

Welcome to python-cratonclient’s documentation!

Contents:

	python-cratonclient
	Features

	Installation

	Contributing

	Craton CLI User Guide
	Top-Level Options

	Subcommands

	Python API User Guide
	Authenticating to Craton

	Communicating with Craton

	Using the Clouds API

	Using the Regions API

	Using the Cells API

	Using the Hosts API

	Using the Devices API

	Using the Projects API

	Python API Reference Documentation
	Version-less Objects

	v1 API Documentation

	Authentication Helpers

Specifications for python-cratonclient:

	Fleet Management Service Specifications

Indices and tables

	Index

	Search Page

python-cratonclient

Craton API Client and Command-line Utility

Please fill here a long description which must be at least 3 lines wrapped on
80 cols, so that distribution package maintainers can use it in their packages.
Note that this is a hard requirement.

	Free software: Apache license

	Documentation: https://python-cratonclient.readthedocs.io

	Source: http://git.openstack.org/cgit/openstack/python-cratonclient

	Bugs: http://bugs.launchpad.net/python-cratonclient

Features

	TODO

Installation

Note

There has not been a stable release of python-cratonclient to PyPI yet. To
install the current version in development use:

pip install git+https://git.openstack.org/openstack/python-cratonclient

At the command line:

$ pip install python-cratonclient

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv python-cratonclient
$ pip install python-cratonclient

Contributing

If you would like to contribute to the development of OpenStack, you must
follow the steps in this page:

http://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your
OpenStack accounts are set up, you can skip to the development workflow
section of this documentation to learn how changes to OpenStack should be
submitted for review via the Gerrit tool:

http://docs.openstack.org/infra/manual/developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/python-cratonclient

Craton CLI User Guide

After installing python-cratonclient and craton binary should be added
to our PATH. To use the craton command-line client, we need the following
information:

	URL to speak to Craton with

	Username to use to authenticate to Craton

	Password to use to authenticate to Craton

	Project ID to use to communicate with Craton

These items need to be provided to the craton command-line client. We can pass
these as command-line arguments:

$ craton --craton-url <craton-url> \
 --os-username <username> \
 --os-password <password> \
 --os-project-id <project-id>

These parameters may also be provided via environment variables. We can create
a file, similar to OpenStack’s openrc file that contains:

~/cratonrc
export CRATON_URL="<craton-url>"
export OS_USERNAME="<username>"
export OS_PASSWORD="<password>"
export OS_PROJECT_ID="<project-id>"

And then source it into our environment:

$ source ~/cratonrc
or
$. ~/cratonrc

And finally we can use craton without those parameters.

Top-Level Options

Craton’s command-line client has several top-level options. These are required
to be specified prior to any sub-command. All of craton’s top-level
command-line options are documented here:

	
--version

	Show the installed version of python-cratonclient.

Example usage:

$ craton --version

	
--format={default,json}

	Specify the format of the output to the terminal. The default value is a
pretty-printed table of information. Alternatively, users may request
pretty-printed JSON.

Example usage:

$ craton --format=json host-list
$ craton --format=json region-show 1

	
--craton-url=URL

	Specify the URL where Craton is reachable.

Example usage:

$ craton --craton-url=https://craton.cloud.corp host-list

	
--craton-version=VERSION

	Control which version of Craton’s API the client should use to
communicate. At the moment, Craton only supports 1 for v1.

Example usage:

$ craton --craton-version=1 region-list

	
--os-project-id=OS_PROJECT_ID

	Provide the Project ID to use when authenticating to Craton.

Example usage:

$ craton --os-project-id=b9f10eca66ac4c279c139d01e65f96b4 cell-list

	
--os-username=OS_USERNAME

	Provide the Username to use when authenticating to Craton.

Example usage:

$ craton --os-username=demo project-list

	
--os-password=OS_PASWORD

	Provide the Pasword to use when authenticating to Craton.

Example usage:

$ craton --os-password=demo devices-list

Subcommands

The craton command-line client has several subcommands. These include (but are
not limited to):

	help

	project-create

	project-delete

	project-list

	project-show

	cloud-create

	cloud-delete

	cloud-list

	cloud-show

	region-create

	region-delete

	region-list

	region-show

	cell-create

	cell-delete

	cell-list

	cell-show

	host-create

	host-delete

	host-list

	host-show

	device-list.

The command-line options available for each command can be found via
craton help <subcommand-name>, e.g.,

$ craton help cell-create
$ craton help host-list

Python API User Guide

Once you have installed python-cratonclient, there are a few things you
need to get started using the Python API:

	You need to know how to authenticate to the Craton API you wish to talk to

Some Craton API services will be deployed using Craton’s in-built
authentication system while others may use Keystone.

