

Welcome to Python For The Lab’s documentation!

Python for the Lab (PFTL) is a simple program to acquire data from a DAQ device. It is designed following the MVC design pattern, splitting the code into Controllers for defining drivers, Models for specifying the logic on how to use devices and perform an experiment. The View is where all the GUI is developed.

PFTL was developed by Aquiles Carattino [https://www.aquicarattino.com] to explain to researchers, through simple examples, what can be achieved quickly with little programming knowledge. The ultimate goal of this project is to serve as a reference place for people interested in instrumentation written in Python.

You can find the code of this package at Github [https://github.com/PFTL/pythonforthelab], the documentation is hosted at Read The Docs [https://readthedocs.org/projects/python-for-the-lab/]. If you are interested in learning more about Python For The Lab, you can check the courses [https://www.pythonforthelab.com/courses/] or get a copy of the book [https://gum.co/kgSsv].

The GUI

[image: Screenshot of the GUI]
If you follow the Python for the Lab course, the GUI is going to be the last step. You perform an analog output scan while acquiring the voltage on a different port. This will allow the users to acquire an I-V scan or any other voltage-dependent measurement.

The Device

[image: Controlling an LED to measure the IV curve]
The objective of PFTL is to control a device to measure the IV curve of an LED. The device is built on an Arduino DUE which has two Digital-to-Analog channels. The program monitors the voltage across a resistance while increasing the voltage applied to an LED. We can change all the parameters of the scan, including the input and output channels, the range, time delay, etc.

Contents:

	PythonForTheLab package
	Start Function

	Subpackages

	Module contents

	PythonForTheLab.Controller
	Module contents

	Models
	Model for Devices

	Experiment Model

	PythonForTheLab.View
	Start GUI

	Main Window

PythonForTheLab package

Start Function

After installing Python for the Lab it is possible to start it directly from within the command line using pftl.start.
It takes one argument that is the path to the configuration file.

$ pftl.start Config/experiment.yml

	
PythonForTheLab.start.start()

	Starts the GUI for the experiment using the config file specified as system argument.

Subpackages

	PythonForTheLab.Controller
	Module contents
	PFTL DAQ Controller

	Models
	Model for Devices
	Module contents
	Analog DAQ

	Base DAQ

	Dummy DAQ Model

	Experiment Model
	Experiment Model

	PythonForTheLab.View
	Start GUI

	Main Window

Module contents

PythonForTheLab.Controller

One of the building blocks of the MVC design pattern. Controller hosts all the packages related to
communication with devices. Each element should reflect exactly what a device is capable of doing and
not the imposed logic from the experimentor. Loops, etc. should be placed within the Models.

Module contents

PFTL DAQ Controller

Python For The Lab revolves around controlling a simple DAQ device built on top of an Arduino.
The DAQ device is capable of generating up to two analog outputs in the range 0-3.3V and to acquire
several analog inputs.

Because of the pedagogy of the course Python for the Lab, it was assumed that the device can generate
value by value and not a sequence. This forces the developer to think on how to implement a solution
purely on Python.

	
class PythonForTheLab.Controller.pftl_daq.Device(port)

	Controller for the serial devices that ships with Python for the Lab.

	Parameters

	port (str) – The port where the device is connected. Something like COM3 on Windows, or /dev/ttyACM0 on Linux

	
rsc

	The serial communication with the device

	Type

	serial

	
port

	The port where the device is connected, such as COM3 or /dev/ttyACM0

	Type

	str

	
DEFAULTS = {'baudrate': 9600, 'encoding': 'ascii', 'read_termination': '\n', 'read_timeout': 1, 'write_termination': '\n', 'write_timeout': 1}

	

	
finalize()

	Closes the resource

	
get_analog_input(channel)

	Get the Analog input in a channel

	Parameters

	
	channel (int) – The channel

	output_value (int) – The output value in the range 0-4095

	Returns

	int – The value

	
idn()

	Get the serial number from the device.

	Returns

	str – The serial number of the device

	
initialize()

	Opens the serial port with the DEFAULTS.

	
query(message)

	Wrapper around writing and reading to make the flow easier.

