

python-cloudant documentation

This is the official Cloudant client library for Python.

	Compatibility

	Getting started
	Connections
	Connecting with a client

	Authentication

	Identity and Access Management (IAM)

	Resource sharing
	Using library in app server environment

	Databases
	Creating a database

	Opening a database

	Deleting a database

	Partitioned Databases
	Creating a partitioned database

	Handling documents

	Creating design documents

	Querying data

	Documents
	Creating a document

	Retrieving a document

	Checking if a document exists

	Retrieve all documents

	Update a document

	Delete a document

	Dealing with results

	Context managers

	Endpoint access

	TLS 1.2 Support

	Cloudant client library API
	Modules
	client

	database

	document

	design_document

	security_document

	view

	query

	index

	result

	replicator

	feed

	error

	adapters

	Index

Compatibility

This library can be used with the following databases

	IBM Cloudant® Database-as-a-Service [https://cloudant.com/]

	IBM Cloudant® Data Layer Local Edition (Cloudant Local) [http://www.ibm.com/software/products/cloudant-data-layer-local-edition]

	Apache CouchDB™ [http://couchdb.apache.org/]

Note that some features are Cloudant specific.

This library has been tested with the following versions of Python

	Python™ 3.5 [https://www.python.org/downloads/release/python-351/]

Getting started

Now it’s time to begin doing some work with Cloudant and Python. For working
code samples of any of the API’s please go to our test suite.

Connections

In order to manage a connection you must first initialize the connection by
constructing either a Cloudant or CouchDB client. Since connecting to
the Cloudant managed service provides extra end points as compared to a CouchDB
server, we provide the two different client implementations in order to
connect to the desired database service. Once the client is constructed,
you follow that up by connecting to the server, performing your tasks, and
then disconnecting from the server.

Later in the Context managers section we will see how to
simplify this process through the use of the Python with statement.

Note: If you require retrying requests after an HTTP 429 error, the
Replay429Adapter can be added when constructing a Cloudant
client and configured with an initial back off and retry count.

Note: Currently, the connect and read timeout will wait forever for
a HTTP connection or a response on all requests. A timeout can be
set using the timeout argument when constructing a client.

Connecting with a client

Use CouchDB to create a CouchDB client
from cloudant.client import CouchDB
client = CouchDB(USERNAME, PASSWORD, url='http://127.0.0.1:5984', connect=True)

Use Cloudant to create a Cloudant client using account
from cloudant.client import Cloudant
client = Cloudant(USERNAME, PASSWORD, account=ACCOUNT_NAME, connect=True)
or using url
client = Cloudant(USERNAME, PASSWORD, url='https://acct.cloudant.com')

or with a 429 replay adapter that includes configured retries and initial backoff
client = Cloudant(USERNAME, PASSWORD, account=ACCOUNT_NAME,
adapter=Replay429Adapter(retries=10, initialBackoff=0.01))

or with a connect and read timeout of 5 minutes
client = Cloudant(USERNAME, PASSWORD, account=ACCOUNT_NAME,
timeout=300)

Perform client tasks...
session = client.session()
print('Username: {0}'.format(session['userCtx']['name']))
print('Databases: {0}'.format(client.all_dbs()))

Disconnect from the server
client.disconnect()

Authentication

When constructing a Cloudant client, you can authenticate using the
cookie authentication [http://guide.couchdb.org/editions/1/en/security.html#cookies] functionality.
The server will always attempt to automatically renew the cookie
shortly before its expiry. However, if the client does not send a
request to the server during this renewal window and
auto_renew=False then the cookie is not renewed.

Using auto_renew=True will attempt to renew the cookie at
any point during the lifetime of the session when either of the
following statements hold true:

	The server returns a credentials_expired error message.

	The server returns a 401 Unauthorized status code.

	The server returns a 403 Forbidden status code.