	You need your credentials

	You need the location of your Craton API service

This chapter of python-cratonclient’s documentation is broken down into
chapters:

	Authenticating to Craton
	Craton Authentication

	Keystone Authentication

	Communicating with Craton

	Using the Clouds API
	Listing Clouds

	Creating Clouds

	Retrieving a Specific Cloud

	Using a Cloud’s Variables

	Updating a Cloud

	Deleting a Cloud

	Using the Regions API
	Listing Regions

	Creating Regions

	Retrieving a Specific Region

	Using a Region’s Variables

	Updating a Region

	Deleting a Region

	Using the Cells API
	Listing Cells

	Creating Cells

	Retrieving a Specific Cell

	Using a Cell’s Variables

	Updating a Cell

	Deleting a Cell

	Using the Hosts API
	Listing Hosts

	Creating Hosts

	Retrieving a Specific Host

	Using a Host’s Variables

	Updating a Host

	Deleting a Host

	Using the Devices API
	Listing Devices

	Using the Projects API
	Listing Projects

	Creating Projects

	Retrieving a Specific Project

	Using a Project’s Variables

	Updating a Project

	Deleting a Project

Authenticating to Craton

There are two ways to authenticate to Craton:

	Using Craton’s in-built authentication system (the default)

	Using Keystone

Craton Authentication

In the Craton Authentication case, you need the URL for the Craton API
service, your username, project ID, and token. To set up cratonclient for this
authentication, you need only do the following:

from cratonclient import auth
from cratonclient.v1 import client

craton_session = auth.craton_auth(
 username=USERNAME,
 token=TOKEN,
 project_id=PROJECT_ID,
)

craton = client.Client(
 session=craton_session,
 url=URL,
)

Keystone Authentication

When authenticating to Craton using Keystone, you need to know:

	the URL to use to authenticate to Keystone which we will refer to as
AUTH_URL

	the username

	the password

	the project ID or name

	the user domain ID or name

	and the project domain ID or name

Then, we need to do the following:

from cratonclient import auth
from cratonclient.v1 import client

craton_session = auth.keystone_auth(
 auth_url=AUTH_URL,
 password=PASSWORD,
 username=USERNAME,
 user_domain_name=USER_DOMAIN_NAME,
 project_name=PROJECT_NAME,
 project_domain_name=PROJECT_DOMAIN_NAME,
)
craton = client.Client(
 session=craton_session,
 url=URL,
)

Communicating with Craton

Now that you’ve configured your authentication method, you can interact with
your craton object like so:

for region in craton.regions.list():
 print('Region {} contains:'.format(region.name))
 for host in craton.hosts.list(region_id=region.id):
 print(' {}'.format(host.name))

The Craton API has the following resources:

	Cells

	Clouds

	Devices

	Hosts

	Network Devices

	Network Interfaces

	Networks

	Projects

	Regions

	Users

Of these:

	Cells

	Clouds

	Hosts

	Projects

	Regions

Are implemented.

Using the Clouds API

Here we will assume that we already have a
Client instance configured with the appropriate
authentication method (as demonstrated in Authenticating to Craton).

Listing Clouds

The Clouds API implements pagination. This means that by default, it does not
return all clouds known to Craton. To ignore page limits and offsets, we can
allow cratonclient to do handle pagination for us:

for cloud in craton.clouds.list():
 print_cloud_info(cloud)

By default list() will handle
pagination for you. If, instead, you want to handle it yourself you will want
to do something akin to:

first_page_of_clouds = list(craton.clouds.list(autopaginate=False))
marker_id = first_page_of_clouds[-1].id
second_page_of_clouds = list(craton.clouds.list(
 autopaginate=False,
 marker=marker_id,
))
marker_id = second_page_of_clouds[-1].id
third_page_of_clouds = list(craton.clouds.list(
 autopaginate=False,
 marker=marker_id,
))
etc.

A more realistic example, however, might look like this:

clouds_list = None
marker = None
while clouds_list and clouds_list is not None:
 clouds_list = list(craton.clouds.list(
 marker=marker,
 autopaginate=False,
))
 # do something with clouds_list
 if clouds_list:
 marker = clouds_list[-1].id

This will have the effect of stopping the while loop when you eventually
receive an empty list from craton.clouds.list(...).

Creating Clouds

Clouds are the top-level item in Craton. To create a cloud, the only required
item is a name for the cloud. This must be unique among clouds in the same
project.

cloud = craton.clouds.create(
 name='my-cloud-0',
 note='This is my cloud, there are many like it, but this is mine.',
 variables={
 'some-var': 'some-var-value',
 },
)

Retrieving a Specific Cloud

Clouds can be retrieved by id.

cloud = craton.clouds.get(1)

Using a Cloud’s Variables

Once we have a cloud we can introspect its variables like so:

cloud = craton.clouds.get(cloud_id)
cloud_vars = cloud.variables.get()

To update them:

updated_vars = {
 'var-a': 'new-var-a',
 'var-b': 'new-var-b',
 'updated-var': 'updated value',
}
cloud.variables.update(**updated_vars)

To delete them:

cloud.variables.delete('var-a', 'var-b', 'updated-var')

Updating a Cloud

We can update a cloud’s attributes (but not its variables) like so:

craton.clouds.update(
 cloud_id,
 name='new name',
 note='Updated note.',
)

Most attributes that you can specify on creation can also be specified for
updating the cloud as well.

Deleting a Cloud

We can delete with only its id:

craton.clouds.delete(cloud_id)

Using the Regions API

Here we will assume that we already have a
Client instance configured with the appropriate
authentication method (as demonstrated in Authenticating to Craton).