	Parameters

	message (str) – The message to send to the device

	Returns

	str – Whatever the message outputs

	
set_analog_output(channel, output_value)

	Sets the analog output of a channel

	Parameters

	
	channel (int) – The channel

	output_value (int) – The output value in the range 0-4095

Models

Models are where all the logic of the experimentor should be placed. In this case there are two models, one for the DAQ used and one for the Experiment itself. Models rely on Controllers to communicate with real devices and pass the information to the View in order to display it to the user.

Models:

	Model for Devices

	Experiment Model

Model for Devices

Module contents

Analog DAQ

Class for communicating with a real device. It implements the base for communicating with the device
through a Controller. The experiment in mind is measuring the I-V curve of a diode, adding the logic
into a separate Model for the experiment may seem redundant, but incredibly useful in bigger projects.

	
class PythonForTheLab.Model.analog_daq.AnalogDaq(port)

	Bases: object

Simple Model that reflects the logic of the MVC pattern. This model relies on the real controller
for communicating with an Arduino based DAQ.

	Parameters

	port (str) – See pftl_daq

	
port

	The port information

	Type

	str

	
driver

	The controller

	Type

	Device

	
finalize()

	Set the outputs to 0V and finalize the driver

	
get_voltage(channel)

	Retrieve the voltage from the device

	Parameters

	channel (int) – Channel number

	Returns

	Quantity – The voltage read

	
initialize()

	Initialize the driver and sets the voltage on the outputs to 0

	
set_voltage(channel, volts)

	Set the voltage to a given value on a given channel

	Parameters

	
	channel (int) – The channel number

	volts (Quantity) – The value to set, a quantity using Pint

Base DAQ

Base class for the DAQ objects. It keeps track of the functions that every new model should implement.
This helps keeping the code organized and to maintain downstream compliancy.

	
class PythonForTheLab.Model.base_daq.DAQBase(port)

	
	
finalize()

	

	
get_voltage(channel)

	

	
initialize()

	

	
set_voltage(channel, volts)

	

Dummy DAQ Model

it only generates random values.

	
class PythonForTheLab.Model.dummy_daq.DummyDaq(port)

	Bases: PythonForTheLab.Model.base_daq.DAQBase

	
get_voltage(channel)

	Generates a randomg value

	Returns

	float – Random value

	
PythonForTheLab.Model.dummy_daq.random() → x in the interval [0, 1).

	

Experiment Model

Experiment Model

Building a model for the experiment allows developers to have a clear picture of the logic of their
experiments. It allows to build simple GUIs around them and to easily share the code with other users.

	
class PythonForTheLab.Model.experiment.Experiment(config_file)

	Experiment to measure the IV curve of a diode

	Parameters

	config_file (str) – Path to the config file. Should be a YAML file, later used by load_daq()

	
do_scan()

	Does a scan. This method blocks. See start_scan() for threaded scans.

	
finalize()

	Finalize the experiment, closing the communication with the device and stopping the scan

	
load_config()

	Load the configuration file

	
load_daq()

	Load the DAQ. Works with DummyDaq or AnalogDaq

	
save_data()

	Save data to the folder specified in the config file.

	
start_scan()

	Start a scan on a separate thread

	
stop_scan()

	Stops the scan.

PythonForTheLab.View

All the files related to the GUI should be placed within the View package. This is the third leg of the
MVC design pattern. If the Model is properly built, the Views are relatively simple PyQt objects. It is
important to point out that if there is any logic of the experiment that goes into the view, the code is
going to become harder to share, unless it is for the exact same purpose.

Start GUI

Convenience function to wrap the initialization of a window. The Experiment class should be created outside and passed as argument.

>>> experiment = Experiment()
>>> experiment.load_config('filename')
>>> experiment.load_daq()
>>> start_gui(experiment)

	
PythonForTheLab.View.start_gui.start_gui(experiment)

	Starts a GUI for the ScanWindow using the provided experiment.
:param Experiment experiment: Experiment object with a loaded config.

