide this
idiosyncrasy from the kube user.

Return type None

Raises APIError – For errors from the k8s API server.

NamespaceItem.phase
Phase of the namespace as a kube.NamespacePhase.

ReplicaSets

ReplicaSetView

class kube.ReplicaSetView(cluster, namespace=None)
View of the ReplicaSet resource items in the cluster.

Parameters

• cluster (kube.Cluster) – The cluster instance.

• namespace (str) – Limit the view to resource items in this namespace.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

ReplicaSetItem

class kube.ReplicaSetItem(cluster, raw)
A ReplicaSet in the Kubernetes cluster.

A ReplicaSet, formerly known as a ReplicationController, is responsible for keeping a desired number of pods
running.

Parameters

• cluster (kube.Cluster) – The cluster this ReplicaSet exists in.

• raw (pyrsistent.PMap) – The raw data of the resource item.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

available_replicas
The number of available replicas (ready for at least minReadySeconds) for the ReplicaSet.

fully_labeled_replicas
Number of pods which have an exact matching set of labels.

This counts the pods which have the exact same set of labels as the labelselector of this replicaset.

10.7. ReplicaSets 41

Kube Documentation, Release 0.10.0

observed_generation
The (integer) generation of the ReplicaSet.

observed_replicas
The current number of replicas observed.

ready_replicas
The number of ready replicas for the ReplicaSet.

ReplicationControllers

ReplicationControllerView

class kube.ReplicationControllerView(cluster, namespace=None)
View of the Replication Controller resource items in the cluster.

Parameters

• cluster (kube.Cluster) – The cluster instance.

• namespace (str) – Limit the view to resource items in this namespace.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

ReplicationControllerItem

class kube.ReplicationControllerItem(cluster, raw)
A Replication Controller in the Kubernetes cluster.

A ReplicationController, is responsible for keeping a desired number of pods running.

Parameters

• cluster (kube.Cluster) – The cluster this Replication Controller exists in.

• raw (pyrsistent.PMap) – The raw data of the resource item.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

available_replicas
The number of available replicas (ready for at least minReadySeconds) for the ReplicaSet.

fully_labeled_replicas
Number of pods which have an exact matching set of labels.

This counts the pods which have the exact same set of labels as the labelselector of this replication con-
troller.

observed_generation
The (integer) generation of the ReplicaSet.

observed_replicas
The current number of replicas observed.

42 Chapter 10. API Reference

Kube Documentation, Release 0.10.0

ready_replicas
The number of ready replicas for the ReplicaSet.

Daemonsets

DaemonsetView

class kube.DaemonSetView(cluster, namespace=None)
View of the DaemonSet resource items in the cluster.

Parameters

• cluster (kube.Cluster) – The cluster instance.

• namespace (str) – Limit the view to resource items in this namespace.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

DaemonsetItem

class kube.DaemonSetItem(cluster, raw)
A DaemonSet in the Kubernetes cluster.

A Daemon Set ensures that all (or some) nodes run a copy of a pod.

Parameters

• cluster (kube.Cluster) – The cluster this DaemonSet exists in.

• raw (pyrsistent.PMap) – The raw data of the resource item.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

current_number_scheduled
The number of nodes that are running at least 1 daemon pod.

The count is of those nodes that are running at least one daemon pod and that are supposed to run the
daemon pod.

desired_number_scheduled
The total number of nodes that should be running the daemon pod.

This includes nodes correctly running the daemon pod.

number_misscheduled
Number of nodes running the daemon pod, but not supposed to be.

number_ready
The number of nodes that have one or more of the daemon pod ready.

Nodes counted are those that should be running the daemon pod and have one or more of the daemon pod
running and ready.

10.9. Daemonsets 43

Kube Documentation, Release 0.10.0

Deployments

DeploymentView

class kube.DeploymentView(cluster, namespace=None)
View of the Deployment resource items in the cluster.

Parameters

• cluster (kube.Cluster) – The cluster instance.