Listing Regions

The Regions API implements pagination. This means that by default, it does not
return all regions known to Craton. To ignore page limits and offsets, we can
allow cratonclient to do handle pagination for us:

for region in craton.regions.list():
 print_region_info(region)

By default list() will handle
pagination for you. If, instead, you want to handle it yourself you will want
to do something akin to:

first_page_of_regions = list(craton.regions.list(autopaginate=False))
marker_id = first_page_of_regions[-1].id
second_page_of_regions = list(craton.regions.list(
 autopaginate=False,
 marker=marker_id,
))
marker_id = second_page_of_regions[-1].id
third_page_of_regions = list(craton.regions.list(
 autopaginate=False,
 marker=marker_id,
))
etc.

A more realistic example, however, might look like this:

regions_list = None
marker = None
while regions_list and regions_list is not None:
 regions_list = list(craton.regions.list(
 marker=marker,
 autopaginate=False,
))
 # do something with regions_list
 if regions_list:
 marker = regions_list[-1].id

This will have the effect of stopping the while loop when you eventually
receive an empty list from craton.regions.list(...).

Creating Regions

Regions are required to be part of a Cloud in Craton. To create a region, the
only required items are a name for the region and the ID of the cloud it
belongs to. The name must be unique among regions in the same project.

region = craton.regions.create(
 name='my-region-0',
 cloud_id=cloud_id,
 note='This is my region, there are many like it, but this is mine.',
 variables={
 'some-var': 'some-var-value',
 },
)

Retrieving a Specific Region

Regions can be retrieved by id.

region = craton.regions.get(1)

Using a Region’s Variables

Once we have a region we can introspect its variables like so:

region = craton.regions.get(region_id)
region_vars = region.variables.get()

To update them:

updated_vars = {
 'var-a': 'new-var-a',
 'var-b': 'new-var-b',
 'updated-var': 'updated value',
}
region.variables.update(**updated_vars)

To delete them:

region.variables.delete('var-a', 'var-b', 'updated-var')

Updating a Region

We can update a region’s attributes (but not its variables) like so:

craton.regions.update(
 region_id,
 name='new name',
 note='Updated note.',
)

Most attributes that you can specify on creation can also be specified for
updating the region as well.

Deleting a Region

We can delete with only its id:

craton.regions.delete(region_id)

Using the Cells API

Here we will assume that we already have a
Client instance configured with the appropriate
authentication method (as demonstrated in Authenticating to Craton).

Listing Cells

The Cells API implements pagination. This means that by default, it does not
return all cells known to Craton. To ignore page limits and offsets, we can
allow cratonclient to do handle pagination for us:

for cell in craton.cells.list():
 print_cell_info(cell)

By default list() will handle
pagination for you. If, instead, you want to handle it yourself you will want
to do something akin to:

first_page_of_cells = list(craton.cells.list(autopaginate=False))
marker_id = first_page_of_cells[-1].id
second_page_of_cells = list(craton.cells.list(
 autopaginate=False,
 marker=marker_id,
))
marker_id = second_page_of_cells[-1].id
third_page_of_cells = list(craton.cells.list(
 autopaginate=False,
 marker=marker_id,
))
etc.

A more realistic example, however, might look like this:

cells_list = None
marker = None
while cells_list and cells_list is not None:
 cells_list = list(craton.cells.list(
 marker=marker,
 autopaginate=False,
))
 # do something with cells_list
 if cells_list:
 marker = cells_list[-1].id

This will have the effect of stopping the while loop when you eventually
receive an empty list from craton.cells.list(...).

Creating Cells

Cells live below a Region in Craton. To create a cell, the only required items
are a name for the cell, a cloud ID, and a region ID. The name must be
unique among cells in the same project.

cell = craton.cells.create(
 name='my-cell-0',
 cloud_id=cloud_id,
 region_id=region_id,
 note='This is my cell, there are many like it, but this is mine.',
 variables={
 'some-var': 'some-var-value',
 },
)

Retrieving a Specific Cell

Cells can be retrieved by id.

cell = craton.cells.get(1)

Using a Cell’s Variables

Once we have a cell we can introspect its variables like so:

cell = craton.cells.get(cell_id)
cell_vars = cell.variables.get()

To update them:

updated_vars = {
 'var-a': 'new-var-a',
 'var-b': 'new-var-b',
 'updated-var': 'updated value',
}
cell.variables.update(**updated_vars)

To delete them:

cell.variables.delete('var-a', 'var-b', 'updated-var')

Updating a Cell

We can update a cell’s attributes (but not its variables) like so:

craton.cells.update(
 cell_id,
 name='new name',
 note='Updated note.',
)

Most attributes that you can specify on creation can also be specified for
updating the cell as well.

Deleting a Cell

We can delete with only its id:

craton.cells.delete(cell_id)

Using the Hosts API

Here we will assume that we already have a
Client instance configured with the appropriate
authentication method (as demonstrated in Authenticating to Craton).

