

Welcome to jscrambler’s documentation!

Contents:

	Quickstart
	Introduction

	Installation

	Credentials

	Configuration file

	Minimal python code

	Django integration

	jscrambler.Client: high-level API to interact with jscrambler servers

	Configuration
	Configuration File Format

	Configuration usage in the API

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Introduction

This is a Python module to interface with the JScrambler javascript
transformation service. The Python module offers a trivally simple
API to transform you javacsript and html files.

Installation

This module has been tested to work in both Python 2.7 and 3.4. The
only non-standard Python dependency is the requests module.

To install jscrambler, simply install the jscrambler package from PyPI. You can use, pip, for instance:

$ pip install jscrambler

Credentials

To use jscrambler, you need to subscribe to the server and obtain
access credentials to use the server. Get your API credentials at
https://jscrambler.com/en/account/api_access. There you will see two
values, Access key and Secret key, which allow you to submit
projects.

Configuration file

It is easier if you create a json configuration file, such as this one (let’s call it config.json):

{
 // acess credentials, replace with your own
 "keys": {
 "accessKey": "YOUR_ACCESS_KEY",
 "secretKey": "YOUR_SECRET_KEY"
 },

 // where to find the source .js files
 "filesSrc": ["lib/**/*.js"],

 // directory where to place the modified files
 "filesDest": "build/",

 // parameters that control the transformations available
 "params": {
 "function_outlining": "true",
 "rename_all": "true"
 }
}

Minimal python code

Here’s some sample python code to process some files, assuming that the output
build directory is already created:

import jscrambler
import json

reads the json configuration file
with open("config.json", "rt") as jsonfile:
 config = json.load(jsonfile)

creates a jscrambler client context
client = jscrambler.Client(config["keys"]["accessKey"],
 config["keys"]["secretKey"])

processes the files specified in the configuration
client.process(config)

Django integration

Although jscrambler can be integrated with any web framework in any
programming language, the jscrambler python package comes with some
support for Django projects out of the box.

If you have a Django project that uses the standard
django.contrib.staticfiles application to support static files, then you
already know about the STATIC_ROOT django setting. This setting contains
the path of a directory to which all the static files will be collected. This
is triggered by running the command python manage.py collectstatic when you
want to deploy new static files into an HTTP server, such as nginx or apache
httpd.

To add jscrambler into the workflow, you begin by adding the djcrambler
configuration to the Django project settings (myproject/settings.py):

JSCRAMBLER_CONFIG = { my config }

The JSCRAMBLER_CONFIG setting has to contain dict based structure
with the usual jscrambler configuration parameters. If you wish, you
can easily load it from an external JSON file, thus:

import json
with open("config.json", "r") as configfile:
 JSCRAMBLER_CONFIG = json.load(configfile)

Another change in the Django settings that you need is to add jscrambler to
the INSTALLED_APPS:

INSTALLED_APPS = (
 'django.contrib.staticfiles',
 #...
 'jscrambler', # <--- add this app to your project
)

After these changes, you will get a new Django management command
called scramblestatic. This command, which should run after
collectstatic, takes all files matching any of the filesSrc
patterns from the config, relative to STATIC_ROOT, and replace
them in-place with the scrambled versions:

$ python manage.py collectstatic
$ python manage.py scramblestatic

Note

if the config parameter filesSrc is missing, it defaults to
**/*.js and **/*.html, which matches all Javascript and HTML
files found under STATIC_ROOT.

There is no out-of-the-box support for processing Django templates yet, so you
should make sure to write your valuable Javascript code that you wish to protect
as clearly separated static files, instead of placing it inside Django
templates.

Warning

If you have a setup in which the HTTP server is serving static files
directly from STATIC_ROOT, then running the commands
collectstatic and scramblestatic while the HTTP server is
running will temporarily expose your original sources to the
Internet. Therefore, it is recommanded that your STATIC_ROOT
points to a temporary directory, which replaces the live one only
after the scramblestatic command is finished.

jscrambler.Client: high-level API to interact with jscrambler servers

Configuration

This section describes the recommended configuration format for use
with the jscrambler API. The recommendation is to use JSON format,
but essencially the API can use just dict-based structures that can be
either obtained by parsing a JSON configuration file or constructed
programatically.

Configuration File Format

The snippet below illustrates an example configuration file

{
 "filesSrc": [""],
 "filesDest": "dist/",
 "host": "api.jscrambler.com", // default
 "port": 443, // default
 "apiVersion": 3, // default
 "keys": {
 "accessKey": "XX",
 "secretKey": "XX"
 },
 "params": {
 "string_splitting": "%DEFAULT%",
 "function_reorder": "%DEFAULT%",
 "function_outlining": "%DEFAULT%",
 "dot_notation_elimination": "%DEFAULT%",
 "expiration_date": "2199-01-01",
 "rename_local": "%DEFAULT%",
 "whitespace": "%DEFAULT%",
 "literal_duplicates": "%DEFAULT%"
 },
 "deleteProject": false // default
}

All entries marked with %DEFAULT% can be omitted and the client should assume those values.
All entries in the “params” section are also optional. The above example only shows a subset of the existing parameters. For a complete listing of possible parameters, please check here:
Optional parameters [https://jscrambler.com/en/help/webapi/documentation#optional_parameters] (though this knowledge shouldn’t impact anything on the client implementation).

filesSrc

	This configuration entry is a list of paths to files that should be included in the project. By project we don’t mean all the files pertaining to the web application, but only the files that JScrambler needs to transform. Right now this is limited to *.htm(l) and *.js files. Globbing patterns are supported, for example:

	
	["lib/**/*.js"] should resolve to all JS files inside the lib folder and all the children folders

	["lib/**"] should resolve to all files inside the lib folder and all the children folders

	["lib/*.js"] should resolve to all JS files directly inside the lib folder

Params

For a complete listing of possible parameters, see Optional parameters [https://jscrambler.com/en/help/webapi/documentation#optional_parameters].

Configuration usage in the API

The configuration is used as follows in the client API:

	In the jscrambler.Client constructor, the configuration is not read
directly but all the constructor parameters (accessKey,
secretKey, host, port, and apiVersion), can be
taken directly from the configuration file;

	The jscrambler.Client.process() convenience method takes a
configuration file as parameter; the params section of the
configuration file is used directly in the upload request, and the
filesSrc and filesDest configuration options are used to
find the files to upload and the directory where to download the
transformed versions, respectively;

	The filesSrc parameter is honored by the scramblestatic
Django management command, see Django integration.

Index

 nav.xhtml

 Table of Contents

 		Welcome to jscrambler's documentation!

 		Quickstart

 		Introduction

 		Installation

 		Credentials

 		Configuration file

 		Minimal python code

 		Django integration

 		jscrambler.Client: high-level API to interact with jscrambler servers

 		Configuration

 		Configuration File Format

 		filesSrc

 		Params

 		Configuration usage in the API

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

