
Python bindings for CPL recipes
Release 0.7.4

Ole Streicher

Nov 05, 2018

Contents

1 Installation 3
1.1 Prequisites . 3
1.2 Binary packages . 3
1.3 Source code . 3
1.4 Compilation . 4
1.5 Test suite . 4

2 Tutorial 5
2.1 Simple example . 5
2.2 Quick guide . 5

3 The Recipe interface 9
3.1 Static members . 9
3.2 Constructor . 10
3.3 Common attributes and methods . 10
3.4 Recipe parameters . 11
3.5 Recipe frames . 12
3.6 Runtime environment . 13
3.7 Recipe invocation . 14

4 Parallel execution 17

5 The cpl.Parameter class 19

6 The cpl.FrameConfig class 21

7 Execution results 23
7.1 Result frames . 23
7.2 Run statistics . 24
7.3 Execution log . 24
7.4 Thread control . 25
7.5 CPL Exceptions . 25

8 Log messages 27
8.1 Python style logging . 27
8.2 Log message lists . 28

9 cpl.esorex EsoRex legacy support 29

i

9.1 Support for configuration and SOF files . 29
9.2 Convienence logging control . 30

10 cpl.dfs DFS header parsing 33

11 Restrictions for CPL recipes 35
11.1 Technical Background . 35

12 Feedback 37

Python Module Index 39

ii

Python bindings for CPL recipes, Release 0.7.4

This is a non-official python module to access CPL recipes. It is not meant as part of the CPL or the MUSE pipeline
software, but may be useful for testing and analysis.

See also:

http://www.eso.org/sci/software/cpl

“The Common Pipeline Library (CPL) consists of a set of C libraries, which have been developed to standardise
the way VLT instrument pipelines are built, to shorten their development cycle and to ease their maintenance. The
Common Pipeline Library was not designed as a general purpose image processing library, but rather to address two
primary requirements. The first of these was to provide an interface to the VLT pipeline runtime- environment. The
second was to provide a software kit of medium-level tools, which allows astronomical data-reduction tasks to be built
rapidly.” [ESO]

Contents 1

http://www.eso.org/sci/software/cpl
http://www.eso.org/sci/software/cpl/introduction.html

Python bindings for CPL recipes, Release 0.7.4

2 Contents

CHAPTER 1

Installation

1.1 Prequisites

• Python 2.6 or higher,

• Astropy

1.2 Binary packages

On Debian and debian-based systems (Ubuntu, Mint), python-cpl can be installed with the command

apt-get install python-cpl

Python CPL comes with the Ubuntu distribution since 12.04. Debian packages are in Wheezy (Debian 7), Squeeze
(Debian 8), and Testing

1.3 Source code

• Python Package Index

• Git repository. To access, do a:

git clone git://github.com/olebole/python-cpl.git

This gives you the current version in the subdirectory python-cpl. To update to the current version of an
existing repository, do a git pull in the python-cpl directory.

For more detailed information, check the manual page of git(1) and the github page of the project.

3

http://www.python.org/
http://www.astropy.org/
http://packages.debian.org/wheezy/python-cpl
http://packages.debian.org/jessie/python-cpl
http://packages.debian.org/jessie/python-cpl
http://packages.debian.org/testing/python-cpl
http://pypi.python.org/pypi/python-cpl/
http://github.com/olebole/python-cpl
http://github.com/olebole/python-cpl

Python bindings for CPL recipes, Release 0.7.4

1.4 Compilation

For compilation, a C compiler is needed additionally to the software mentioned above.

The installation follows the standard procedure used in python. On default, the installation path /usr/local. If us-
ing a non-standard installation path, add the directory PREFIX/lib/python2.7/site-packages/ (lib64/
python2.7/site-packages/ on 64 bit systems) to your environment variable PYTHONPATH where where
PREFIX is the installation path for the package.

In the source directory of python-cpl, run

python setup.py install --prefix=PREFIX

There are other options available as well; use the --help option to list them.

1.5 Test suite

There are a number of tests defined in test/TestRecipe.py:

python TestRecipe.py

The test recipe needs an installed CPL development environment. The tests may print a memory corruption detection
by glibc. This is normal, since the tests also check this behaviour in the recipe.

Tests are also automatically buils by Travis CI.

4 Chapter 1. Installation

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONPATH
https://docs.python.org/3/using/cmdline.html#cmdoption-help
https://travis-ci.org/olebole/python-cpl

CHAPTER 2

Tutorial

2.1 Simple example

The following code takes BIAS input file names from the command line and writes the MASTER BIAS to the file
name provided with the -o option:

from optparse import OptionParser
import sys
import cpl

parser = OptionParser(usage='%prog files')
parser.add_option('-o', '--output', help='Output file', default='master_bias.fits')
parser.add_option('-b', '--badpix-table', help='Bad pixel table')

(opt, filenames) = parser.parse_args()
if not filenames:

parser.print_help()
sys.exit()

cpl.esorex.init()

muse_bias = cpl.Recipe('muse_bias')
muse_bias.param.nifu = 1
muse_bias.calib.BADPIX_TABLE = opt.badpix_table

res = muse_bias(filenames)
res.MASTER_BIAS.writeto(opt.output)

2.2 Quick guide

Input lines are indicated with “>>>” (the python prompt). The package can be imported with

5

Python bindings for CPL recipes, Release 0.7.4

>>> import cpl

If you migrate from Esorex, you may just init the search path for CPL recipes from the esorex startup:

>>> cpl.esorex.init()

Otherwise, you will need to explicitely set the recipe search path:

>>> cpl.Recipe.path = '/store/01/MUSE/recipes'

List available recipes:

>>> cpl.Recipe.list()
[('muse_quick_image', ['0.2.0', '0.3.0']),
('muse_scipost', ['0.2.0', '0.3.0']),
('muse_scibasic', ['0.2.0', '0.3.0']),
('muse_flat', ['0.2.0', '0.3.0']),
('muse_subtract_sky', ['0.2.0', '0.3.0']),
('muse_bias', ['0.2.0', '0.3.0']),
('muse_ronbias', ['0.2.0', '0.3.0']),
('muse_fluxcal', ['0.2.0', '0.3.0']),
('muse_focus', ['0.2.0', '0.3.0']),
('muse_lingain', ['0.2.0', '0.3.0']),
('muse_dark', ['0.2.0', '0.3.0']),
('muse_combine_pixtables', ['0.2.0', '0.3.0']),
('muse_astrometry', ['0.2.0', '0.3.0']),
('muse_wavecal', ['0.2.0', '0.3.0']),
('muse_exp_combine', ['0.2.0', '0.3.0']),
('muse_dar_correct', ['0.2.0', '0.3.0']),
('muse_standard', ['0.2.0', '0.3.0']),
('muse_create_sky', ['0.2.0', '0.3.0']),
('muse_apply_astrometry', ['0.2.0', '0.3.0']),
('muse_rebin', ['0.2.0', '0.3.0'])]

