
Python JSONSchema Objects
Documentation

Release 0.0.18

Chris Wacek

Mar 26, 2021

Contents

1 What 3

2 Why 5

3 Fully Functional Literals 7

4 Accessing Generated Objects 9

5 Supported Operators 11
5.1 $ref . 11
5.2 oneOf . 13

6 Installation 15

7 Tests 17

8 Draft Keyword Support 19

9 Changelog 21

10 API Documentation 23
10.1 Generated Classes . 23

Index 25

i

ii

Python JSONSchema Objects Documentation, Release 0.0.18

python-jsonschema-objects provides an automatic class-based binding to JSON schemas for use in python.

Build

Contents 1

https://github.com/cwacek/python-jsonschema-objects/actions/workflows/pythonpackage.yml

Python JSONSchema Objects Documentation, Release 0.0.18

2 Contents

CHAPTER 1

What

python-jsonschema-objects provides an automatic class-based binding to JSON Schemas for use in python. See Draft
Schema Support to see supported keywords

For example, given the following schema:

{
"title": "Example Schema",
"type": "object",
"properties": {

"firstName": {
"type": "string"

},
"lastName": {

"type": "string"
},
"age": {

"description": "Age in years",
"type": "integer",
"minimum": 0

},
"dogs": {

"type": "array",
"items": {"type": "string"},
"maxItems": 4

},
"address": {

"type": "object",
"properties": {

"street": {"type": "string"},
"city": {"type": "string"},
"state": {"type": "string"}
},

"required":["street", "city"]
},

"gender": {
(continues on next page)

3

Python JSONSchema Objects Documentation, Release 0.0.18

(continued from previous page)

"type": "string",
"enum": ["male", "female"]

},
"deceased": {

"enum": ["yes", "no", 1, 0, "true", "false"]
}

},
"required": ["firstName", "lastName"]

}

jsonschema-objects can generate a class based binding. Assume here that the schema above has been loaded in a
variable called examples:

>>> import python_jsonschema_objects as pjs
>>> builder = pjs.ObjectBuilder(examples['Example Schema'])
>>> ns = builder.build_classes()
>>> Person = ns.ExampleSchema
>>> james = Person(firstName="James", lastName="Bond")
>>> james.lastName
<Literal<str> Bond>
>>> james.lastName == "Bond"
True
>>> james
<example_schema address=None age=None deceased=None dogs=None firstName=<Literal<str>
→˓James> gender=None lastName=<Literal<str> Bond>>

Validations will also be applied as the object is manipulated.

>>> james.age = -2
Traceback (most recent call last):

...
ValidationError: -2 is less than 0

>>> james.dogs= ["Jasper", "Spot", "Noodles", "Fido", "Dumbo"]
Traceback (most recent call last):

...
ValidationError: ["Jasper", "Spot", "Noodles", "Fido", "Dumbo"] has too many
→˓elements. Wanted 4.

The object can be serialized out to JSON. Options are passed through to the standard library JSONEncoder object.

>>> james.serialize(sort_keys=True)
'{"firstName": "James", "lastName": "Bond"}'

4 Chapter 1. What

CHAPTER 2

Why

Ever struggled with how to define message formats? Been frustrated by the difficulty of keeping documentation and
message definition in lockstep? Me too.

There are lots of tools designed to help define JSON object formats, foremost among them JSON Schema. JSON
Schema allows you to define JSON object formats, complete with validations.

However, JSON Schema is language agnostic. It validates encoded JSON directly - using it still requires an object
binding in whatever language we use. Often writing the binding is just as tedious as writing the schema itself.

This avoids that problem by auto-generating classes, complete with validation, directly from an input JSON schema.
These classes can seamlessly encode back and forth to JSON valid according to the schema.

5

http://json-schema.org

Python JSONSchema Objects Documentation, Release 0.0.18

6 Chapter 2. Why

CHAPTER 3

Fully Functional Literals

Literal values are wrapped when constructed to support validation and other schema-related operations. However, you
can still use them just as you would other literals.