Listing Hosts

The Hosts API implements pagination. This means that by default, it does not
return all hosts known to Craton. To ignore page limits and offsets, we can
allow cratonclient to do handle pagination for us:

for host in craton.hosts.list():
 print_host_info(host)

By default list() will handle
pagination for you. If, instead, you want to handle it yourself you will want
to do something akin to:

first_page_of_hosts = list(craton.hosts.list(autopaginate=False))
marker_id = first_page_of_hosts[-1].id
second_page_of_hosts = list(craton.hosts.list(
 autopaginate=False,
 marker=marker_id,
))
marker_id = second_page_of_hosts[-1].id
third_page_of_hosts = list(craton.hosts.list(
 autopaginate=False,
 marker=marker_id,
))
etc.

A more realistic example, however, might look like this:

hosts_list = None
marker = None
while hosts_list and hosts_list is not None:
 hosts_list = list(craton.hosts.list(
 marker=marker,
 autopaginate=False,
))
 # do something with hosts_list
 if hosts_list:
 marker = hosts_list[-1].id

This will have the effect of stopping the while loop when you eventually
receive an empty list from craton.hosts.list(...).

Creating Hosts

Hosts live inside either a Region or Cell in Craton. To create a host, one
needs:

	A unique name

	A unique IP address

	A “device type” (this is freeform), e.g., “server”, “container”, “nova-vm”,
etc.

	A cloud ID

	A region ID

host = craton.hosts.create(
 name='my-host-0',
 ip_address='127.0.1.0',
 device_type='server',
 cloud_id=cloud_id,
 region_id=region_id,
 note='This is my host, there are many like it, but this is mine.',
 variables={
 'some-var': 'some-var-value',
 },
)

Retrieving a Specific Host

Hosts can be retrieved by id.

host = craton.hosts.get(1)

Using a Host’s Variables

Once we have a host we can introspect its variables like so:

host = craton.hosts.get(host_id)
host_vars = host.variables.get()

To update them:

updated_vars = {
 'var-a': 'new-var-a',
 'var-b': 'new-var-b',
 'updated-var': 'updated value',
}
host.variables.update(**updated_vars)

To delete them:

host.variables.delete('var-a', 'var-b', 'updated-var')

Updating a Host

We can update a host’s attributes (but not its variables) like so:

craton.hosts.update(
 host_id,
 name='new name',
 note='Updated note.',
)

Most attributes that you can specify on creation can also be specified for
updating the host as well.

Deleting a Host

We can delete with only its id:

craton.hosts.delete(host_id)

Using the Devices API

Here we will assume that we already have a
Client instance configured with the appropriate
authentication method (as demonstrated in Authenticating to Craton).

Note

The Devices API is quite unlike other API endpoints presently in craton.
At the moment, it returns both hosts and network devices. It concatenates
the two lists in an indeterminate manner. On one invocation, you may
receive the hosts first and then the network devices, on another you may
receive them in the alternate order. If more items are returned in these
listings, then the number of different orderings will only increase
factorially.

Listing Devices

The Devices API implements pagination. This means that by default, it does not
return all devices known to Craton. To ignore page limits and offsets, we can
allow cratonclient to do handle pagination for us:

for device in craton.devices.list():
 print_device_info(device)

By default list() will handle
pagination for you.

Using the Projects API

Here we will assume that we already have a
Client instance configured with the appropriate
authentication method (as demonstrated in Authenticating to Craton).

Listing Projects

The Projects API implements pagination. This means that by default, it does not
return all projects known to Craton. To ignore page limits and offsets, we can
allow cratonclient to do handle pagination for us:

for project in craton.projects.list():
 print_project_info(project)

By default list() will handle
pagination for you. If, instead, you want to handle it yourself you will want
to do something akin to:

first_page_of_projects = list(craton.projects.list(autopaginate=False))
marker_id = first_page_of_projects[-1].id
second_page_of_projects = list(craton.projects.list(
 autopaginate=False,
 marker=marker_id,
))
marker_id = second_page_of_projects[-1].id
third_page_of_projects = list(craton.projects.list(
 autopaginate=False,
 marker=marker_id,
))
etc.

A more realistic example, however, might look like this:

projects_list = None
marker = None
while projects_list and projects_list is not None:
 projects_list = list(craton.projects.list(
 marker=marker,
 autopaginate=False,
))
 # do something with projects_list
 if projects_list:
 marker = projects_list[-1].id

This will have the effect of stopping the while loop when you eventually
receive an empty list from craton.projects.list(...).

Creating Projects

Projects are top-level items in Craton. To create a project, one needs:

	A unique name

	Permission to create new projects

project = craton.projects.create(
 name='my-project-0',
 variables={
 'some-var': 'some-var-value',
 },
)

Retrieving a Specific Project

Projects can be retrieved by id.

project = craton.projects.get(1)

Using a Project’s Variables

Once we have a project we can introspect its variables like so:

project = craton.projects.get(project_id)
project_vars = project.variables.get()

To update them:

updated_vars = {
 'var-a': 'new-var-a',
 'var-b': 'new-var-b',
 'updated-var': 'updated value',
}
project.variables.update(**updated_vars)

To delete them:

project.variables.delete('var-a', 'var-b', 'updated-var')

Updating a Project

We can update a project’s attributes (but not its variables) like so:

craton.projects.update(
 project_id,
 name='new name',
)

Most attributes that you can specify on creation can also be specified for
updating the project as well.