Create a recipe specified by name:

>>> muse_scibasic = cpl.Recipe('muse_scibasic')

By default, it loads the recipe with the highest version number. You may also explicitely specify the version number:

>>> muse_scibasic = cpl.Recipe('muse_scibasic', version = '0.2.0')

List all parameters:

>>> print muse_scibasic.param
{'ybox': 40, 'passes': 2, 'resample': False, 'xbox': 15, 'dlambda': 1.25,
'cr': 'none', 'thres': 5.8, 'nifu': 0, 'saveimage': True}

Set a parameter:

>>> muse_scibasic.param.nifu = 1

Print the value of a parameter (None if the parameter is set to default)

>>> print muse_scibasic.param.nifu.value
1

List all calibration frames:

6 Chapter 2. Tutorial

http://www.eso.org/sci/software/cpl/esorex.html
https://docs.python.org/3/library/constants.html#None

Python bindings for CPL recipes, Release 0.7.4

>>> print muse_scibasic.calib
{'TRACE_TABLE': None, 'MASTER_SKYFLAT': None, 'WAVECAL_TABLE': None,
'MASTER_BIAS': None, 'MASTER_DARK': None, 'GEOMETRY_TABLE': None,
'BADPIX_TABLE': None, 'MASTER_FLAT': None, 'GAINRON_STAT': None}

Set calibration frames with files:

>>> muse_scibasic.calib.MASTER_BIAS = 'MASTER_BIAS-01.fits'
>>> muse_scibasic.calib.MASTER_FLAT = 'MASTER_FLAT-01.fits'
>>> muse_scibasic.calib.TRACE_TABLE = 'TRACE_TABLE-01.fits'
>>> muse_scibasic.calib.GEOMETRY_TABLE = 'geometry_table.fits'

You may also set calibration frames with astropy.io.fits.HDUList objects. This is especially useful if you
want to change the file on the fly:

>>> import astropy.io.fits
>>> wavecal = astropy.io.fits.open('WAVECAL_TABLE-01_flat.fits')
>>> wavecal[1].data.field('wlcc00')[:] *= 1.01
>>> muse_scibasic.calib.WAVECAL_TABLE = wavecal

To set more than one file for a tag, put the file names and/or astropy.io.fits.HDUList objects into a list:

>>> muse_scibasic.calib.MASTER_BIAS = ['MASTER_BIAS-%02i.fits' % (i+1)
... for i in range(24)]

To run the recipe, call it with the input file names as arguments. The product frames are returned in the return value of
the call. If you don’t specify an input frame tag, the default (first) one of the recipe is used.

>>> res = muse_scibasic('Scene_fusion_1.fits')

Run the recipe with a nondefault tag (use raw data tag as argument name):

>>> res = muse_scibasic(raw = {'SKY':'sky_newmoon_no_noise_1.fits'})

Parameters and calibration frames may be changed for a specific call by specifying them as arguments:

>>> res = muse_scibasic('Scene_fusion_1.fits', param = {'nifu': 2},
... calib = {'MASTER_FLAT': None,
... 'WAVECAL_TABLE': 'WAVECAL_TABLE_noflat.fits'})

The results of a calibration run are astropy.io.fits.HDUList objects. To save them (use output tags as at-
tributes):

>>> res.PIXTABLE_OBJECT.writeto('Scene_fusion_pixtable.fits')

They can also be used directly as input of other recipes.

>>> muse_sky = cpl.Recipe('muse_sky')
...
>>> res_sky = muse_sky(res.PIXTABLE_OBJECT)

If not saved, the output is usually lost! During recipe run, a temporary directory is created where the astropy.io.
fits.HDUList input objects and the output files are put into. This directory is cleaned up afterwards.

To control message verbosity on terminal (use 'debug', 'info', 'warn', 'error' or 'off'):

2.2. Quick guide 7

Python bindings for CPL recipes, Release 0.7.4

>>> cpl.msg.esorex.level = 'debug'

8 Chapter 2. Tutorial

CHAPTER 3

The Recipe interface

class cpl.Recipe(name, filename=None, version=None, threaded=False)
Pluggable Data Reduction Module (PDRM) from a ESO pipeline.

Recipes are loaded from shared libraries that are provided with the pipeline library of the instrument. The
module does not need to be linked to the same library version as the one used for the compilation of python-cpl.
Currently, recipes compiled with CPL versions from 4.0 are supported. The list of supported versions is stored
as cpl.cpl_versions.

The libraries are searched in the directories specified by the class attribute Recipe.path or its subdirectories.
The search path is automatically set to the esorex path when cpl.esorex.init() is called.

3.1 Static members

Recipe.path = ['.']
Search path for the recipes. It may be set to either a string, or to a list of strings. All shared libraries in the search
path and their subdirectories are searched for CPL recipes. On default, the path is set to the current directory.

The search path is automatically set to the esorex path when cpl.esorex.init() is called.

Recipe.memory_mode = 0
CPL memory management mode. The valid values are

0 Use the default system functions for memory handling

1 Exit if a memory-allocation fails, provide checking for memory leaks, limited reporting of memory allocation
and limited protection on deallocation of invalid pointers.

2 Exit if a memory-allocation fails, provide checking for memory leaks, extended reporting of memory alloca-
tion and protection on deallocation of invalid pointers.

Note: This variable is only effective before the CPL library was initialized. Even cpl.Recipe.list()
initializes the library. Therefore it is highly recommended to set this as the first action after importing cpl.

9

Python bindings for CPL recipes, Release 0.7.4

static Recipe.list()
Return a list of recipes.

Searches for all recipes in in the directory specified by the class attribute Recipe.path or its subdirectories.

static Recipe.set_maxthreads(n)
Set the maximal number of threads to be executed in parallel.

Note: This affects only threads that are started afterwards with the threaded = True flag.

See also:

Parallel execution

3.2 Constructor

Recipe.__init__(name, filename=None, version=None, threaded=False)
Try to load a recipe with the specified name in the directory specified by the class attribute Recipe.path or
its subdirectories.