• namespace (str) – Limit the view to resource items in this namespace.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

DeploymentItem

class kube.DeploymentItem(cluster, raw)
A Deployment in the Kubernetes cluster.

A Deployment provides declarative updates for Pods and Replica Sets.

Parameters

• cluster (kube.Cluster) – The cluster this Deployment exists in.

• raw (pyrsistent.PMap) – The raw data of the resource item.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

available_replicas
Number of available pods ready for at least minReadySeconds.

observed_generation
The (integer) generation of the Deployment.

observed_replicas
Total number of non-terminated pods targeted by this deployment.

unavailable_replicas
Total number of unavailable pods targeted by this deployment.

updated_replicas
Nr. of non-terminated pods targeted with desired template spec.

Pods

PodView

class kube.PodView(cluster, namespace=None)
View of the Pod resource items in the cluster.

44 Chapter 10. API Reference

Kube Documentation, Release 0.10.0

Parameters

• cluster (kube.Cluster) – The cluster instance.

• namespace (str) – Limit the view to resource items in this namespace.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

PodItem

class kube.PodItem(cluster, raw)
A pod in the Kubernetes cluster.

Each pod contains a number of containers and volumes which are executed on a node within the cluster. A pod
may exist in a namespace. Pods are typically managed by a controller such as a replication controller or job.

Parameters

• cluster (kube.Cluster) – The cluster this pod exists in.

• raw (pyrsistent.PMap) – The raw data of the resource item.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

• PodPhase – Convenience alias of PodPhase.

class PodPhase
Enumeration of all possible pod phases.

This is aliased to Pod.PodPhase for convenience.

PodItem.containers
Iterate over all Container instances in the pod.

PodItem.host_ip
IP address of the pod’s host within the cluster.

This may be as a ipaddress.IPv4Address or a ipaddress.IPv6Address.

Raises kube.StatusError – If this status item is not present.

PodItem.ip
IP address of the pod within the cluster.

This may be as a ipaddress.IPv4Address or a ipaddress.IPV6Address.

Raises kube.StatusError – If this status item is not present.

PodItem.message
Human readable message explaining the pod’s state.

Raises kube.StatusError – If this status item is not present.

PodItem.phase
Phase of the pod as a kube.PodPhase.

Raises kube.StatusError – If this status item is not present.

10.11. Pods 45

Kube Documentation, Release 0.10.0

PodItem.reason
PascalCase string explaining the pod’s state.

Raises kube.StatusError – If this status item is not present.

PodItem.start_time
Start the pod was started as a datetime.datetime.

Raises kube.StatusError – If this status item is not present.

Container

class kube.Container(pod, raw)
A container inside a pod.

Containers live inside a pod and may be restarted inside this pod as controlled by the restart policy set on the
pod.

Parameters

• pod (PodItem) – The pod the container is part off.

• raw (pyrsistent.PMap) – The JSON-decoded object describing the status of the con-
tainer.

Variables

• pod – The PodItem instance the container is bound to.

• raw – The raw JSON-decoded object representing the container.

id
The ID of the running container.

For Docker this is in the docker://<hex_id> format.

image
The image the container is running.

For Docker this is normally the repository name with tag appended.

image_id
The ImageID of the container’s image.

For Docker this is in the docker://<hex_id> format.

last_state
Previous state of the container, if known.

This is represented by a ContainerState instance.

Raises kube.StatusError – If this status item is not present.

name
The name of the container as a string.

ready
Boolean indicating if the container passed it’s readyness probe.

Raises kube.StatusError – If this status item is not present.

restart_count
The number of times the container was restarted as an integer.

46 Chapter 10. API Reference

Kube Documentation, Release 0.10.0

Note that this is currently not always accurate, it counts the number of dead containers which have not yet
been removed. This means the gargage collection of containers caps this number at 5.

state
Current state of the container.

This is represented by a ContainerState instance.

Raises kube.StatusError – If this status item is not present.

ContainerState

class kube.ContainerState(raw)
The state of a container within a pod.

A container can be in one of three states: running, waiting or terminated. This class provides a uniform interface
to all states and their associated details. Not all fields are always valid for each state so they can all raise an
kube.StatusError when they are not available or not applicable.