Create client using auto_renew to automatically renew expired cookie auth
client = Cloudant(USERNAME, PASSWORD, url='https://acct.cloudant.com',
 connect=True,
 auto_renew=True)

Identity and Access Management (IAM)

IBM Cloud Identity & Access Management enables you to securely authenticate
users and control access to all cloud resources consistently in the IBM Bluemix
Cloud Platform.

See IBM Cloud Identity and Access Management [https://console.bluemix.net/docs/services/Cloudant/guides/iam.html#ibm-cloud-identity-and-access-management]
for more information.

The production IAM token service at https://iam.cloud.ibm.com/identity/token is used
by default. You can set an IAM_TOKEN_URL environment variable to override
this.

You can easily connect to your Cloudant account using an IAM API key:

Authenticate using an IAM API key
client = Cloudant.iam(ACCOUNT_NAME, API_KEY, connect=True)

If you need to authenticate to a server outside of the cloudant.com domain, you can use the url parameter:

Authenticate using an IAM API key to an account outside of the cloudant.com domain
client = Cloudant.iam(None, API_KEY, url='https://private.endpoint.example', connect=True)

Resource sharing

The Cloudant or CouchDB client objects make HTTP calls using the requests library.
requests uses the urllib3 [https://pypi.python.org/pypi/urllib3] library which features
connection pooling and thread safety.

Connection pools can be managed by using the requests library’s
HTTPAdapter [https://github.com/kennethreitz/requests/blob/master/requests/adapters.py#L78]
when constructing a Cloudant or ClouchDB client instance.
The default number set by the urllib3 library for cached connection pools is 10.
Use the HTTPAdapter argument pool_connections to set the number of
urllib3 connection pools to cache, and the pool_maxsize argument to set the
maximum number of connections to save in the pool.

Although the client session is documented as thread safe and it’s possible for a
static client to be accessible by multiple threads, there are still cases that do not
guarantee thread safe execution. It’s recommended to use one client object per thread.

Create client with 15 cached pool connections and a max pool size of 100
httpAdapter = HTTPAdapter(pool_connections=15, pool_maxsize=100)
client = Cloudant(USERNAME, PASSWORD, url='https://acct.cloudant.com'
 connect=True,
 adapter=httpAdapter)

Note: Idle connections within the pool may be terminated by the server, so will not remain open
indefinitely meaning that this will not completely remove the overhead of creating new connections.

Using library in app server environment

This library can be used in an app server, and the example
below shows how to use client in a flask app server.

from flask import Flask
import atexit

app = Flask(__name__)

@app.route('/')
def hello_world():
 # Cookie authentication can be renewed automatically using ``auto_renew=True``
 # which is typically what you would require when running in an application
 # server where the connection may stay open for a long period of time

 # Note: Each time you instantiate an instance of the Cloudant client, an
 # authentication request will be made to Cloudant to retrieve the session cookie.
 # If the performance overhead of this call is a concern for you, consider
 # using vanilla python requests with a custom subclass of HTTPAdapter that
 # performs the authentication call to Cloudant when it establishes the http
 # connection during the creation of the connection pool.
 client = Cloudant(USERNAME, PASSWORD, url='https://acct.cloudant.com',
 connect=True,
 auto_renew=True)

 # do something with client
 return 'Hello World!'

When shutting down the app server, use ``client.disconnect()`` to properly
logout and end the ``client`` session
@atexit.register
def shutdown():
 client.disconnect()

Databases

Once a connection is established you can then create a database, open an
existing database, or delete a database. The following examples assume a client
connection has already been established.

Creating a database

Create a database using an initialized client
The result is a new CloudantDatabase or CouchDatabase based on the client
my_database = client.create_database('my_database')

You can check that the database exists
if my_database.exists():
 print('SUCCESS!!')

Opening a database

Opening an existing database is done by supplying the name of an existing
database to the client. Since the Cloudant and CouchDB classes are
sub-classes of dict, this can be accomplished through standard Python
dict notation.