Parameters

• name (str) – Name of the recipe. Required. Use cpl.Recipe.list() to get a list of
available recipes.

• filename (str) – Name of the shared library. Optional. If not set, Recipe.path is
searched for the library file.

• version (int or str) – Version number. Optional. If not set, the newest version is
loaded.

• threaded (bool) – Run the recipe in the background, returning immediately after calling
it. Default is False. This may be also set as an attribute or specified as a parameter when
calling the recipe.

3.3 Common attributes and methods

These attributes and methods are available for all recipes.

Recipe.__name__
Recipe name.

Recipe.__file__ = None
Shared library file name.

Recipe.__author__
Author name

Recipe.__email__
Author email

Recipe.__copyright__
Copyright string of the recipe

Recipe.description
Pair (synopsis, description) of two strings.

10 Chapter 3. The Recipe interface

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Python bindings for CPL recipes, Release 0.7.4

Recipe.version
Pair (versionnumber, versionstring) of an integer and a string. The integer will be increased on development
progress.

Recipe.cpl_version
Version of the CPL library that is linked to the recipe, as a string

Recipe.cpl_description
Version numbers of CPL and its libraries that were linked to the recipe, as a string.

Recipe.output_dir
Output directory if specified, or None. The recipe will write the output files into this directory and return
their file names. If the directory does not exist, it will be created before the recipe is executed. Output files
within the output directory will be silently overwritten. If no output directory is set, the recipe call will result
in astropy.io.fits.HDUList result objects. The output directory may be also set as parameter in the
recipe call.

Recipe.temp_dir
Base directory for temporary directories where the recipe is executed. The working dir is created as a subdir
with a random file name. If set to None, the system temp dir is used. Defaults to '.'.

Recipe.threaded
Specify whether the recipe should be executed synchroniously or as an extra process in the background.

See also:

Parallel execution

Recipe.tag
Default tag when the recipe is called. This is set automatically only if the recipe provided the information about
input tags. Otherwise this tag has to be set manually.

Recipe.tags
Possible tags for the raw input frames, or ‘None if this information is not provided by the recipe.

Recipe.output
Return a dictionary of output frame tags.

Keys are the tag names, values are the corresponding list of output tags. If the recipe does not provide this
information, an exception is raised.

Recipe.memory_dump
If set to 1, a memory dump is issued to stdout if the memory was not totally freed after the execution. If set to
2, the dump is always issued. Standard is 0: nothing dumped.

3.4 Recipe parameters

Recipe parameters may be set either via the Recipe.param attribute or as named keywords on the run execution.
A value set in the recipe call will overwrite any value that was set previously in the Recipe.param attribute for that
specific call.

Recipe.param
This attribute contains all recipe parameters. It is iteratable and then returns all individual parameters:

>>> for p in muse_scibasic.param:
... print p.name, p.value, p.default
...
nifu None 99
cr None dcr

(continues on next page)

3.4. Recipe parameters 11

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python bindings for CPL recipes, Release 0.7.4

(continued from previous page)

xbox None 15
ybox None 40
passes None 2
thres None 4.5
sample None False
dlambda None 1.2

On interactive sessions, all parameter settings can be easily printed by printing the param attribute of the recipe:

>>> print muse_scibasic.param
[Parameter('nifu', default=99), Parameter('cr', default=dcr),
Parameter('xbox', default=15), Parameter('ybox', default=40),
Parameter('passes', default=2), Parameter('thres', default=4.5),
Parameter('sample', default=False), Parameter('dlambda', default=1.2)]

To set the value of a recipe parameter, the value can be assigned to the according attribute:

>>> muse_scibasic.param.nifu = 1

The new value is checked against parameter type, and possible value limitations provided by the recipe. Hyphens
in parameter names are converted to underscores. In a recipe call, the same parameter can be specified as dict:

>>> res = muse_scibasic(..., param = {'nifu':1})

To reset a value to its default, it is either deleted, or set to None. The following two lines:

>>> muse_scibasic.param.nifu = None
>>> del muse_scibasic.param.nifu

will both reset the parameter to its default value.

All parameters can be set in one step by assigning a dict to the parameters. In this case, all values that are not
in the map are reset to default, and unknown parameter names are ignored. The keys of the map may contain
contain the name or the fullname with context:

>>> muse_scibasic.param = { 'nifu':1, 'xbox':11, 'resample':True }

See also:

cpl.Parameter

3.5 Recipe frames

There are three groups of frames: calibration (“calib”) frames, input (“raw”) frames, and result (“product”) frames.
Calibration frames may be set either via the Recipe.calib attribute or as named keywords on the run execution.
A value set in the recipe call will overwrite any value that was set previously in the Recipe.calib attribute for
that specific call. Input frames are always set in the recipe call. If their tag name was not given, the tag name from
Recipe.tag is used if the recipe provides it.

Recipe.calib
This attribute contains the calibration frames for the recipe. It is iterable and then returns all calibration frames:

>>> for f in muse_scibasic.calib:
... print f.tag, f.min, f.max, f.frames

(continues on next page)

12 Chapter 3. The Recipe interface

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict

Python bindings for CPL recipes, Release 0.7.4

(continued from previous page)

TRACE_TABLE 1 1 None
WAVECAL_TABLE 1 1 None
MASTER_BIAS 1 1 master_bias_0.fits
MASTER_DARK None 1 None
GEOMETRY_TABLE 1 1 None
BADPIX_TABLE None None ['badpix_1.fits', 'badpix_2.fits']
MASTER_FLAT None 1 None

Note: Only MUSE recipes are able to provide the full list of calibration frames and the minimal/maximal
number of calibration frames. For other recipes, only frames that were set by the users are returned here. Their
minimum and maximum value will be set to None.

In order to assing a FITS file to a tag, the file name or the astropy.io.fits.HDUList is assigned to the
calibration attribute:

>>> muse_scibasic.calib.MASTER_BIAS = 'MASTER_BIAS_0.fits'

Using astropy.io.fits.HDUList is useful when it needs to be patched before fed into the recipe.

>>> master_bias = astropy.io.fits.open('MASTER_BIAS_0.fits')
>>> master_bias[0].header['HIERARCH ESO DET CHIP1 OUT1 GAIN'] = 2.5
>>> muse_scibasic.calib.MASTER_BIAS = master_bias

Note that astropy.io.fits.HDUList objects are stored in temporary files before the recipe is called
which may produce some overhead. Also, the CPL then assigns the random temporary file names to the FITS
keywords HIERARCH ESO PRO RECm RAWn NAME which should be corrected afterwards if needed.