Deleting a Project

We can delete with only its id:

craton.projects.delete(project_id)

Python API Reference Documentation

This chapter of python-cratonclient’s documentation focuses entirely on
the API of the different objects involved in the use of cratonclient’s
Python API.

Version-less Objects

	
class cratonclient.session.Session(session=None, username=None, token=None, project_id=None)

	Management class to allow different types of sessions to be used.

If an instance of Craton is deployed with Keystone Middleware, this allows
for a keystoneauth session to be used so authentication will happen
immediately.

v1 API Documentation

	
class cratonclient.v1.client.Client(session, url)

	Craton v1 API Client.

	
cells

	The canonical way to list, get, delete, or update cell objects via a
CellManager instance.

	
clouds

	The canonical way to list, get, delete, or update cloud objects via a
CloudManager instance.

	
devices

	The canonical way to list devicess via a
DeviceManager instance.

	
hosts

	The canonical way to list, get, delete, or update host objects via a
HostManager instance.

	
projects

	The canonical way to list, get, delete, or update project objects via
a ProjectManager instance.

	
regions

	The canonical way to list, get, delete, or update region objects via a
RegionManager instance.

Cells

	
class cratonclient.v1.cells.Cell(manager, info, loaded=False)

	Representation of a Region.

	
delete()

	Delete the resource from the service.

	
get()

	Support for lazy loading details.

Some clients, such as novaclient have the option to lazy load the
details, details which can be loaded with this function.

	
human_id

	Human-readable ID which can be used for bash completion.

	
is_loaded()

	Check if the resource has been loaded.

	
class cratonclient.v1.cells.CellManager(session, url, **extra_request_kwargs)

	A manager for cells.

	
create(skip_merge=False, **kwargs)

	Create a new item based on the keyword arguments provided.

	
delete(item_id=None, skip_merge=True, json=None, **kwargs)

	Delete the item based on the keyword arguments provided.

	
get(item_id=None, skip_merge=True, **kwargs)

	Retrieve the item based on the keyword arguments provided.

	
list(skip_merge=False, **kwargs)

	Generate the items from this endpoint.

	
update(item_id=None, skip_merge=True, **kwargs)

	Update the item based on the keyword arguments provided.

Clouds

	
class cratonclient.v1.clouds.Cloud(manager, info, loaded=False)

	Representation of a Cloud.

	
delete()

	Delete the resource from the service.

	
get()

	Support for lazy loading details.

Some clients, such as novaclient have the option to lazy load the
details, details which can be loaded with this function.

	
human_id

	Human-readable ID which can be used for bash completion.

	
is_loaded()

	Check if the resource has been loaded.

	
class cratonclient.v1.clouds.CloudManager(session, url, **extra_request_kwargs)

	A manager for clouds.

	
create(skip_merge=False, **kwargs)

	Create a new item based on the keyword arguments provided.

	
delete(item_id=None, skip_merge=True, json=None, **kwargs)

	Delete the item based on the keyword arguments provided.

	
get(item_id=None, skip_merge=True, **kwargs)

	Retrieve the item based on the keyword arguments provided.

	
list(skip_merge=False, **kwargs)

	Generate the items from this endpoint.

	
update(item_id=None, skip_merge=True, **kwargs)

	Update the item based on the keyword arguments provided.

Devices

	
class cratonclient.v1.devices.Device(manager, info, loaded=False)

	Representation of a Device.

	
delete()

	Delete the resource from the service.

	
get()

	Support for lazy loading details.

Some clients, such as novaclient have the option to lazy load the
details, details which can be loaded with this function.

	
human_id

	Human-readable ID which can be used for bash completion.

	
is_loaded()

	Check if the resource has been loaded.

	
class cratonclient.v1.devices.DeviceManager(session, url, **extra_request_kwargs)

	A manager for devices.

	
list(**kwargs)

	Generate the items from this endpoint.

Hosts

	
class cratonclient.v1.hosts.Host(manager, info, loaded=False)

	Representation of a Host.

	
delete()

	Delete the resource from the service.

	
get()

	Support for lazy loading details.

Some clients, such as novaclient have the option to lazy load the
details, details which can be loaded with this function.

	
human_id

	Human-readable ID which can be used for bash completion.

	
is_loaded()

	Check if the resource has been loaded.

	
class cratonclient.v1.hosts.HostManager(session, url, **extra_request_kwargs)

	A manager for hosts.

	
create(skip_merge=False, **kwargs)

	Create a new item based on the keyword arguments provided.

	
delete(item_id=None, skip_merge=True, json=None, **kwargs)

	Delete the item based on the keyword arguments provided.

	
get(item_id=None, skip_merge=True, **kwargs)

	Retrieve the item based on the keyword arguments provided.

	
list(skip_merge=False, **kwargs)

	Generate the items from this endpoint.

	
update(item_id=None, skip_merge=True, **kwargs)

	Update the item based on the keyword arguments provided.

Projects

	
class cratonclient.v1.projects.Project(manager, info, loaded=False)

	Representation of a Project.

	
delete()

	Delete the resource from the service.

	
get()

	Support for lazy loading details.