>>> import python_jsonschema_objects as pjs
>>> builder = pjs.ObjectBuilder(examples['Example Schema'])
>>> ns = builder.build_classes()
>>> Person = ns.ExampleSchema
>>> james = Person(firstName="James", lastName="Bond")
>>> str(james.lastName)
'Bond'
>>> james.lastName += "ing"
>>> str(james.lastName)
'Bonding'
>>> james.age = 4
>>> james.age - 1
3
>>> 3 + james.age
7
>>> james.lastName / 4
Traceback (most recent call last):

...
TypeError: unsupported operand type(s) for /: 'str' and 'int'

7

Python JSONSchema Objects Documentation, Release 0.0.18

8 Chapter 3. Fully Functional Literals

CHAPTER 4

Accessing Generated Objects

Sometimes what you really want to do is define a couple of different objects in a schema, and then be able to use them
flexibly.

Any object built as a reference can be obtained from the top level namespace. Thus, to obtain multiple top level
classes, define them separately in a definitions structure, then simply make the top level schema refer to each of them
as a oneOf.

Other classes identified during the build process will also be available from the top level object. However, if you pass
named_only to the build_classes call, then only objects with a title will be included in the output namespace.

Finally, by default, the names in the returned namespace are transformed by passing them through a camel case
function. If you want to have names unchanged, pass standardize_names=False to the build call.

The schema and code example below show how this works.

{
"title": "MultipleObjects",
"id": "foo",
"type": "object",
"oneOf":[

{"$ref": "#/definitions/ErrorResponse"},
{"$ref": "#/definitions/VersionGetResponse"}
],

"definitions": {
"ErrorResponse": {

"title": "Error Response",
"id": "Error Response",
"type": "object",
"properties": {

"message": {"type": "string"},
"status": {"type": "integer"}

},
"required": ["message", "status"]

},
"VersionGetResponse": {

(continues on next page)

9

Python JSONSchema Objects Documentation, Release 0.0.18

(continued from previous page)

"title": "Version Get Response",
"type": "object",
"properties": {

"local": {"type": "boolean"},
"version": {"type": "string"}

},
"required": ["version"]

}
}

}

>>> builder = pjs.ObjectBuilder(examples["MultipleObjects"])
>>> classes = builder.build_classes()
>>> [str(x) for x in dir(classes)]
['ErrorResponse', 'Local', 'Message', 'Multipleobjects', 'Status', 'Version',
→˓'VersionGetResponse']
>>> classes = builder.build_classes(named_only=True, standardize_names=False)
>>> [str(x) for x in dir(classes)]
['Error Response', 'MultipleObjects', 'Version Get Response']
>>> classes = builder.build_classes(named_only=True)
>>> [str(x) for x in dir(classes)]
['ErrorResponse', 'Multipleobjects', 'VersionGetResponse']

10 Chapter 4. Accessing Generated Objects

CHAPTER 5

Supported Operators

5.1 $ref

The $ref operator is supported in nearly all locations, and dispatches the actual reference resolution to the
jsonschema.RefResolver.

This example shows using the memory URI (described in more detail below) to create a wrapper object that is just a
string literal.

{
"title": "Just a Reference",
"$ref": "memory:Address"

}

>>> builder = pjs.ObjectBuilder(examples['Just a Reference'], resolved=examples)
>>> ns = builder.build_classes()
>>> ns.JustAReference('Hello')
<Literal<str> Hello>

5.1.1 Circular References

Circular references are not a good idea, but they’re supported anyway via lazy loading (as much as humanly possible).

Given the crazy schema below, we can actually generate these classes.

{
"title": "Circular References",
"id": "foo",
"type": "object",
"oneOf":[

{"$ref": "#/definitions/A"},
{"$ref": "#/definitions/B"}

(continues on next page)

11

Python JSONSchema Objects Documentation, Release 0.0.18

(continued from previous page)

],
"definitions": {

"A": {
"type": "object",
"properties": {

"message": {"type": "string"},
"reference": {"$ref": "#/definitions/B"}

},
"required": ["message"]

},
"B": {

"type": "object",
"properties": {

"author": {"type": "string"},
"oreference": {"$ref": "#/definitions/A"}

},
"required": ["author"]

}
}

}

We can instantiate objects that refer to each other.