The overall state of the container is available both as a string in the state attribute as well as booleans in the
waiting, running and terminated attributes.

Parameters raw (pyrsistent.PMap) – The raw JSON-decoded v1.ContainerState API
object as exposed by v1.ContainerStatus objects.

Variables raw – The raw JSON-decoded object representing the container state.

container_id
The container ID of the terminated container. Available for the terminated state.

Raises kube.StatusError – When this is not provided.

exit_code
Exit code of the container (int).

Available for the terminated state.

Raises kube.StatusError – When this is not provided.

finished_at
The time the container was terminated (datetime.datetime).

Available for the terminated state.

Raises kube.StatusError – When this is not provided.

message
Message regarding the container’s state (str).

Available for waiting and terminated states.

Raises kube.StatusError – When this is not provided.

reason
Brief reason explaining the container’s state (str).

This is normally a CamelCased message ID.

Available for waiting and terminated states.

Raises kube.StatusError – When this is not provided.

running
Boolean indicating if the container is running.

10.11. Pods 47

Kube Documentation, Release 0.10.0

signal
Last signal sent to the container, if known (int).

Not all terminated containers can be expected to have this.

Warning: The signal is identified numerically, however these signal numbers are not portable there-
fore it’s ill-advised to attempt to compare this value with the constants provided by the built-in singal
module.

Available for the terminated state.

Raises kube.StatusError – When this is not provided.

started_at
The time the container was started or restarted (datetime.datetime).

Available for the running state.

Raises kube.StatusError – When this is not provided.

terminated
Boolean indicating if the container has been terminated.

waiting
Boolean indicating if the container is waiting.

Services

ServiceView

class kube.ServiceView(cluster, namespace=None)
View of the Service resource items in the cluster.

Parameters

• cluster (kube.Cluster) – The cluster instance.

• namespace (str) – Limit the view to resource items in this namespace.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

ServiceItem

class kube.ServiceItem(cluster, raw)
A Service in the Kubernetes cluster.

Parameters

• cluster (kube.Cluster) – The cluster this Service exists in.

• raw (pyrsistent.PMap) – The raw data of the resource item.

Variables

• kind – The kind of the underlying Kubernetes resource item.

48 Chapter 10. API Reference

Kube Documentation, Release 0.10.0

• resource – The name of the Kubernetes API resource.

loadbalancer_ingress
The load balancer ingress endpoints.

This is a set of ingress endpoints in use by the load balancer. Depending on the infrastructure the cluster
runs on the endpoint can be either an ipaddress.IPv4Address, ipaddress.IPv6Address or a
hostname as a string.

Secrets

SecretView

class kube.SecretView(cluster, namespace=None)
View of the Secret resource items in the cluster.

Parameters

• cluster (kube.Cluster) – The cluster instance.

• namespace (str) – Limit the view to resource items in this namespace.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

SecretItem

class kube.SecretItem(cluster, raw)
A Secret in the Kubernetes cluster.

Parameters

• cluster (kube.Cluster) – The cluster this Service exists in.

• raw (pyrsistent.PMap) – The raw data of the resource item.

Variables

• kind – The kind of the underlying Kubernetes resource item.

• resource – The name of the Kubernetes API resource.

• SecretType – Shortcut to kube.SecretType.

class SecretType
Enumeration of secret types.

SecretItem.data
A mapping of the secret data.

A copy of the secret data as a dict. The keys are the names of the secrets as a (unicode) string, while the
values are the secrets as bytestrings.

Secret values are stored in a base64 encoding on the k8s master, but this is an implementation detail that
this property takes care off for you.

10.13. Secrets 49

Kube Documentation, Release 0.10.0

SecretItem.spec()
An empty dictionary.

This is supposed to be the secret resource item’s spec. But secrets do not have a spec, so to still follow the
kube.ItemABC we return an empty dict.

SecretItem.type
The type of secret.

There currently is only the “Opaque” type.