Some clients, such as novaclient have the option to lazy load the
details, details which can be loaded with this function.

	
human_id

	Human-readable ID which can be used for bash completion.

	
is_loaded()

	Check if the resource has been loaded.

	
class cratonclient.v1.projects.ProjectManager(session, url, **extra_request_kwargs)

	A manager for projects.

	
create(skip_merge=False, **kwargs)

	Create a new item based on the keyword arguments provided.

	
delete(item_id=None, skip_merge=True, json=None, **kwargs)

	Delete the item based on the keyword arguments provided.

	
get(item_id=None, skip_merge=True, **kwargs)

	Retrieve the item based on the keyword arguments provided.

	
list(skip_merge=False, **kwargs)

	Generate the items from this endpoint.

	
update(item_id=None, skip_merge=True, **kwargs)

	Update the item based on the keyword arguments provided.

Regions

	
class cratonclient.v1.regions.Region(manager, info, loaded=False)

	Representation of a Region.

	
delete()

	Delete the resource from the service.

	
get()

	Support for lazy loading details.

Some clients, such as novaclient have the option to lazy load the
details, details which can be loaded with this function.

	
human_id

	Human-readable ID which can be used for bash completion.

	
is_loaded()

	Check if the resource has been loaded.

	
class cratonclient.v1.regions.RegionManager(session, url, **extra_request_kwargs)

	A manager for regions.

	
create(skip_merge=False, **kwargs)

	Create a new item based on the keyword arguments provided.

	
delete(item_id=None, skip_merge=True, json=None, **kwargs)

	Delete the item based on the keyword arguments provided.

	
get(item_id=None, skip_merge=True, **kwargs)

	Retrieve the item based on the keyword arguments provided.

	
list(skip_merge=False, **kwargs)

	Generate the items from this endpoint.

	
update(item_id=None, skip_merge=True, **kwargs)

	Update the item based on the keyword arguments provided.

Variables

	
class cratonclient.v1.variables.Variable(name, value)

	Represents a Craton variable key/value pair.

	
class cratonclient.v1.variables.Variables(manager, info, loaded=False)

	Represents a dictionary of Variables.

	
class cratonclient.v1.variables.VariableManager(session, url, **extra_request_kwargs)

	A CRUD manager for variables.

	
create(skip_merge=False, **kwargs)

	Create a new item based on the keyword arguments provided.

	
delete(*args, **kwargs)

	Wrap crud.CRUDClient’s delete to simplify for the variables.

One can pass in a series of keys to delete, and this will pass the
correct arguments to the crud.CRUDClient.delete function.

>>> craton.hosts.get(1234).variables.delete('var-a', 'var-b')
<Response [204]>

	
get(item_id=None, skip_merge=True, **kwargs)

	Retrieve the item based on the keyword arguments provided.

	
list(skip_merge=False, **kwargs)

	Generate the items from this endpoint.

	
update(item_id=None, skip_merge=True, **kwargs)

	Update the item based on the keyword arguments provided.

Authentication Helpers

	
cratonclient.auth.craton_auth(username, token, project_id, verify=True)

	Configure a cratonclient Session to authenticate to Craton.

This will create, configure, and return a Session object that will use
Craton’s built-in authentication method.

	Parameters:	
	username (str) – The username with which to authentiate against the API.

	token (str) – The token with which to authenticate against the API.

	project_id (str) – The project ID that the user belongs to.

	verify (bool) – (Optional) Whether or not to verify HTTPS certificates provided by the
server. Default: True

	Returns:	Configured cratonclient session.

	Return type:	cratonclient.session.Session

Example:

from cratonclient import auth
from cratonclient.v1 import client

craton = client.Client(session=auth.craton_auth(
 username='demo',
 token='demo',
 project_id='b9f10eca66ac4c279c139d01e65f96b4',
))

	
cratonclient.auth.keystone_auth(auth_url, username, password, verify=True, project_name=None, project_id=None, project_domain_name=None, project_domain_id=None, user_domain_name=None, user_domain_id=None, **auth_parameters)

	Configure a cratonclient Session to authenticate with Keystone.

This will create, configure, and return a Session using thet appropriate
Keystone authentication plugin to be able to communicate and authenticate
to Craton.

Note

Presently, this function supports only V3 Password based
authentication to Keystone. We also do not validate that you specify
required attributes. For example, Keystone will require you provide
project_name or project_id but we will not enforce whether or
not you’ve specified one.

	Parameters:	
	auth_url (str) – The URL of the Keystone instance to authenticate to.

	username (str) – The username with which we will authenticate to Keystone.

	password (str) – The password used to authenticate to Keystone.

	project_name (str) – (Optional) The name of the project the user belongs to.

	project_id (str) – (Optional) The ID of the project the user belongs to.

	project_domain_name (str) – (Optional) The name of the project’s domain.

	project_domain_id (str) – (Optional) The ID of the project’s domain.

	user_domain_name (str) – (Optional) The name of the user’s domain.

	user_domain_id (str) – (Optional) The ID of the user’s domain.

	verify (bool) – (Optional) Whether or not to verify HTTPS certificates provided by the
server. Default: True

	**auth_parameters – Any extra authentication parameters used to authenticate to Keystone.
See the Keystone documentation for usage of:
- trust_id
- domain_id
- domain_name
- reauthenticate

	Returns:	Configured cratonclient session.