>>> builder = pjs.ObjectBuilder(examples['Circular References'])
>>> klasses = builder.build_classes()
>>> a = klasses.A()
>>> b = klasses.B()
>>> a.message= 'foo'
>>> a.reference = b
Traceback (most recent call last):

...
ValidationError: '[u'author']' are required attributes for B
>>> b.author = "James Dean"
>>> a.reference = b
>>> a
<A message=<Literal<str> foo> reference=<B author=<Literal<str> James Dean>
→˓oreference=None>>

5.1.2 The “memory:” URI

The ObjectBuilder can be passed a dictionary specifying ‘memory’ schemas when instantiated. This will allow it to
resolve references where the referenced schemas are retrieved out of band and provided at instantiation.

For instance, given the following schemas:

{
"title": "Address",
"type": "string"

}

{
"title": "AddlPropsAllowed",
"type": "object",
"additionalProperties": true

}

12 Chapter 5. Supported Operators

Python JSONSchema Objects Documentation, Release 0.0.18

{
"title": "Other",
"type": "object",
"properties": {

"MyAddress": {"$ref": "memory:Address"}
},
"additionalProperties": false

}

The ObjectBuilder can be used to build the “Other” object by passing in a definition for “Address”.

>>> builder = pjs.ObjectBuilder(examples['Other'], resolved={"Address": {"type":
→˓"string"}})
>>> builder.validate({"MyAddress": '1234'})
>>> ns = builder.build_classes()
>>> thing = ns.Other()
>>> thing
<other MyAddress=None>
>>> thing.MyAddress = "Franklin Square"
>>> thing
<other MyAddress=<Literal<str> Franklin Square>>
>>> thing.MyAddress = 423
Traceback (most recent call last):

...
ValidationError: 432 is not a string

5.2 oneOf

Generated wrappers can properly deserialize data representing ‘oneOf’ relationships, so long as the candidate schemas
are unique.

{
"title": "Age",
"type": "integer"

}

{
"title": "OneOf",
"type": "object",
"properties": {

"MyData": { "oneOf":[
{"$ref": "memory:Address"},
{"$ref": "memory:Age"}
]

}
},
"additionalProperties": false

}

{
"title": "OneOfBare",
"type": "object",
"oneOf":[

{"$ref": "memory:Other"},

(continues on next page)

5.2. oneOf 13

Python JSONSchema Objects Documentation, Release 0.0.18

(continued from previous page)

{"$ref": "memory:Example Schema"}
],

"additionalProperties": false
}

14 Chapter 5. Supported Operators

CHAPTER 6

Installation

pip install python_jsonschema_objects

15

Python JSONSchema Objects Documentation, Release 0.0.18

16 Chapter 6. Installation

CHAPTER 7

Tests

Tests are managed using the excellent Tox. Simply pip install tox, then tox.

17

Python JSONSchema Objects Documentation, Release 0.0.18

18 Chapter 7. Tests

CHAPTER 8

Draft Keyword Support

Most of draft-4 is supported, so only exceptions are noted in the table. Where a keyword functionality changed
between drafts, the version that is supported is noted.

The library will warn (but not throw an exception) if you give it an unsupported $schema

| Keyword | supported | version | | ——–| ———–| ——— | | $id | true | draft-6 | | propertyNames | false | | | contains |
false | | | const | false | | | required | true | draft-4 | | examples | false | | | format | false | |

19

Python JSONSchema Objects Documentation, Release 0.0.18

20 Chapter 8. Draft Keyword Support

CHAPTER 9

Changelog

Please refer to Github releases for up to date changelogs.