Main Window

This is the central code for the user interface of Python for the Lab. The design of the window is specifcied in its
own .ui file, generated with Qt Designer.

	
class PythonForTheLab.View.main_window.MainWindow(experiment=None)

	Bases: PyQt5.QtWidgets.QMainWindow

Main Window for the user interface

	Parameters

	experiment (Experiment) – Experiment model, can be left empty just for testing. Should be instantiated and initialized before passing it.

	
experiment

	The experiment object

	Type

	Experiment

	
plot_widget

	Widget to hold the plot

	Type

	pg.PlotWidget

	
plot

	The real plot that can be updated with new data

	Type

	pg.PlotWidget.plotItem

	
start_button

	The start button

	Type

	QPushButton

	
start_scan()

	

	
stop_scan()

	

	
update_gui()

	

	
update_plot()

	

PythonForTheLab.Controller

One of the building blocks of the MVC design pattern. Controller hosts all the packages related to
communication with devices. Each element should reflect exactly what a device is capable of doing and
not the imposed logic from the experimentor. Loops, etc. should be placed within the Models.

Module contents

PFTL DAQ Controller

Python For The Lab revolves around controlling a simple DAQ device built on top of an Arduino.
The DAQ device is capable of generating up to two analog outputs in the range 0-3.3V and to acquire
several analog inputs.

Because of the pedagogy of the course Python for the Lab, it was assumed that the device can generate
value by value and not a sequence. This forces the developer to think on how to implement a solution
purely on Python.

	
class PythonForTheLab.Controller.pftl_daq.Device(port)

	Controller for the serial devices that ships with Python for the Lab.

	Parameters

	port (str) – The port where the device is connected. Something like COM3 on Windows, or /dev/ttyACM0 on Linux

	
rsc

	The serial communication with the device

	Type

	serial

	
port

	The port where the device is connected, such as COM3 or /dev/ttyACM0

	Type

	str

	
DEFAULTS = {'baudrate': 9600, 'encoding': 'ascii', 'read_termination': '\n', 'read_timeout': 1, 'write_termination': '\n', 'write_timeout': 1}

	

	
finalize()

	Closes the resource

	
get_analog_input(channel)

	Get the Analog input in a channel

	Parameters

	
	channel (int) – The channel

	output_value (int) – The output value in the range 0-4095

	Returns

	int – The value

	
idn()

	Get the serial number from the device.

	Returns

	str – The serial number of the device

	
initialize()

	Opens the serial port with the DEFAULTS.

	
query(message)

	Wrapper around writing and reading to make the flow easier.

	Parameters

	message (str) – The message to send to the device

	Returns

	str – Whatever the message outputs

	
set_analog_output(channel, output_value)

	Sets the analog output of a channel

	Parameters

	
	channel (int) – The channel

	output_value (int) – The output value in the range 0-4095

Models

Models are where all the logic of the experimentor should be placed. In this case there are two models, one for the DAQ used and one for the Experiment itself. Models rely on Controllers to communicate with real devices and pass the information to the View in order to display it to the user.

Models:

	Model for Devices

	Experiment Model

Model for Devices

Module contents

Analog DAQ

Class for communicating with a real device. It implements the base for communicating with the device
through a Controller. The experiment in mind is measuring the I-V curve of a diode, adding the logic
into a separate Model for the experiment may seem redundant, but incredibly useful in bigger projects.

	
class PythonForTheLab.Model.analog_daq.AnalogDaq(port)

	Bases: object

Simple Model that reflects the logic of the MVC pattern. This model relies on the real controller
for communicating with an Arduino based DAQ.

	Parameters

	port (str) – See pftl_daq

	
port

	The port information

	Type

	str

	
driver

	The controller

	Type

	Device

	
finalize()

	Set the outputs to 0V and finalize the driver

	
get_voltage(channel)

	Retrieve the voltage from the device

	Parameters

	channel (int) – Channel number

	Returns

	Quantity – The voltage read

	
initialize()

	Initialize the driver and sets the voltage on the outputs to 0

	
set_voltage(channel, volts)

	Set the voltage to a given value on a given channel

	Parameters

	
	channel (int) – The channel number

	volts (Quantity) – The value to set, a quantity using Pint

Base DAQ

Base class for the DAQ objects. It keeps track of the functions that every new model should implement.
This helps keeping the code organized and to maintain downstream compliancy.

	
class PythonForTheLab.Model.base_daq.DAQBase(port)

	
	
finalize()

	

	
get_voltage(channel)

	

	
initialize()

	

	
set_voltage(channel, volts)

	

Dummy DAQ Model

it only generates random values.

	
class PythonForTheLab.Model.dummy_daq.DummyDaq(port)

	Bases: PythonForTheLab.Model.base_daq.DAQBase

	
get_voltage(channel)

	Generates a randomg value

	Returns

	float – Random value

	
PythonForTheLab.Model.dummy_daq.random() → x in the interval [0, 1).