	Return type:	cratonclient.session.Session

Example:

from cratonclient import auth
from cratonclient.v1 import client

craton = client.Client(session=auth.keystone_auth(
 auth_url='https://keystone.cloud.org/v3',
 username='admin',
 password='s3cr373p@55w0rd',
 project_name='admin',
 project_domain_name='Default',
 user_domain_name='Default',
))

Fleet Management Service Specifications

All current approved Craton API specifications:

	Testing Plan for cratonclient

All implemented Craton API specifications:

Indices and Tables

	Search Page

Testing Plan for cratonclient

Include the URL of your launchpad blueprint:

https://blueprints.launchpad.net/python-cratonclient/+spec/testing-plan

The python-cratonclient presently has a couple hundred tests that ensure that
it does what we expect. At the moment, however, most of those tests use mocks
to force certain behaviours. While these are valuable tests, we need more real
world tests to ensure that the client does reflect the reality of the API.

Problem description

Using Mocks inside tests can be a very valuable tool for writing fast tests
and reproducing issues that are otherwise difficult to do. Mocks, however, can
make tests incredibly fragile. To have a healthy test suite, we need tests
that avoid mocks altogether.

Proposed change

The existing test suite is a good base to build a better test suite upon.
Going forward, we will still rely on Mock for some tests but we will
instead start to rely on other test methodologies for this client.

First we will implement a new type of integration testing. This will leverage
a library called Betamax [https://pypi.org/project/betamax]. This will allow us to have tests that use real
data and real responses from a Craton server without needing to set a server
up every single time. Betamax will record the requests and responses and allow
our tests to use the saved interactions (request, response pairs) instead of
requiring an active server to be configured.

Next we’ll move our existing integration tests that heavily mock out the
layers below into the unit test directories unless they actually test some
level of integration (i.e., more than one level).

Finally we’ll add the ability to run tests against a live server that will be
configured and managed by docker-py in a way similar to the Craton API
functional tests. These will be part of a separate tox test environment,
similar to the API tests.

Alternatives

Much of the client relies on responses from the API. We could simply require
functional tests for every layer of the client library that interacts with the
API which would leave only utility functions for unit testing. This would
reduce the need for different tests at different levels. This would also
increase the run time of the default test suite by requiring docker containers
be launched for each one.

Security impact

If any impact, this may improve the posture by increasing the testing of the
user’s surface area.

Other end user impact

None

Performance Impact

None

Developer impact

This should be accompanied by developer documentation with information
determining what kind of test to write when and what tests belong in what
categories.

Implementation

Assignee(s)

Primary assignee:
- icordasc

Other contributors:
- None

Work Items

	Add base framework for testing with Betamax.

	Add comprehensive integration tests for the Python API level.

	Move existing “integration” unit tests into appropriate unit test modules.

	Improve shell integration testing. Including parsing PrettyTable output and
using the JSON formatter for better verification of reporting.

	Add functional tests against live Craton servers.

Dependencies

	None

Testing

See above. =)

Documentation Impact

This will require developer reference updates as noted above.

References

N/A

Index

 Symbols
 | C
 | D
 | G
 | H
 | I
 | K
 | L
 | P
 | R
 | S
 | U
 | V

Symbols

 	
 	
 --craton-url=URL

 	craton command line option

 	
 --craton-version=VERSION

 	craton command line option

 	
 --format={default,json}

 	craton command line option

 	
 --os-password=OS_PASWORD

 	craton command line option

 	
 	
 --os-project-id=OS_PROJECT_ID

 	craton command line option

 	
 --os-username=OS_USERNAME

 	craton command line option

 	
 --version

 	craton command line option

C

 	
 	Cell (class in cratonclient.v1.cells)

 	CellManager (class in cratonclient.v1.cells)

 	cells (Client attribute)

 	Client (class in cratonclient.v1.client)

 	Cloud (class in cratonclient.v1.clouds)

 	CloudManager (class in cratonclient.v1.clouds)

 	clouds (Client attribute)

 	
 craton command line option

 	--craton-url=URL

 	--craton-version=VERSION

 	--format={default,json}

 	--os-password=OS_PASWORD

 	--os-project-id=OS_PROJECT_ID

 	--os-username=OS_USERNAME

 	--version

 	
 	craton_auth() (in module cratonclient.auth)

 	create() (cratonclient.v1.cells.CellManager method)

 	(cratonclient.v1.clouds.CloudManager method)

 	(cratonclient.v1.hosts.HostManager method)

 	(cratonclient.v1.projects.ProjectManager method)

 	(cratonclient.v1.regions.RegionManager method)

 	(cratonclient.v1.variables.VariableManager method)

D

 	
 	delete() (cratonclient.v1.cells.Cell method)

 	(cratonclient.v1.cells.CellManager method)

 	(cratonclient.v1.clouds.Cloud method)

 	(cratonclient.v1.clouds.CloudManager method)

 	(cratonclient.v1.devices.Device method)

 	(cratonclient.v1.hosts.Host method)

 	(cratonclient.v1.hosts.HostManager method)