To assign more than one frame, put them into a list:

>>> muse_scibasic.calib.BADPIX_TABLE = ['badpix1.fits', 'badpix2.fits']

All calibration frames can be set in one step by assigning a dict to the parameters. In this case, frame that
are not in the map are set are removed from the list, and unknown frame tags are silently ignored. The key of
the map is the tag name; the values are either a string, or a list of strings, containing the file name(s) or the
astropy.io.fits.HDUList objects.

>>> muse_scibasic.calib = { 'MASTER_BIAS':'master_bias_0.fits',
... 'BADPIX_TABLE':['badpix_1.fits', 'badpix_2.fits'] }

In a recipe call, the calibration frame lists may be overwritten by specifying them in a dict:

>>> res = muse_scibasic(..., calib = {'MASTER_BIAS':'master_bias_1.fits'})

See also:

cpl.FrameConfig

3.6 Runtime environment

For debugging purposes, the runtime environment of the recipe may be changed. The change may be either done by
specifying the Recipe.env attribute of as a parameter on the recipe invocation. The change will have no influence
on the environment of the framework itself.

3.6. Runtime environment 13

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Python bindings for CPL recipes, Release 0.7.4

Note: Some variables are only read on startup (like MALLOC_CHECK_), changing or deleting them will have no
effect.

Recipe.env = None
Environment changes for the recipe. This is a dict with the name of the environment variable as the key and
the content as the value. It is possible to overwrite a specific environment variable. Specifying None as value
will remove the variable:

>>> muse_flat.env['MUSE_RESAMPLE_LAMBDA_LOG'] = '1'
>>> muse_flat.env['MUSE_TIMA_FILENAME'] = 'tima.fits'

In a recipe call, the runtime environment may be overwritten as well:

>>> res = muse_flat(..., env = {'MUSE_PLOT_TRACE':'true'})

3.7 Recipe invocation

Recipe.__call__(*data, **ndata)
Call the recipes execution with a certain input frame.

Parameters

• raw (astropy.io.fits.HDUlist or str or a list of them, or dict) – Data input
frames.

• tag (str) – Overwrite the tag attribute (optional).

• threaded (bool) – overwrite the threaded attribute (optional).

• loglevel (int) – set the log level for python logging (optional).

• logname (str) – set the log name for the python logging.Logger (optional, default
is ‘cpl.’ + recipename).

• output_dir (str) – Set or overwrite the output_dir attribute. (optional)

• param (dict) – overwrite the CPL parameters of the recipe specified as keys with their
dictionary values (optional).

• calib (dict) – Overwrite the calibration frame lists for the tags specified as keys with
their dictionary values (optional).

• env (dict) – overwrite environment variables for the recipe call (optional).

Returns The object with the return frames as astropy.io.fits.HDUList objects

Return type cpl.Result

Raise exceptions.ValueError If the invocation parameters are incorrect.

Raise exceptions.IOError If the temporary directory could not be built, the recipe could not
start or the files could not be read/written.

Raise cpl.CplError If the recipe returns an error.

Raise cpl.RecipeCrash If the CPL recipe crashes with a SIGSEV or a SIGBUS

14 Chapter 3. The Recipe interface

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Python bindings for CPL recipes, Release 0.7.4

Note: If the recipe is executed in the background (threaded = True) and an exception occurs, this excep-
tion is raised whenever result fields are accessed.

See also:

Parallel execution

3.7. Recipe invocation 15

Python bindings for CPL recipes, Release 0.7.4

16 Chapter 3. The Recipe interface

CHAPTER 4

Parallel execution

The library allows a simple parallelization of recipe processing. The parallelization is done using independent pro-
cesses and thus does not depend on parallelization features in the CPL or the recipe implementation.

To specify that a recipe should be executed in the background, the threaded attribute needs to be set to True. This
may be done either in the recipe constructor, as a recipe attribute or as a parameter of the execution call. Each of the
following three recipes will start a background process for the BIAS calculation:

Create a threaded recipe
r1 = cpl.Recipe('muse_bias', threaded = True)
result1 = r1(['bias1.fits', 'bias2.fits', 'bias3.fits'])

Prepare a recipe for background execution
r2 = cpl.Recipe('muse_bias')
r2.threaded = True
result2 = r2(['bias1.fits', 'bias2.fits', 'bias3.fits'])

Execute a recipe in background
r3 = cpl.Recipe('muse_bias')
result3 = r3(['bias1.fits', 'bias2.fits', 'bias3.fits'], threaded = True)

If the threaded attribute is set to True, the execution call of the recipe immediately returns while the recipe is
executed in the background. The current thread is stopped only if any of the results of the recipe is accessed and the
recipe is still not finished.

The result frame of a background recipe is a subclass of threading.Thread. This interface may be used to control
the thread execution.

The simples way to use parallel processing is to create a list where the members are created by the execution of the
recipe. The following example shows the parallel execution of the ‘muse_focus’ recipe:

muse_focus = cpl.Recipe('muse_focus', threaded = True)
muse_focus.calib.MASTER_BIAS = 'master_bias.fits'

Create a list of input files
files = ['MUSE_CUNGC%02i.fits' % i for i in range(20, 30)]

(continues on next page)

17

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/threading.html#threading.Thread

Python bindings for CPL recipes, Release 0.7.4

(continued from previous page)

Create a list of recipe results. Note that for each entry, a background
process is started.
results = [muse_focus(f) for f in files]

Save the results. The current thread is stopped until the according
recipe is finished.
for i, res in enumerate(results):

res.FOCUS_TABLE.writeto('FOCUS_TABLE_%02i.fits' % (i+1))

When using parallel processing note that the number of parallel processes is not limited by default, so this feature may
produce a high load when called with a large number of processes. Parallelization in the recipe itself or in the CPL
may also result in additional load.

To limit the maximal number of parallel processes, the function cpl.Recipe.set_maxthreads() can be called
with the maximal number of parallel processes. Note that this function controls only the threads that are started
afterwards.

If the recipe execution fails, the according exception will be raised whenever one of the results is accessed.

Note: Recipes may contain an internal parallelization using the openMP interface. Although it is recommended to
leave them untouched, they may be changed via environment variable settungs in the cpl.Recipe.env attribute.
See http://gcc.gnu.org/onlinedocs/libgomp/Environment-Variables.html for a list of environment variables.