	

Experiment Model

Experiment Model

Building a model for the experiment allows developers to have a clear picture of the logic of their
experiments. It allows to build simple GUIs around them and to easily share the code with other users.

	
class PythonForTheLab.Model.experiment.Experiment(config_file)

	Experiment to measure the IV curve of a diode

	Parameters

	config_file (str) – Path to the config file. Should be a YAML file, later used by load_daq()

	
do_scan()

	Does a scan. This method blocks. See start_scan() for threaded scans.

	
finalize()

	Finalize the experiment, closing the communication with the device and stopping the scan

	
load_config()

	Load the configuration file

	
load_daq()

	Load the DAQ. Works with DummyDaq or AnalogDaq

	
save_data()

	Save data to the folder specified in the config file.

	
start_scan()

	Start a scan on a separate thread

	
stop_scan()

	Stops the scan.

PythonForTheLab.View

All the files related to the GUI should be placed within the View package. This is the third leg of the
MVC design pattern. If the Model is properly built, the Views are relatively simple PyQt objects. It is
important to point out that if there is any logic of the experiment that goes into the view, the code is
going to become harder to share, unless it is for the exact same purpose.

Start GUI

Convenience function to wrap the initialization of a window. The Experiment class should be created outside and passed as argument.

>>> experiment = Experiment()
>>> experiment.load_config('filename')
>>> experiment.load_daq()
>>> start_gui(experiment)

	
PythonForTheLab.View.start_gui.start_gui(experiment)

	Starts a GUI for the ScanWindow using the provided experiment.
:param Experiment experiment: Experiment object with a loaded config.

Main Window

This is the central code for the user interface of Python for the Lab. The design of the window is specifcied in its
own .ui file, generated with Qt Designer.

	
class PythonForTheLab.View.main_window.MainWindow(experiment=None)

	Bases: PyQt5.QtWidgets.QMainWindow

Main Window for the user interface

	Parameters

	experiment (Experiment) – Experiment model, can be left empty just for testing. Should be instantiated and initialized before passing it.

	
experiment

	The experiment object

	Type

	Experiment

	
plot_widget

	Widget to hold the plot

	Type

	pg.PlotWidget

	
plot

	The real plot that can be updated with new data

	Type

	pg.PlotWidget.plotItem

	
start_button

	The start button

	Type

	QPushButton

	
start_scan()

	

	
stop_scan()

	

	
update_gui()

	

	
update_plot()

	

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 PythonForTheLab	

 	
 	
 PythonForTheLab.Controller.pftl_daq	

 	
 	
 PythonForTheLab.Model.analog_daq	

 	
 	
 PythonForTheLab.Model.base_daq	

 	
 	
 PythonForTheLab.Model.dummy_daq	

 	
 	
 PythonForTheLab.Model.experiment	

 	
 	
 PythonForTheLab.start	

 	
 	
 PythonForTheLab.View.main_window	

 	
 	
 PythonForTheLab.View.start_gui	

Index

 A
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | Q
 | R
 | S
 | U

A

 	
 	AnalogDaq (class in PythonForTheLab.Model.analog_daq)

D

 	
 	DAQBase (class in PythonForTheLab.Model.base_daq)

 	DEFAULTS (PythonForTheLab.Controller.pftl_daq.Device attribute)

 	Device (class in PythonForTheLab.Controller.pftl_daq)

 	
 	do_scan() (PythonForTheLab.Model.experiment.Experiment method)

 	driver (PythonForTheLab.Model.analog_daq.AnalogDaq attribute)

 	DummyDaq (class in PythonForTheLab.Model.dummy_daq)

E

 	
 	Experiment (class in PythonForTheLab.Model.experiment)

 	
 	experiment (PythonForTheLab.View.main_window.MainWindow attribute)

F

 	
 	finalize() (PythonForTheLab.Controller.pftl_daq.Device method)