Open an existing database
my_database = client['my_database']

Deleting a database

Delete a database using an initialized client
client.delete_database('my_database')

Partitioned Databases

Partitioned databases introduce the ability for a user to create logical groups
of documents called partitions by providing a partition key with each document.

Warning

Your Cloudant cluster must have the partitions feature enabled.
A full list of enabled features can be retrieved by calling the
client metadata() method.

Creating a partitioned database

db = client.create_database('mydb', partitioned=True)

Handling documents

The document ID contains both the partition key and document key in the form
<partitionkey>:<documentkey> where:

	Partition Key (string). Must be non-empty. Must not contain colons (as this
is the partition key delimiter) or begin with an underscore.

	Document Key (string). Must be non-empty. Must not begin with an underscore.

Be aware that _design documents and _local documents must not contain a
partition key as they are global definitions.

Create a document

partition_key = 'Year2'
document_key = 'julia30'
db.create_document({
 '_id': ':'.join((partition_key, document_key)),
 'name': 'Jules',
 'age': 6
})

Get a document

doc = db[':'.join((partition_key, document_key))]

Creating design documents

To define partitioned indexes you must set the partitioned=True optional
when constructing the new DesignDocument class.

ddoc = DesignDocument(db, document_id='view', partitioned=True)
ddoc.add_view('myview','function(doc) { emit(doc.foo, doc.bar); }')
ddoc.save()

To define a partitioned Cloudant Query index you may set the
partitioned=True optional, but it is not required as the index will be
partitioned by default in a partitioned database. Conversely, you must
set the partitioned=False optional if you wish to create a global
(non-partitioned) index in a partitioned database.

index = db.create_query_index(
 design_document_id='query',
 index_name='foo-index',
 fields=['foo'],
 partitioned=True
)
index.create()

Querying data

A partition key can be specified when querying data so that results can be
constrained to a specific database partition.

Warning

To run partitioned queries the database itself must be partitioned.

Query

results = self.db.get_partitioned_query_result(
 partition_key, selector={'foo': {'$eq': 'bar'}})

for result in results:
 ...

See get_partitioned_query_result() for a
full list of supported parameters.

Search

results = self.db.get_partitioned_search_result(
 partition_key, search_ddoc['_id'], 'search1', query='*:*')

for result in results['rows']:

See get_partitioned_search_result()
for a full list of supported parameters.

Views (MapReduce)

results = self.db.get_partitioned_view_result(
 partition_key, view_ddoc['_id'], 'view1')

for result in results:

See get_partitioned_view_result() for a
full list of supported parameters.

Documents

Working with documents using this library is handled through the use of
Document objects and Database API methods. A document context
manager is also provided to simplify the process. This is discussed later in
the Context managers section. The examples that follow demonstrate how to
create, read, update, and delete a document. These examples assume that
either a CloudantDatabase or a CouchDatabase object already exists.

Creating a document

Create document content data
data = {
 '_id': 'julia30', # Setting _id is optional
 'name': 'Julia',
 'age': 30,
 'pets': ['cat', 'dog', 'frog']
 }

Create a document using the Database API
my_document = my_database.create_document(data)

Check that the document exists in the database
if my_document.exists():
 print('SUCCESS!!')

Retrieving a document

Accessing a document from a database is done by supplying the document
identifier of an existing document to either a CloudantDatabase or a
CouchDatabase object. Since the CloudantDatabase and CouchDatabase
classes are sub-classes of dict, this is accomplished through standard
dict notation.

my_document = my_database['julia30']

Display the document
print(my_document)

Checking if a document exists

You can check if a document exists in a database the same way you would check
if a dict has a key-value pair by key.

doc_exists = 'julia30' in my_database

if doc_exists:
 print('document with _id julia30 exists')

Retrieve all documents

You can also iterate over a CloudantDatabase or a CouchDatabase object
to retrieve all documents in a database.