18 Chapter 4. Parallel execution

http://openmp.org
http://gcc.gnu.org/onlinedocs/libgomp/Environment-Variables.html

CHAPTER 5

The cpl.Parameter class

class cpl.Parameter(name)
Runtime configuration parameter of a recipe. Parameters are designed to handle monitor/control data and they
provide a standard way to pass information to the recipe.

The CPL implementation supports three classes of parameters: a plain value, a value within a given range, or
a value as part of an enumeration. When a parameter is created it is created for a particular value type. In the
latter two cases, validation is performed whenever the value is set.

Attributes:

value
The value of the parameter, or None if set to default

default
The default value of the parameter (readonly).

name
The parameter name (readonly). Parameter names are unique. They define the identity of a given parame-
ter.

context
The parameter context (readonly). The context usually consists of the instrument name and the recipe
name, separated by a dot. The context is used to associate parameters together.

range
The numeric range of a parameter, or None if the parameter range is unlimited (readonly).

sequence
A list of possible values for the parameter if the parameter are limited to an enumeration of possible
values (readonly).

The following example prints the attributes of one parameter:

>>> print 'name: ', muse_scibasic.param.cr.name
name: cr
>>> print 'fullname:', muse_scibasic.param.cr.fullname

(continues on next page)

19

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list

Python bindings for CPL recipes, Release 0.7.4

(continued from previous page)

fullname: muse.muse_scibasic.cr
>>> print 'context: ', muse_scibasic.param.cr.context
context: muse.muse_scibasic
>>> print 'sequence:', muse_scibasic.param.cr.sequence
sequence: ['dcr', 'none']
>>> print 'range: ', muse_scibasic.param.cr.range
range: None
>>> print 'default: ', muse_scibasic.param.cr.default
default: dcr
>>> print 'value: ', muse_scibasic.param.cr.value
value: None

See also:

Recipe.param

20 Chapter 5. The cpl.Parameter class

CHAPTER 6

The cpl.FrameConfig class

class cpl.FrameConfig(tag, min_frames=0, max_frames=0, frames=None)
Frame configuration.

Each FrameConfig object stores information about one the data type a recipe can process. They are used
for defining the calibration files. However, since this information is not generally provided by CPL recipes, it
contains only dummy information, except for the MUSE recipes.

The objects stores a frame tag, a unique identifier for a certain kind of frame, the minimum and maximum
number of frames needed.

Attributes:

tag
Category tag name. The tag name is used to distinguish between different types of files. An examples of
tag names is ‘MASTER_BIAS’ which specifies the master bias calibration file(s).

min
Minimal number of frames, or None if not specified. A frame is required if the min is set to a value
greater than 0.

max
Maximal number of frames, or None if not specified

frames
List of frames (file names or astropy.io.fits.HDUList objects) that are assigned to this frame
type.

See also:

Recipe.calib

21

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

Python bindings for CPL recipes, Release 0.7.4

22 Chapter 6. The cpl.FrameConfig class

CHAPTER 7

Execution results

7.1 Result frames

class cpl.Result
Calling cpl.Recipe.__call__() returns an object that contains all result (‘production’) frames in at-
tributes. All results for one tag are summarized in one attribute of the same name. So, the muse_bias recipe
returns a frame with the tag MASTER_BIAS in the according attribute:

res = muse_bias(...)
res.MASTER_BIAS.writeto('master_bias')

The attribute content is either a astropy.io.fits.HDUList or a list() of HDU lists, depending on
the recipe and the call: If the recipe produces one out put frame of a tag per input file, the attribute contains a
list if the recipe was called with a list, and if the recipe was called with a single input frame, the result attribute
will also contain a single input frame. If the recipe combines all input frames to one output frame, a single
astropy.io.fits.HDUList es returned, independent of the input parameters. The following examples
will illustrate this:

muse_scibasic = cpl.Recipe('muse_scibasic')
...
Only single input frame, so we get one output frame
res = muse_scibasic('raw.fits')
res.PIXTABLE_OBJ.writeto('pixtable.fits')

List of input frames results in a list of output frames
res = muse_scibasic(['raw1.fits', 'raw2.fits', 'raw3.fits'])
for i, h in res.PIXTABLE_OBJ:

h.writeto('pixtable%i.fits' % (i+1))

If we call the recipe with a list containing a single frame, we get a list
with a single frame back
res = muse_scibasic(['raw1.fits'])
res.PIXTABLE_OBJ[0].writeto('pixtable1.fits')

(continues on next page)

23

Python bindings for CPL recipes, Release 0.7.4

(continued from previous page)

The bias recipe always returns one MASTER BIAS, regardless of number of
input frames. So we always get a single frame back.
muse_bias = cpl.Recipe('muse_bias')
...
res = muse_bias(['bias1.fits', 'bias2.fits', 'bias3.fits'])
res.MASTER_BIAS.writeto('master_bias.fits')

Note: This works well only for MUSE recipes. Other recipes dont provide the necessary information about the
recipe.

7.2 Run statistics

In Addition to the result frames the cpl.Result object provides the attribute cpl.Result.stat
which contains several statistics of the recipe execution:

cpl.Result.return_code
The return code of the recipe. Since an exception is thrown if the return code indicates an error, this
attribute is always set to 0.

cpl.Result.stat.user_time
CPU time in user mode, in seconds.

cpl.Result.stat.sys_time
CPU time in system mode, in seconds.

cpl.Result.stat.memory_is_empty
Flag whether the recipe terminated with freeing all available Memory. This information is only avail-
able if the CPL internal memory allocation functions are used. If this information is not available,
this flag ist set to None.

See also:

Recipe.memory_mode

7.3 Execution log

cpl.Result.log
List of log messages for the recipe.

See also:

cpl.logger.LogList

cpl.Result.error
If one or more error was set during the recipe run, the first error is stored in this attribute. The
following errors are chained and can be accessed with the cpl.CplError.next attribute.

Note: An error here does not indicate a failed recipe execution, since a failed execution would
result in a non-zero return code, and an exception would be thrown.

See also:

24 Chapter 7. Execution results

https://docs.python.org/3/library/constants.html#None

Python bindings for CPL recipes, Release 0.7.4

cpl.CplError

7.4 Thread control

If the recipe was called in the background (see Parallel execution), the result object is returned imme-
diately and is dervived from threading.Thread. Its interface can be used to control the thread
execution:

cpl.Result.isAlive()
Returns whether the recipe is still running

cpl.Result.join(timeout = None)
Wait until the recipe terminates. This blocks the calling thread until the recipe terminates – either
normally or through an unhandled exception – or until the optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying
a timeout for the operation in seconds (or fractions thereof). As join() always returns None, you
must call isAlive() after join() to decide whether a timeout happened – if the recipe is still
running, the join() call timed out.