50 Chapter 10. API Reference

CHAPTER 11

Glossary

ReplicaSet Formerly a replication controller, kube hides this transition from you and exposes this only under the
kube.ReplicaSetView and kube.ReplicaSetItem names.

A replica set ensures a specified number of identical Pod instances are running by starting and stopping pods as
required while watching for failed pods. See http://kubernetes.io/docs/user-guide/replication-controller/ for full
details.

ReplicationController The old name for a ReplicaSet. The main difference is that the labelSelector for a
ReplicationController can only select equality-based label sets. See https://kubernetes.io/docs/user-guide/
replication-controller/ for details.

DaemonSet A DaemonSet ensures that all (or some) nodes run a copy of a pod. As nodes are added to the cluster,
pods are added to them. As nodes are removed from the cluster, those pods are garbage collected. See https:
//kubernetes.io/docs/admin/daemons/ for full details.

Deployment A Deployment provides declarative updates for Pods and Replica Sets. You only need to describe the
desired state in a Deployment object, and the Deployment controller will change the actual state to the desired
state at a controlled rate for you. See https://kubernetes.io/docs/user-guide/deployments/ for full details.

Pod A pod is the smallest unit to run containers in the cluster. It is a co-located group of containers and volumes.
See http://kubernetes.io/docs/user-guide/pods/ for the full details on pods.

Service A service groups a set of pods and makes them accessible via a single IP address and DNS name. See
http://kubernetes.io/docs/user-guide/services/ for the full details on services.

Secret A secret stores sensitive data like authentication tokens which containers can then use. See http://kubernetes.
io/docs/user-guide/secrets/ for the full details on secrets.

labelSelector Many objects in the Kubernetes clusters have labels associated with them. These can often be used to
select a number of target objects and there is a fairly rich selector language to target objects using labels. See
http://kubernetes.io/docs/user-guide/labels/#label-selectors for the full details on selectors.

51

http://kubernetes.io/docs/user-guide/replication-controller/
https://kubernetes.io/docs/user-guide/replication-controller/
https://kubernetes.io/docs/user-guide/replication-controller/
https://kubernetes.io/docs/admin/daemons/
https://kubernetes.io/docs/admin/daemons/
https://kubernetes.io/docs/user-guide/deployments/
http://kubernetes.io/docs/user-guide/pods/
http://kubernetes.io/docs/user-guide/services/
http://kubernetes.io/docs/user-guide/secrets/
http://kubernetes.io/docs/user-guide/secrets/
http://kubernetes.io/docs/user-guide/labels/#label-selectors

Kube Documentation, Release 0.10.0

52 Chapter 11. Glossary

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

53

Kube Documentation, Release 0.10.0

54 Chapter 12. Indices and tables

Python Module Index

k
kube, 27

55

Kube Documentation, Release 0.10.0

56 Python Module Index

Index

A
ADDED (kube.kube.WatchEvent attribute), 34
ADDED (kube.kube.WatchEventType attribute), 35
addresses (kube.NodeItem attribute), 39
api_paths (kube.ItemABC attribute), 35
api_paths (kube.ViewABC attribute), 32
APIServerProxy (class in kube), 29
available_replicas (kube.DeploymentItem attribute), 44
available_replicas (kube.ReplicaSetItem attribute), 41
available_replicas (kube.ReplicationControllerItem at-

tribute), 42

C
capacity (kube.NodeItem attribute), 39
close() (kube.APIServerProxy method), 29
close() (kube.Cluster method), 28
close() (kube.ResourceWatcher method), 34
Cluster (class in kube), 28
cluster (kube.ItemABC attribute), 35
cluster (kube.ViewABC attribute), 32
conditions (kube.NodeItem attribute), 39
Container (class in kube), 46
container_id (kube.ContainerState attribute), 47
containers (kube.PodItem attribute), 45
ContainerState (class in kube), 47
create() (kube.Cluster method), 28
created (kube.ObjectMeta attribute), 37
current_number_scheduled (kube.DaemonSetItem