Get all of the documents from my_database
for document in my_database:
 print(document)

Update a document

First retrieve the document
my_document = my_database['julia30']

Update the document content
This can be done as you would any other dictionary
my_document['name'] = 'Jules'
my_document['age'] = 6

You must save the document in order to update it on the database
my_document.save()

Delete a document

First retrieve the document
my_document = my_database['julia30']

Delete the document
my_document.delete()

Dealing with results

If you want to get Pythonic with your returned data content, we’ve added a
Result class that provides a key accessible, sliceable, and iterable
interface to result collections. To use it, construct a Result object
passing in a reference to a raw data callable such as the all_docs method
from a database object or a view object itself, which happens to be defined
as callable and then access the data as you would using standard Python key
access, slicing, and iteration techniques. The following set of examples
illustrate Result key access, slicing and iteration over a result collection
in action. It assumes that either a CloudantDatabase or a CouchDatabase
object already exists.

from cloudant.result import Result, ResultByKey

Retrieve Result wrapped document content.
Note: The include_docs parameter is optional and is used to illustrate that view query
parameters can be used to customize the result collection.
result_collection = Result(my_database.all_docs, include_docs=True)

Get the result at a given location in the result collection
Note: Valid result collection indexing starts at 0
result = result_collection[0] # result is the 1st in the collection
result = result_collection[9] # result is the 10th in the collection

Get the result for matching a key
result = result_collection['julia30'] # result is all that match key 'julia30'

If your key is an integer then use the ResultByKey class to differentiate your integer
key from an indexed location within the result collection which is also an integer.
result = result_collection[ResultByKey(9)] # result is all that match key 9

Slice by key values
result = result_collection['julia30': 'ruby99'] # result is between and including keys
result = result_collection['julia30':] # result is after and including key
result = result_collection[: 'ruby99'] # result is up to and including key

Slice by index values
result = result_collection[100: 200] # result is between 100 to 200, including 200th
result = result_collection[: 200] # result is up to and including the 200th
result = result_collection[100:] # result is after the 100th

Iterate over the result collection
for result in result_collection:
 print(result)

This example retrieves the query result from the specified database based on the query parameters provided, updates the
document, and saves the document in the remote database.
By default, the result is returned as a QueryResult which uses the skip and limit query parameters internally to
handle slicing and iteration through the query result collection. For more detail on slicing and iteration, refer
to the QueryResult documentation.

Retrieve documents where the name field is 'foo'
selector = {'name': {'$eq': 'foo'}}
docs = my_database.get_query_result(selector)
for doc in docs:
 # Create Document object from dict
 updated_doc = Document(my_database, doc['_id'])
 updated_doc.update(doc)
 # Update document field
 updated_doc['name'] = 'new_name'
 # Save document
 updated_doc.save()

Context managers

Now that we’ve gone through the basics, let’s take a look at how to simplify
the process of connection, database acquisition, and document management
through the use of Python with blocks and this library’s context managers.

Handling your business using with blocks saves you from having to connect and
disconnect your client as well as saves you from having to perform a lot of
fetch and save operations as the context managers handle these operations for
you.

This example uses the cloudant context helper to illustrate the
process but identical functionality exists for CouchDB through the couchdb
and couchdb_admin_party context helpers.

from cloudant import cloudant

...or use CouchDB variant
from cloudant import couchdb

Perform a connect upon entry and a disconnect upon exit of the block
with cloudant(USERNAME, PASSWORD, account=ACCOUNT_NAME) as client:

...or use CouchDB variant
with couchdb(USERNAME, PASSWORD, url=COUCHDB_URL) as client:

 # Perform client tasks...
 session = client.session()
 print('Username: {0}'.format(session['userCtx']['name']))
 print('Databases: {0}'.format(client.all_dbs()))

 # Create a database
 my_database = client.create_database('my_database')
 if my_database.exists():
 print('SUCCESS!!')

 # You can open an existing database
 del my_database
 my_database = client['my_database']

The following example uses the Document context manager. Here we make
multiple updates to a single document. Note that we don’t save to the server
after each update. We only save once to the server upon exiting the Document
context manager.