When the timeout argument is not present or None, the operation will block until the recipe terminates.

A thread can be cpl.Result.join() ed many times.

Like in the foreground execution, the output frames may be retrieved as attributes of the cpl.Result
frame. If any of the attributes is accessed, the calling thread will block until the recipe is terminated. If
the recipe execution raised an exception, this exception will be raised whenever an attribute is accessed.

7.5 CPL Exceptions

exception cpl.CplError(retval, res, logger=None)
Error message from the recipe.

If the CPL recipe invocation returns an error, it is converted into a cpl.CplError exception and no frames
are returned. Also, the error is notified in the log file.

The exception is raised on recipe invocation, or when accessing the result frames if the recipe was started in
background (cpl.Recipe.threaded set to True).

Attributes:

code
The CPL error code returned from the recipe.

msg
The supplied error message.

filename
The source file name where the error occurred.

line
The line number where the error occurred.

log
Log lines of the recipe that lead to this exception.

See also:

cpl.logger.LogList

7.4. Thread control 25

https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True

Python bindings for CPL recipes, Release 0.7.4

next_error
Next error, or None.

exception cpl.RecipeCrash(bt_file)
Recipe crash exception

If the CPL recipe crashes with a SIGSEV or a SIGBUS, the C stack trace is tried to conserved in this exception.
The stack trace is obtained with the GNU debugger gdb. If the debugger is not available, or if the debugger
cannot be attached to the crashed recipe, the Exception remains empty.

When converted to a string, the Exception will return a stack trace similar to the Python stack trace.

The exception is raised on recipe invocation, or when accessing the result frames if the recipe was started in
background (cpl.Recipe.threaded set to True).

Attributes:

elements
List of stack elements, with the most recent element (the one that caused the crash) at the end. Each stack
element is a collections.namedtuple() with the following attributes:

filename
Source file name, including full path, if available.

line
Line number, if available

func
Function name, if available

params
Dictionary parameters the function was called with. The key here is the parameter name, the value is
a string describing the value set.

localvars
Dictionary of local variables of the function, if available. The key here is the parameter name, the
value is a string describing the value set.

signal
Signal that caused the crash.

26 Chapter 7. Execution results

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/collections.html#collections.namedtuple

CHAPTER 8

Log messages

We provide CPL log messages in two different ways: via Python logging and as a list of messages in the cpl.Result
object.

For convienience, simple terminal messages and predefined log file output in a style similar to the original CPL
messages.

8.1 Python style logging

The preferred and most flexible way to do logging is the use of the loggingmodule of Python. A basic setup (similar
to the style used in esorex) is:

import logging

log = logging.getLogger()
log.setLevel(logging.INFO)
ch = logging.FileHandler('cpl_recipe.log')
ch.setLevel(logging.INFO)
fr = logging.Formatter('%(created)s [%(levelname)s] %(name)s: %(message)s',

'%H:%M:%S')
ch.setFormatter(fr)
log.addHandler(ch)

The default basic log name for CPL log messages in the recipes is cpl.recipename. The log name can be changed
with the logname parameter of cpl.Recipe.__call__() to follow own naming rules, or to separate the output
of recipes that are executed in parallel:

res = [muse_focus(f, logname = 'cpl.muse_focus%02i' % (i+1), threading = True)
for i, f in enumerate(inputfiles)]

To the basic log name the function name is appended to allow selective logging of a certain function. The following
sample line:

27

https://docs.python.org/3/library/logging.html#module-logging
http://www.eso.org/sci/software/cpl/esorex.html

Python bindings for CPL recipes, Release 0.7.4

logging.getLogger('cpl.muse_sky.muse_sky_create_skymask').setLevel(logging.DEBUG)

will log the debug messages from muse_sky_create_skymask() additionally to the other messages.

Note: Since the log messages are cached in CPL, they may occur with some delay in the python log module. Also, log
messages from different recipes running in parallel may be mixed in their chronological order. The resolution of the
log time stamp is one second. The fields logging.LogRecord.args, logging.LogRecord.exc_info and
logging.LogRecord.lineno are not set. Also, due to limitations in the CPL logging module, level filtering is
done only after the creation of the log entries. This may cause performance problems if extensive debug logging is done
and filtered out by logging.Logger.setLevel(). In this case the cpl.Recipe.__call__() parameter
loglevel may be used.

See also:

cpl.esorex.msg and cpl.esorex.log

EsoRex like convienience logging.

8.2 Log message lists

The cpl.Result object as well as a cpl.CplError have an attribute cpl.Result.log resp. cpl.
CplError.log that contains the list of all log messages.

class cpl.logger.LogList
List of log messages.

Accessing this list directly will return the logging.LogRecord instances.

Example:

res = muse_bias(bias_frames)
for logrecord in res.log:

print '%s: %s' % (entry.funcname, entry.msg)

To get them formatted as string, use the error, warning, info or debug attributes:

res = muse_bias(bias_frames)
for line in res.log.info:

print line

error
Error messages as list of str

warning
Warnings and error messages as list of str

info
Info, warning and error messages as list of str

debug
Debug, info, warning, and error messages as list of str

28 Chapter 8. Log messages

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/logging.html#logging.LogRecord
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

CHAPTER 9

cpl.esorex EsoRex legacy support

EsoRex is a standard execution environment for CPL recipes provided by ESO.

9.1 Support for configuration and SOF files

cpl.esorex.init(source=None)
Set up the logging and the recipe search path from the esorex.rc file.

Parameters source (str or file) – Configuration file object, or string with file content. If not
set, the esorex config file ~/.esorex/esorex.rc is used.

cpl.esorex.load_rc(source=None)
Read an EsoRex configuration file.

Parameters source (str or file) – Configuration file object, or string with file content. If not
set, the EsoRex config file ~/.esorex/esorex.rc is used.

These files contain configuration parameters for EsoRex or recipes. The content of the file is returned as a map
with the (full) parameter name as key and its setting as string value.

The result of this function may directly set as cpl.Recipe.param attribute:

import cpl
myrecipe = cpl.Recipe('muse_bias')
myrecipe.param = cpl.esorex.load_rc('muse_bias.rc')

cpl.esorex.load_sof(source)
Read an EsoRex SOF file.

Parameters source (str or file) – SOF (“Set Of Files”) file object or string with SOF file
content.

These files contain the raw and calibration files for a recipe. The content of the file is returned as a map with the
tag as key and the list of file names as value.