attribute), 43

D
DaemonSet, 51
DaemonSet (kube.kube.Kind attribute), 36
DaemonSetItem (class in kube), 43
DaemonSetList (kube.kube.Kind attribute), 36
daemonsets (kube.Cluster attribute), 28
DaemonSetView (class in kube), 43
data (kube.SecretItem attribute), 49
delete() (kube.APIServerProxy method), 29

delete() (kube.ItemABC method), 35
delete() (kube.NamespaceItem method), 40
delete() (kube.ResourceLabels method), 38
DELETED (kube.kube.WatchEvent attribute), 34
DELETED (kube.kube.WatchEventType attribute), 35
Deployment, 51
Deployment (kube.kube.Kind attribute), 36
DeploymentItem (class in kube), 44
DeploymentList (kube.kube.Kind attribute), 36
deployments (kube.Cluster attribute), 28
DeploymentView (class in kube), 44
desired_number_scheduled (kube.DaemonSetItem

attribute), 43

E
ERROR (kube.kube.WatchEvent attribute), 34
ERROR (kube.kube.WatchEventType attribute), 35
exit_code (kube.ContainerState attribute), 47

F
fetch() (kube.ItemABC method), 35
fetch() (kube.NamespaceView method), 40
fetch() (kube.NodeView method), 38
fetch() (kube.ViewABC method), 32
filter() (kube.ViewABC method), 32
finished_at (kube.ContainerState attribute), 47
fully_labeled_replicas (kube.ReplicaSetItem attribute),

41
fully_labeled_replicas (kube.ReplicationControllerItem

attribute), 42

G
get() (kube.APIServerProxy method), 30

H
host_ip (kube.PodItem attribute), 45

I
id (kube.Container attribute), 46

57

Kube Documentation, Release 0.10.0

image (kube.Container attribute), 46
image_id (kube.Container attribute), 46
ip (kube.PodItem attribute), 45
ItemABC (class in kube), 35

K
kind (kube.ItemABC attribute), 36
kind (kube.ViewABC attribute), 33
kindimpl() (kube.Cluster class method), 29
kube (module), 27
kube.APIError, 27
kube.Kind (class in kube), 36
kube.KubeError, 27
kube.NamespaceError, 27
kube.StatusError, 27
kube.WatchEvent (class in kube), 34
kube.WatchEventType (class in kube), 35

L
labels (kube.ObjectMeta attribute), 37
labelSelector, 51
last_state (kube.Container attribute), 46
link (kube.ObjectMeta attribute), 37
loadbalancer_ingress (kube.ServiceItem attribute), 49

M
message (kube.ContainerState attribute), 47
message (kube.kube.APIError attribute), 27
message (kube.PodItem attribute), 45
meta (kube.ItemABC attribute), 36
MODIFIED (kube.kube.WatchEvent attribute), 34
MODIFIED (kube.kube.WatchEventType attribute), 35

N
name (kube.Container attribute), 46
name (kube.ObjectMeta attribute), 37
Namespace (kube.kube.Kind attribute), 37
namespace (kube.ObjectMeta attribute), 37
namespace (kube.ViewABC attribute), 33
NamespaceItem (class in kube), 40
NamespaceItem.NamespacePhase (class in kube), 40
NamespaceList (kube.kube.Kind attribute), 37
namespaces (kube.Cluster attribute), 28
NamespaceView (class in kube), 40
next() (kube.ResourceWatcher method), 34
Node (kube.kube.Kind attribute), 37
NodeItem (class in kube), 39
NodeList (kube.kube.Kind attribute), 37
nodes (kube.Cluster attribute), 28
NodeView (class in kube), 38
number_misscheduled (kube.DaemonSetItem attribute),

43
number_ready (kube.DaemonSetItem attribute), 43

O
ObjectMeta (class in kube), 37
observed_generation (kube.DeploymentItem attribute),

