
python-consistency Documentation
Release

Ralph Broenink

Jun 11, 2017

General

1 Naming Conventions 3
1.1 Naming . 3
1.2 Properties . 4
1.3 Files . 4
1.4 This module . 4

2 logging 5
2.1 Renames . 5

3 Indices and tables 7

i

ii

python-consistency Documentation, Release

I love Python. But there’s one thing that bothers me: inconsistent naming in many modules in its standard Library.

Some names are surprising, inconsistent across modules, or simply incorrect. This is mostly caused by the fact tha
several modules were developed before the introduction of PEP-8, and now we’re stuck with these names in older
modules.

It has been said and discussed in the past that the stdlib is in fact inconsistent, but fixing this has almost always been
disregarded as being too painful (after all, we don’t want a new Python 3 all over again). However, this way, we will
never move away from these inconsistencies. Perhaps this is fine, but I believe that with some effort, we can fix this
for generations to come.

This module was written based on a discussion on python-ideas I started in July 2016 as an attempt to get this fixed
for once and for all. Although the core developers don’t see a need to fix this at this point in time, as it requires a lot
of effort that is simply not worth the benefits, I still feel it should be part of Python’s future.

While maintaining full backwards compatibility, this module adds consistently named aliases to modules in the stan-
dard library (as suggested in the linked thread). This module currently is nothing more than a bunch of renames that
you can import. For instance:

from consistency import logging

logging.logger(__name__)

Ultimately, I feel that Python itself should provide these properly named alternatives. The original variant should be
aliased with them (or the other way around), without defining a deprecation timeline for the original names. This
should make it possible to eventually make the stdlib consistent, Pythonic and unsurprising.

General 1

https://docs.python.org/3/library/index.html
https://www.python.org/dev/peps/pep-0008/
https://mail.python.org/pipermail/python-ideas/2016-July/041210.html

python-consistency Documentation, Release

2 General

CHAPTER 1

Naming Conventions

This module uses several naming conventions. These conventions are invented, as PEP-8 only specifies how you
should format your names (e.g. snake_case) and not how you should actually pick your names.

We refer you to PEP-8 for naming styles, such as when to use CamelCase or snake_case. There are actually many
violations inside the standard library for this simple convention, e.g. unittest and logging for CamelCased
function names, and collections and datetime for lowercased class names.

Naming

• Consistency across modules

Modules should be consistent with each other, e.g. tarfile.TarFile.add and zipfile.ZipFile.
write are inconsistent.

• Underscores between words

There should be underscores between different English words, e.g. http.client.HTTPConnection.
getresponse is wrong. There are some exceptions listed below.

• American English

A quick survey found that most of Python is currently in American English, so we prefer this.

Accepted single-worded names

The following words are accepted as single words, although the dictionary may say otherwise. However, this also
means that we always must see these words in the form listed in this table. There’s no ‘sometimes’ here.

Name Reason
filename Commonly used and interpreted as single word.

3

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

python-consistency Documentation, Release

Properties

• Properties in favor of getters/setters

Getters and setters that are simple, e.g. no parameters in the getter and a single in the setter, should be a property.
However, if there are significant side effects to the getter or the setter, that must be made clear to the programmer,
use the function style.

• Do not use get_

Prefer to use the name without the get_ prefix. This is in line with the use of properties, but also when it is
a method, prefer to use it without the prefix. Unless you also have a setter, but then you would have used a
property anyway. Conversely, set_ should be avoided as well, but only if this is clear.

• is__ is a property

If you have a method that is simply a def is_foo(self):, it is a property with that name.

• Prefer using iterators, avoid iter_

Unless you need to distinguish between iterators and lists, you should avoid the prefix iter_. Furthermore, if
your code of returning a list is simply list(iter), avoid that method at all. But if you have a list, return it.
A list is iterable after all.

Files

• Avoid many methods for working on strings and bytes and file-like objects

Having four methods for working on a set of different inputs really does not look very nice. Python 3.4 intro-
duced the notion of single-dispatch generic functions (see PEP-443), so we should use those.

• Avoid writing to a file directly

Avoid writing your output to a file. You need the io library to get your raw output. If you have useful optimiza-
tions by writing to a file instead of to a string, at least make it an option.

This module

• Low-level modules that have a higher level module are not renamed

We do not provide renames for modules that are low-level and a higher level exists. This includes, for instance,
the os.path module, as you you should be using pathlib anyway.

• Superseded modules are not renamed

We do not provide renames for obsolete modules, such as optparse.

• Builtins are not renamed

For now. We spotted the forbiddenfruit module, so there’s still hope.

4 Chapter 1. Naming Conventions

https://www.python.org/dev/peps/pep-0443/
https://github.com/clarete/forbiddenfruit

CHAPTER 2

logging

Warning: The logging module is intended to be subclassed. We currently do not provide a way for this. We are
working on it.

Note: Only those documented in section 16.6 have been done, logging.handlers and logging.config are still to be
done.

Renames

The following renames have been made:

Logger

Previous name New name Rationale
setLevel set_level CamelCasing
isEnabledFor is_enabled_for CamelCasing
getEffectiveLevel effective_level (property) CamelCasing and getter should be property
getChild child CamelCasing
addFilter add_filter CamelCasing
removeFilter remove_filter CamelCasing
addHandler add_handler CamelCasing
removeHandler remove_handler CamelCasing
findCaller find_caller CamelCasing
makeRecord make_record CamelCasing
hasHandlers has_handlers (property) CamelCasing and getter should be property

5

python-consistency Documentation, Release

Handler

Previous name New name Rationale
createLock create_lock CamelCasing
setLevel /
level

level (property) (and
_level)

setLevel was a setter for the already existing level
property

setFormatter formatter setFormatter did only change existing property
addFilter add_filter CamelCasing
removeFilter remove_filter CamelCasing
addHandler add_handler CamelCasing
handleError handle_error CamelCasing

Formatter

Previous name New name Rationale
formatTime format_time CamelCasing
formatException format_exception CamelCasing
formatStack format_stack CamelCasing

Module-level

Note: This still needs a lot of work, as we actually want to change the way the getters and setters work. Also,
last_resort does not work properly yet.

Previous name New name Rationale
getLogger logger CamelCasing and losing get as this is implied by the name
getLoggerClass get_logger_class CamelCasing and since this is module-level, doing

properties would be too hard
setLoggerClass set_logger_class see above
getLogRecordFactoryget_log_record_factorysee above
setLogRecordFactoryset_log_record_factorysee above
addLevelName add_level_name CamelCasing
getLevelName get_level_name CamelCasing
makeLogRecord make_log_record CamelCasing
basicConfig basic_config CamelCasing
lastResort last_resort CamelCasing
captureWarnings capture_warnings CamelCasing

6 Chapter 2. logging

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

7

	Naming Conventions
	Naming
	Properties
	Files
	This module

	logging
	Renames

	Indices and tables