Warning

Uncaught exceptions inside the with block will prevent your
document changes being saved to the remote server. However, changes
will still be applied to your local document object.

from cloudant import cloudant
from cloudant.document import Document

with cloudant(USERNAME, PASSWORD, account=ACCOUNT_NAME) as client:

 my_database = client.create_database('my_database')

 # Upon entry into the document context, fetches the document from the
 # remote database, if it exists. Upon exit from the context, saves the
 # document to the remote database with changes made within the context
 # or creates a new document.
 with Document(database, 'julia006') as document:
 # If document exists, it's fetched from the remote database
 # Changes are made locally
 document['name'] = 'Julia'
 document['age'] = 6
 # The document is saved to the remote database

 # Display a Document
 print(my_database['julia30'])

 # Delete the database
 client.delete_database('my_database')

 print('Databases: {0}'.format(client.all_dbs()))

Always use the _deleted document property to delete a document from within
a Document context manager. For example:

with Document(my_database, 'julia30') as doc:
 doc['_deleted'] = True

You can also delete non underscore prefixed document keys to reduce the size of the request.

Warning

Don’t use the doc.delete() method inside your Document
context manager. This method immediately deletes the document on
the server and clears the local document dictionary. A new, empty
document is still saved to the server upon exiting the context
manager.

Endpoint access

If for some reason you need to call a Cloudant/CouchDB endpoint directly rather
using the API you can still benefit from the Cloudant/CouchDB client’s
authentication and session usage by directly accessing its underlying Requests [http://docs.python-requests.org/en/latest/]
session object.

Access the session object using the r_session attribute on your client
object. From there, use the session to make requests as the user the client is
set up with. The following example shows a GET to the _all_docs
endpoint, but obviously you can use this for any HTTP request to the
Cloudant/CouchDB server. This example assumes that either a Cloudant or a
CouchDB client object already exists.

Define the end point and parameters
end_point = '{0}/{1}'.format(client.server_url, 'my_database/_all_docs')
params = {'include_docs': 'true'}

Issue the request
response = client.r_session.get(end_point, params=params)

Display the response content
print(response.json())

TLS 1.2 Support

The TLS protocol is used to encrypt communications across a network to ensure
that transmitted data remains private. There are three released versions of TLS:
1.0, 1.1, and 1.2. All HTTPS connections use TLS.

If your server enforces the use of TLS 1.2 then the python-cloudant client will
continue to work as expected (assuming you’re running a version of
Python/OpenSSL that supports TLS 1.2).

Cloudant client library API

Cloudant / CouchDB Python client library API package

	
cloudant.cloudant(user, passwd, **kwargs)

	Provides a context manager to create a Cloudant session and
provide access to databases, docs etc.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Username used to connect to Cloudant.

	passwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – Authentication token used to connect to Cloudant.

	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Cloudant account name. If the account parameter
is present, it will be used to construct the Cloudant service URL.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – If the account is not present and the url parameter is
present then it will be used to set the Cloudant service URL. The
url must be a fully qualified http/https URL.

	x_cloudant_user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Override the X-Cloudant-User setting used to
authenticate. This is needed to authenticate on one’s behalf,
eg with an admin account. This parameter must be accompanied
by the url parameter. If the url parameter is omitted then
the x_cloudant_user parameter setting is ignored.

	encoder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional json Encoder object used to encode
documents for storage. Defaults to json.JSONEncoder.

For example:

cloudant context manager
from cloudant import cloudant

with cloudant(USERNAME, PASSWORD, account=ACCOUNT_NAME) as client:
 # Context handles connect() and disconnect() for you.
 # Perform library operations within this context. Such as:
 print client.all_dbs()
 # ...

	
cloudant.cloudant_bluemix(vcap_services, instance_name=None, service_name=None, **kwargs)

	Provides a context manager to create a Cloudant session and provide access
to databases, docs etc.