0.0.18

• Fix assignment to schemas defined using ‘oneOf’

• Add sphinx documentation and support for readthedocs

0.0.16 - Fix behavior of exclusiveMinimum and exclusiveMaximum validators so that they work properly.

0.0.14 - Roll in a number of fixes from Github contributors, including fixes for oneOf handling, array validation, and
Python 3 support.

0.0.13 - Lazily build object classes. Allows low-overhead use of jsonschema validators.

0.0.12 - Support “true” as a value for ‘additionalProperties’

0.0.11 - Generated wrappers can now properly deserialize data representing ‘oneOf’ relationships, so long as the
candidate schemas are unique.

0.0.10 - Fixed incorrect checking of enumerations which previously enforced that all enumeration values be of the
same type.

0.0.9 - Added support for ‘memory:’ schema URIs, which can be used to reference externally resolved schemas.

0.0.8 - Fixed bugs that occurred when the same class was read from different locations in the schema, and thus had a
different URI

0.0.7 - Required properties containing the ‘@’ symbol no longer cause build_classes() to fail.

0.0.6 - All literals now use a standardized LiteralValue type. Array validation actually coerces element types.
as_dict can translate objects to dictionaries seamlessly.

0.0.5 - Improved validation for additionalItems (and tests to match). Provided dictionary-syntax access to object
properties and iteration over properties.

0.0.4 - Fixed some bugs that only showed up under specific schema layouts, including one which forced remote
lookups for schema-local references.

0.0.3b - Fixed ReStructuredText generation

21

Python JSONSchema Objects Documentation, Release 0.0.18

0.0.3 - Added support for other array validations (minItems, maxItems, uniqueItems).

0.0.2 - Array item type validation now works. Specifying ‘items’, will now enforce types, both in the tuple and list
syntaxes.

0.0.1 - Class generation works, including ‘oneOf’ and ‘allOf’ relationships. All basic validations work.

22 Chapter 9. Changelog

CHAPTER 10

API Documentation

10.1 Generated Classes

Classes generated using python_jsonschema_objects expose all defined properties as both attributes and
through dictionary access.

In addition, classes contain a number of utility methods for serialization, deserialization, and validation.

class python_jsonschema_objects.classbuilder.ProtocolBase(**props)
An instance of a class generated from the provided schema. All properties will be validated according to the
definitions provided. However, whether or not all required properties have been provide will not be validated.

Parameters **props – Properties with which to populate the class object

Returns The class object populated with values

Raises validators.ValidationError – If any of the provided properties do not pass vali-
dation

as_dict()
Return a dictionary containing the current values of the object.

Returns The object represented as a dictionary

Return type (dict)

classmethod from_json(jsonmsg)
Create an object directly from a JSON string.

Applies general validation after creating the object to check whether all required fields are present.

Parameters jsonmsg (str) – An object encoded as a JSON string

Returns An object of the generated type

Raises ValidationError – if jsonmsg does not match the schema cls was generated from

missing_property_names()
Returns a list of properties which are required and missing.

23

Python JSONSchema Objects Documentation, Release 0.0.18

Properties are excluded from this list if they are allowed to be null.

Returns list of missing properties.

validate()
Applies all defined validation to the current state of the object, and raises an error if they are not all met.

Raises ValidationError – if validations do not pass

24 Chapter 10. API Documentation

Index

A
as_dict() (python_jsonschema_objects.classbuilder.ProtocolBase

method), 23

F
from_json() (python_jsonschema_objects.classbuilder.ProtocolBase

class method), 23

M
missing_property_names()

(python_jsonschema_objects.classbuilder.ProtocolBase
method), 23

P
ProtocolBase (class in

python_jsonschema_objects.classbuilder),
23

V
validate() (python_jsonschema_objects.classbuilder.ProtocolBase

method), 24

25

	What
	Why
	Fully Functional Literals
	Accessing Generated Objects
	Supported Operators
	$ref
	oneOf

	Installation
	Tests
	Draft Keyword Support
	Changelog
	API Documentation
	Generated Classes

	Index