 	(cratonclient.v1.projects.Project method)

 	(cratonclient.v1.projects.ProjectManager method)

 	(cratonclient.v1.regions.Region method)

 	(cratonclient.v1.regions.RegionManager method)

 	(cratonclient.v1.variables.VariableManager method)

 	
 	Device (class in cratonclient.v1.devices)

 	DeviceManager (class in cratonclient.v1.devices)

 	devices (Client attribute)

G

 	
 	get() (cratonclient.v1.cells.Cell method)

 	(cratonclient.v1.cells.CellManager method)

 	(cratonclient.v1.clouds.Cloud method)

 	(cratonclient.v1.clouds.CloudManager method)

 	(cratonclient.v1.devices.Device method)

 	(cratonclient.v1.hosts.Host method)

 	(cratonclient.v1.hosts.HostManager method)

 	(cratonclient.v1.projects.Project method)

 	(cratonclient.v1.projects.ProjectManager method)

 	(cratonclient.v1.regions.Region method)

 	(cratonclient.v1.regions.RegionManager method)

 	(cratonclient.v1.variables.VariableManager method)

H

 	
 	Host (class in cratonclient.v1.hosts)

 	HostManager (class in cratonclient.v1.hosts)

 	hosts (Client attribute)

 	human_id (cratonclient.v1.cells.Cell attribute)

 	(cratonclient.v1.clouds.Cloud attribute)

 	(cratonclient.v1.devices.Device attribute)

 	(cratonclient.v1.hosts.Host attribute)

 	(cratonclient.v1.projects.Project attribute)

 	(cratonclient.v1.regions.Region attribute)

I

 	
 	is_loaded() (cratonclient.v1.cells.Cell method)

 	(cratonclient.v1.clouds.Cloud method)

 	(cratonclient.v1.devices.Device method)

 	(cratonclient.v1.hosts.Host method)

 	(cratonclient.v1.projects.Project method)

 	(cratonclient.v1.regions.Region method)

K

 	
 	keystone_auth() (in module cratonclient.auth)

L

 	
 	list() (cratonclient.v1.cells.CellManager method)

 	(cratonclient.v1.clouds.CloudManager method)

 	(cratonclient.v1.devices.DeviceManager method)

 	(cratonclient.v1.hosts.HostManager method)

 	(cratonclient.v1.projects.ProjectManager method)

 	(cratonclient.v1.regions.RegionManager method)

 	(cratonclient.v1.variables.VariableManager method)

P

 	
 	Project (class in cratonclient.v1.projects)

 	
 	ProjectManager (class in cratonclient.v1.projects)

 	projects (Client attribute)

R

 	
 	Region (class in cratonclient.v1.regions)

 	
 	RegionManager (class in cratonclient.v1.regions)

 	regions (Client attribute)

S

 	
 	Session (class in cratonclient.session)

U

 	
 	update() (cratonclient.v1.cells.CellManager method)

 	(cratonclient.v1.clouds.CloudManager method)

 	(cratonclient.v1.hosts.HostManager method)

 	(cratonclient.v1.projects.ProjectManager method)

 	(cratonclient.v1.regions.RegionManager method)

 	(cratonclient.v1.variables.VariableManager method)

V

 	
 	Variable (class in cratonclient.v1.variables)

 	
 	VariableManager (class in cratonclient.v1.variables)

 	Variables (class in cratonclient.v1.variables)

 _static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/up.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to python-cratonclient's documentation!

 		python-cratonclient

 		Features

 		Installation

 		Contributing

 		Craton CLI User Guide

 		Top-Level Options

 		Subcommands

 		Python API User Guide

 		Authenticating to Craton

 		Craton Authentication

 		Keystone Authentication

 		Communicating with Craton

 		Using the Clouds API

 		Listing Clouds

 		Creating Clouds

 		Retrieving a Specific Cloud

 		Using a Cloud's Variables

 		Updating a Cloud

 		Deleting a Cloud

 		Using the Regions API

 		Listing Regions

 		Creating Regions

 		Retrieving a Specific Region

 		Using a Region's Variables

 		Updating a Region

 		Deleting a Region

 		Using the Cells API

 		Listing Cells

 		Creating Cells

 		Retrieving a Specific Cell

 		Using a Cell's Variables

 		Updating a Cell

 		Deleting a Cell

 		Using the Hosts API

 		Listing Hosts

 		Creating Hosts

 		Retrieving a Specific Host

 		Using a Host's Variables

 		Updating a Host

 		Deleting a Host

 		Using the Devices API

 		Listing Devices

 		Using the Projects API

 		Listing Projects

 		Creating Projects

 		Retrieving a Specific Project

 		Using a Project's Variables

 		Updating a Project

 		Deleting a Project

 		Python API Reference Documentation

 		Version-less Objects

 		v1 API Documentation

 		Cells

 		Clouds

 		Devices

 		Hosts

 		Projects

 		Regions

 		Variables

 		Authentication Helpers

 		Fleet Management Service Specifications

 		Testing Plan for cratonclient

 		Problem description

 		Proposed change

 		Implementation

 		Dependencies

 		Testing

 		Documentation Impact

 		References

 		Indices and Tables