44
observed_generation (kube.ReplicaSetItem attribute), 41
observed_generation (kube.ReplicationControllerItem at-

tribute), 42
observed_replicas (kube.DeploymentItem attribute), 44
observed_replicas (kube.ReplicaSetItem attribute), 42
observed_replicas (kube.ReplicationControllerItem at-

tribute), 42

P
patch() (kube.APIServerProxy method), 30
phase (kube.NamespaceItem attribute), 41
phase (kube.PodItem attribute), 45
Pod, 51
Pod (kube.kube.Kind attribute), 37
PodItem (class in kube), 45
PodItem.PodPhase (class in kube), 45
PodList (kube.kube.Kind attribute), 37
pods (kube.Cluster attribute), 28
PodView (class in kube), 44
post() (kube.APIServerProxy method), 30
proxy (kube.Cluster attribute), 28

R
raw (kube.ItemABC attribute), 36
ready (kube.Container attribute), 46
ready_replicas (kube.ReplicaSetItem attribute), 42
ready_replicas (kube.ReplicationControllerItem at-

tribute), 42
reason (kube.ContainerState attribute), 47
reason (kube.PodItem attribute), 45
ReplicaSet, 51
ReplicaSet (kube.kube.Kind attribute), 37
ReplicaSetItem (class in kube), 41
ReplicaSetList (kube.kube.Kind attribute), 37
replicasets (kube.Cluster attribute), 28
ReplicaSetView (class in kube), 41
ReplicationController, 51
ReplicationController (kube.kube.Kind attribute), 37
ReplicationControllerItem (class in kube), 42
ReplicationControllerList (kube.kube.Kind attribute), 37
replicationcontrollers (kube.Cluster attribute), 28
ReplicationControllerView (class in kube), 42
resource (kube.ItemABC attribute), 36
resource (kube.ViewABC attribute), 33
ResourceLabels (class in kube), 38
ResourceWatcher (class in kube), 34
response (kube.kube.APIError attribute), 27
restart_count (kube.Container attribute), 46
running (kube.ContainerState attribute), 47

58 Index

Kube Documentation, Release 0.10.0

S
Secret, 51
Secret (kube.kube.Kind attribute), 37
SecretItem (class in kube), 49
SecretItem.SecretType (class in kube), 49
SecretList (kube.kube.Kind attribute), 37
secrets (kube.Cluster attribute), 28
SecretView (class in kube), 49
Service, 51
Service (kube.kube.Kind attribute), 37
ServiceItem (class in kube), 48
ServiceList (kube.kube.Kind attribute), 37
services (kube.Cluster attribute), 28
ServiceView (class in kube), 48
set() (kube.ResourceLabels method), 38
signal (kube.ContainerState attribute), 47
spec() (kube.ItemABC method), 36
spec() (kube.SecretItem method), 49
start_time (kube.PodItem attribute), 46
started_at (kube.ContainerState attribute), 48
state (kube.Container attribute), 47
status_code (kube.kube.APIError attribute), 27

T
terminated (kube.ContainerState attribute), 48
type (kube.SecretItem attribute), 50

U
uid (kube.ObjectMeta attribute), 37
unavailable_replicas (kube.DeploymentItem attribute), 44
updated_replicas (kube.DeploymentItem attribute), 44
urljoin() (kube.APIServerProxy method), 31

V
version (kube.ObjectMeta attribute), 37
ViewABC (class in kube), 31

W
waiting (kube.ContainerState attribute), 48
watch() (kube.APIServerProxy method), 31
watch() (kube.ItemABC method), 36
watch() (kube.ViewABC method), 33

Index 59

	Quickstart
	Cluster
	Views and Items

	Installation
	Dependencies

	Concepts and Terminology
	Kubernetes API concepts from 10,000 feet
	How Kube maps these concepts
	How Kube handles Kubernetes API versions
	Additional Terminology

	Clusters
	Resource Views and Resource Items
	Using Resource Labels
	Using Resource Filters
	Using Resource Watchers
	Testing Kube
	API Reference
	Exceptions
	Cluster
	Resources Interface
	Resource Items Interface
	Nodes
	Namespaces
	ReplicaSets
	ReplicationControllers
	Daemonsets
	Deployments
	Pods
	Services
	Secrets

	Glossary
	Indices and tables
	Python Module Index