The result of this function may directly set as cpl.Recipe.calib attribute:

29

http://www.eso.org/sci/software/cpl/esorex.html
http://www.eso.org
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Python bindings for CPL recipes, Release 0.7.4

import cpl
myrecipe = cpl.Recipe('muse_bias')
myrecipe.calib = cpl.esorex.read_sof(open('muse_bias.sof'))

Note: The raw data frame is silently ignored wenn setting cpl.Recipe.calib for MUSE recipes. Other
recipes ignore the raw data frame only if it was set manually as cpl.Recipe.tag or in cpl.Recipe.tags
since there is no way to automatically distinguish between them.

9.2 Convienence logging control

cpl.esorex.msg = <cpl.esorex.CplLogger object>
This variable is a CplLogger instance that provides a convienience stream handler similar to the terminal
logging functionality of the CPL. It basically does the same as:

import logging

log = logging.getLogger()
log.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.OFF)
ch.setFormatter(logging.Formatter('[%(levelname)7s] %(message)s'))
log.addHandler(ch)

The following attributes control the format of the terminal messages:

CplLogger.level
Log level for output to the terminal. Any of [DEBUG, INFO, WARN, ERROR, OFF].

CplLogger.format
Output format.

See also:

logging.LogRecord attributes

Key mappings in the logging output.

CplLogger.time
If True, attach a time tag to output messages.

CplLogger.component
If True, attach the component name to output messages.

CplLogger.threadid
If True, attach a thread tag to output messages.

cpl.esorex.log = <cpl.esorex.CplFileLogger object>
This variable is a CplFileLogger instance that provides a convienience file handler similar to the file logging
functionality of the CPL. It basically does the same as:

import logging

log = logging.getLogger()
log.setLevel(logging.INFO)
ch = logging.FileHandler(filename)

(continues on next page)

30 Chapter 9. cpl.esorex EsoRex legacy support

http://docs.python.org/library/logging.html#logrecord-attributes
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

Python bindings for CPL recipes, Release 0.7.4

(continued from previous page)

ch.setLevel(logging.INFO)
ch.setFormatter(logging.Formatter('%(asctime)s [%(levelname)7s] %(funcName)s:
→˓%(message)s'))
log.addHandler(ch)

The following attributes control the format of the log file messages:

CplLogger.dir
Directory name that is prepended to the log file name.

CplLogger.level
Log level for output to the terminal. Any of [DEBUG, INFO, WARN, ERROR, OFF].

CplLogger.format
Output format.

See also:

logging.LogRecord attributes

Key mappings in the logging output.

CplLogger.time
If True, attach a time tag to output messages.

CplLogger.component
If True, attach the component name to output messages.

CplLogger.threadid
If True, attach a thread tag to output messages.

9.2. Convienence logging control 31

http://docs.python.org/library/logging.html#logrecord-attributes
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

Python bindings for CPL recipes, Release 0.7.4

32 Chapter 9. cpl.esorex EsoRex legacy support

CHAPTER 10

cpl.dfs DFS header parsing

class cpl.dfs.ProcessingInfo(source, recno=-1)
Support for reading input files and parameters from the FITS header of a CPL processed file.

This is done through the FITS headers that were written by the DFS function called within the processing recipe.

name
Recipe name

version
Recipe version string

pipeline
Pipeline name

cpl_version
CPL version string

tag
Tag name

calib
Calibration frames from a FITS file processed with CPL. The result of this function may directly set as
cpl.Recipe.calib attribute:

import cpl
myrecipe = cpl.Recipe('muse_bias')
myrecipe.calib = cpl.dfs.ProcessingInfo('MASTER_BIAS_0.fits').calib

Note: This will not work properly for files that had astropy.io.fits.HDUList inputs since they
have assigned a temporary file name only.

raw
Raw (input) frames

33

Python bindings for CPL recipes, Release 0.7.4

Note: This will not work properly for files that had astropy.io.fits.HDUList inputs since they
have assigned a temporary file name only.

param
Processing parameters. The result of this function may directly set as cpl.Recipe.param attribute:

import cpl
myrecipe = cpl.Recipe('muse_bias')
myrecipe.param = cpl.dfs.ProcessingInfo('MASTER_BIAS_0.fits').param

md5sum
MD5 sum of the data portions of the output file (header keyword ‘DATAMD5’).

md5sums
MD5 sums of the input and calibration files. dict with the file name as key and the corresponding MD5
sum as value.

Note: Due to a design decision in CPL, the raw input files are not accompanied with the MD5 sum.

ProcessingInfo.__init__(source, recno=-1)

Parameters

• source (str or astropy.io.fits.HDUList or astropy.io.fits.
PrimaryHDU or astropy.io.fits.Header) – Object pointing to the result
file header

• recno (int) – Record number. Optional. If not given, the last record (with the highest
record number) is used.

34 Chapter 10. cpl.dfs DFS header parsing

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

CHAPTER 11

Restrictions for CPL recipes

Not every information can be retrieved from recipes with the standard CPL functions. Only MUSE recipes provide
additional interfaces that allow the definition of input, calibration and output frames.

All other interfaces will have the following restrictions:

1. The Recipe.calib attribute is not filled with templates for calibration frames. After recipe creation, this
attribute is empty. Also, no check on the required calibration frames may be done before calling the recipe.
Anything that is set here will be forwarded to the recipe.

2. In the cpl.esorex support, directly assigning the recipe calibration files from the SOF file with recipe.
calib = cpl.esorex.read_sof('file') will also put the raw input file into Recipe.calib un-
less Recipe.tags and/or Recipe.tag are set manually. The standard recipe interface does not provide a
way to distinguish between raw input and calibration files.

3. The Recipe.tags attribute is set to None.

4. The Recipe.tag attribute is not initially set. If this attribute is not set manually, the tag is required when
executing the attribute.

5. Accessing the attribute Recipe.output() raises an exception.

11.1 Technical Background

CPL recipes register all their parameter definitions with the CPL function cpl_parameterlist_append(). All
registered parameters may be retrieved from the recipe structure as a structure which contains all defined parameters.

For frames, such a mechanism does not exist, although components of the infrastructure are implemented. The CPL
modules cpl_recipeconfig allows the definition of input, raw, and output frames for a recipe. However, this
module is only half-way done, has no connection to the recipe definition and is not mandantory for CPL recipes. The
MUSE pipeline recipes (with the exception of those contributed by ESO) implement a central frameconfig registry
which allows to access this meta information from the Python interface.