 	(PythonForTheLab.Model.analog_daq.AnalogDaq method)

 	(PythonForTheLab.Model.base_daq.DAQBase method)

 	(PythonForTheLab.Model.experiment.Experiment method)

G

 	
 	get_analog_input() (PythonForTheLab.Controller.pftl_daq.Device method)

 	get_voltage() (PythonForTheLab.Model.analog_daq.AnalogDaq method)

 	(PythonForTheLab.Model.base_daq.DAQBase method)

 	(PythonForTheLab.Model.dummy_daq.DummyDaq method)

I

 	
 	idn() (PythonForTheLab.Controller.pftl_daq.Device method)

 	initialize() (PythonForTheLab.Controller.pftl_daq.Device method)

 	(PythonForTheLab.Model.analog_daq.AnalogDaq method)

 	(PythonForTheLab.Model.base_daq.DAQBase method)

L

 	
 	load_config() (PythonForTheLab.Model.experiment.Experiment method)

 	
 	load_daq() (PythonForTheLab.Model.experiment.Experiment method)

M

 	
 	MainWindow (class in PythonForTheLab.View.main_window)

P

 	
 	plot (PythonForTheLab.View.main_window.MainWindow attribute)

 	plot_widget (PythonForTheLab.View.main_window.MainWindow attribute)

 	port (PythonForTheLab.Controller.pftl_daq.Device attribute)

 	(PythonForTheLab.Model.analog_daq.AnalogDaq attribute)

 	PythonForTheLab (module)

 	PythonForTheLab.Controller.pftl_daq (module)

 	
 	PythonForTheLab.Model.analog_daq (module)

 	PythonForTheLab.Model.base_daq (module)

 	PythonForTheLab.Model.dummy_daq (module)

 	PythonForTheLab.Model.experiment (module)

 	PythonForTheLab.start (module)

 	PythonForTheLab.View.main_window (module)

 	PythonForTheLab.View.start_gui (module)

Q

 	
 	query() (PythonForTheLab.Controller.pftl_daq.Device method)

R

 	
 	random() (in module PythonForTheLab.Model.dummy_daq)

 	
 	rsc (PythonForTheLab.Controller.pftl_daq.Device attribute)

S

 	
 	save_data() (PythonForTheLab.Model.experiment.Experiment method)

 	set_analog_output() (PythonForTheLab.Controller.pftl_daq.Device method)

 	set_voltage() (PythonForTheLab.Model.analog_daq.AnalogDaq method)

 	(PythonForTheLab.Model.base_daq.DAQBase method)

 	start() (in module PythonForTheLab.start)

 	
 	start_button (PythonForTheLab.View.main_window.MainWindow attribute)

 	start_gui() (in module PythonForTheLab.View.start_gui)

 	start_scan() (PythonForTheLab.Model.experiment.Experiment method)

 	(PythonForTheLab.View.main_window.MainWindow method)

 	stop_scan() (PythonForTheLab.Model.experiment.Experiment method)

 	(PythonForTheLab.View.main_window.MainWindow method)

U

 	
 	update_gui() (PythonForTheLab.View.main_window.MainWindow method)

 	
 	update_plot() (PythonForTheLab.View.main_window.MainWindow method)

 _static/comment-bright.png

_static/GUI_Python_For_The_Lab.png
Start: 0.0 V Stop: 3.3V Step: 0.1V

Delay: 10 ms

Start || Stop

Port: 0 (volt)

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/GUI_Python_For_The_Lab.png
Start: 0.0 V Stop: 3.3V Step: 0.1V

Delay: 10 ms

Start || Stop

Port: 0 (volt)

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Python For The Lab’s documentation!

 		
 PythonForTheLab package

 		
 Start Function

 		
 Subpackages

 		
 PythonForTheLab.Controller

 		
 Models

 		
 PythonForTheLab.View

 		
 Module contents

 		
 PythonForTheLab.Controller

 		
 Module contents

 		
 PFTL DAQ Controller

 		
 Models

 		
 Model for Devices

 		
 Module contents

 		
 Experiment Model

 		
 Experiment Model

 		
 PythonForTheLab.View

 		
 Start GUI

 		
 Main Window

_static/up-pressed.png

_static/up.png

_static/plus.png