35

https://docs.python.org/3/library/constants.html#None

Python bindings for CPL recipes, Release 0.7.4

36 Chapter 11. Restrictions for CPL recipes

CHAPTER 12

Feedback

Bug reports should be made on the developer web page. Send python specific questions to python-cpl@liska.ath.cx.
Questions regading CPL should be mailed to cpl-help@eso.org.

37

http://github.com/olebole/python-cpl/issues
mailto:python-cpl@liska.ath.cx
mailto:cpl-help@eso.org

Python bindings for CPL recipes, Release 0.7.4

38 Chapter 12. Feedback

Python Module Index

c
cpl, 21
cpl.dfs, 33
cpl.esorex, 29

39

Python bindings for CPL recipes, Release 0.7.4

40 Python Module Index

Index

Symbols
__author__ (cpl.Recipe attribute), 10
__call__() (cpl.Recipe method), 14
__copyright__ (cpl.Recipe attribute), 10
__email__ (cpl.Recipe attribute), 10
__file__ (cpl.Recipe attribute), 10
__init__() (cpl.Recipe method), 10
__init__() (cpl.dfs.ProcessingInfo method), 34
__name__ (cpl.Recipe attribute), 10

C
calib (cpl.dfs.ProcessingInfo attribute), 33
calib (cpl.Recipe attribute), 12
code (cpl.CplError attribute), 25
component (cpl.esorex.CplLogger attribute), 30, 31
context (cpl.Parameter attribute), 19
cpl (module), 1, 8, 18, 20, 21, 28, 34
cpl.dfs (module), 33
cpl.esorex (module), 29
cpl.Result (class in cpl), 23
cpl_description (cpl.Recipe attribute), 11
cpl_version (cpl.dfs.ProcessingInfo attribute), 33
cpl_version (cpl.Recipe attribute), 11
CplError, 25

D
debug (cpl.logger.LogList attribute), 28
default (cpl.Parameter attribute), 19
description (cpl.Recipe attribute), 10
dir (cpl.esorex.CplLogger attribute), 31

E
elements (cpl.RecipeCrash attribute), 26
env (cpl.Recipe attribute), 14
environment variable

MALLOC_CHECK_, 14
PYTHONPATH, 4

error (cpl.cpl.Result attribute), 24
error (cpl.logger.LogList attribute), 28

F
filename (cpl.CplError attribute), 25
filename (cpl.RecipeCrash attribute), 26
format (cpl.esorex.CplLogger attribute), 30, 31
FrameConfig (class in cpl), 21
frames (cpl.FrameConfig attribute), 21
func (cpl.RecipeCrash attribute), 26

I
info (cpl.logger.LogList attribute), 28
init() (in module cpl.esorex), 29
isAlive() (cpl.cpl.Result method), 25

J
join() (cpl.cpl.Result method), 25

L
level (cpl.esorex.CplLogger attribute), 30, 31
line (cpl.CplError attribute), 25
line (cpl.RecipeCrash attribute), 26
list() (cpl.Recipe static method), 9
load_rc() (in module cpl.esorex), 29
load_sof() (in module cpl.esorex), 29
localvars (cpl.RecipeCrash attribute), 26
log (cpl.cpl.Result attribute), 24
log (cpl.CplError attribute), 25
log (in module cpl.esorex), 30
LogList (class in cpl.logger), 28

M
MALLOC_CHECK_, 14
max (cpl.FrameConfig attribute), 21
md5sum (cpl.dfs.ProcessingInfo attribute), 34
md5sums (cpl.dfs.ProcessingInfo attribute), 34
memory_dump (cpl.Recipe attribute), 11
memory_is_empty (cpl.cpl.Result.stat attribute), 24
memory_mode (cpl.Recipe attribute), 9
min (cpl.FrameConfig attribute), 21
msg (cpl.CplError attribute), 25

41

Python bindings for CPL recipes, Release 0.7.4

msg (in module cpl.esorex), 30

N
name (cpl.dfs.ProcessingInfo attribute), 33
name (cpl.Parameter attribute), 19
next_error (cpl.CplError attribute), 26

O
output (cpl.Recipe attribute), 11
output_dir (cpl.Recipe attribute), 11

P
param (cpl.dfs.ProcessingInfo attribute), 34
param (cpl.Recipe attribute), 11
Parameter (class in cpl), 19
params (cpl.RecipeCrash attribute), 26
path (cpl.Recipe attribute), 9
pipeline (cpl.dfs.ProcessingInfo attribute), 33
ProcessingInfo (class in cpl.dfs), 33
PYTHONPATH, 4

R
range (cpl.Parameter attribute), 19
raw (cpl.dfs.ProcessingInfo attribute), 33
Recipe (class in cpl), 9
RecipeCrash, 26
return_code (cpl.cpl.Result attribute), 24

S
sequence (cpl.Parameter attribute), 19
set_maxthreads() (cpl.Recipe static method), 10
signal (cpl.RecipeCrash attribute), 26
sys_time (cpl.cpl.Result.stat attribute), 24

T
tag (cpl.dfs.ProcessingInfo attribute), 33
tag (cpl.FrameConfig attribute), 21
tag (cpl.Recipe attribute), 11
tags (cpl.Recipe attribute), 11
temp_dir (cpl.Recipe attribute), 11
threaded (cpl.Recipe attribute), 11
threadid (cpl.esorex.CplLogger attribute), 30, 31
time (cpl.esorex.CplLogger attribute), 30, 31

U
user_time (cpl.cpl.Result.stat attribute), 24

V
value (cpl.Parameter attribute), 19
version (cpl.dfs.ProcessingInfo attribute), 33
version (cpl.Recipe attribute), 10

W
warning (cpl.logger.LogList attribute), 28

42 Index

	Installation
	Prequisites
	Binary packages
	Source code
	Compilation
	Test suite

	Tutorial
	Simple example
	Quick guide

	The Recipe interface
	Static members
	Constructor
	Common attributes and methods
	Recipe parameters
	Recipe frames
	Runtime environment
	Recipe invocation

	Parallel execution
	The cpl.Parameter class
	The cpl.FrameConfig class
	Execution results
	Result frames
	Run statistics
	Execution log
	Thread control
	CPL Exceptions

	Log messages
	Python style logging
	Log message lists

	cpl.esorex EsoRex legacy support
	Support for configuration and SOF files
	Convienence logging control

	cpl.dfs DFS header parsing
	Restrictions for CPL recipes
	Technical Background

	Feedback
	Python Module Index