	Parameters

	
	vcap_services (dict [https://docs.python.org/3/library/stdtypes.html#dict] or str [https://docs.python.org/3/library/stdtypes.html#str]) – VCAP_SERVICES environment variable

	instance_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional Bluemix instance name. Only required if
multiple Cloudant instances are available.

	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional Bluemix service name.

	encoder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional json Encoder object used to encode
documents for storage. Defaults to json.JSONEncoder.

Loads all configuration from the specified VCAP_SERVICES Cloud Foundry
environment variable. The VCAP_SERVICES variable contains connection
information to access a service instance. For example:

{
 "VCAP_SERVICES": {
 "cloudantNoSQLDB": [
 {
 "credentials": {
 "apikey": "some123api456key"
 "username": "example",
 "password": "xxxxxxx",
 "host": "example.cloudant.com",
 "port": 443,
 "url": "https://example:xxxxxxx@example.cloudant.com"
 },
 "syslog_drain_url": null,
 "label": "cloudantNoSQLDB",
 "provider": null,
 "plan": "Lite",
 "name": "Cloudant NoSQL DB"
 }
]
 }
}

See Cloud Foundry Environment Variables [http://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.html#VCAP-SERVICES].

Example usage:

import os

cloudant_bluemix context manager
from cloudant import cloudant_bluemix

with cloudant_bluemix(os.getenv('VCAP_SERVICES'), 'Cloudant NoSQL DB') as client:
 # Context handles connect() and disconnect() for you.
 # Perform library operations within this context. Such as:
 print client.all_dbs()
 # ...

	
cloudant.cloudant_iam(account_name, api_key, **kwargs)

	Provides a context manager to create a Cloudant session using IAM
authentication and provide access to databases, docs etc.

	Parameters

	
	account_name – Cloudant account name.

	api_key – IAM authentication API key.

For example:

cloudant context manager
from cloudant import cloudant_iam

with cloudant_iam(ACCOUNT_NAME, API_KEY) as client:
 # Context handles connect() and disconnect() for you.
 # Perform library operations within this context. Such as:
 print client.all_dbs()
 # ...

	
cloudant.couchdb(user, passwd, **kwargs)

	Provides a context manager to create a CouchDB session and
provide access to databases, docs etc.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Username used to connect to CouchDB.

	passwd (str [https://docs.python.org/3/library/stdtypes.html#str]) – Passcode used to connect to CouchDB.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL for CouchDB server.

	encoder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional json Encoder object used to encode
documents for storage. Defaults to json.JSONEncoder.

For example:

couchdb context manager
from cloudant import couchdb

with couchdb(USERNAME, PASSWORD, url=COUCHDB_URL) as client:
 # Context handles connect() and disconnect() for you.
 # Perform library operations within this context. Such as:
 print client.all_dbs()
 # ...

	
cloudant.couchdb_admin_party(**kwargs)

	Provides a context manager to create a CouchDB session in Admin Party mode
and provide access to databases, docs etc.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL for CouchDB server.

	encoder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional json Encoder object used to encode
documents for storage. Defaults to json.JSONEncoder.

For example:

couchdb_admin_party context manager
from cloudant import couchdb_admin_party

with couchdb_admin_party(url=COUCHDB_URL) as client:
 # Context handles connect() and disconnect() for you.
 # Perform library operations within this context. Such as:
 print client.all_dbs()
 # ...

	Modules
	client

	database

	document

	design_document

	security_document

	view

	query

	index

	result

	replicator

	feed

	error

	adapters

Modules

	client

	database

	document

	design_document

	security_document

	view

	query

	index

	result

	replicator

	feed

	error

	adapters

client

Top level API module that maps to a Cloudant or CouchDB client connection
instance.

	
class cloudant.client.Cloudant(cloudant_user, auth_token, **kwargs)

	Bases: cloudant.client.CouchDB

Encapsulates a Cloudant client, handling top level user API calls having to
do with session and database management.

Maintains a requests.Session for working with the
instance specified in the constructor.

Parameters can be passed in to control behavior:

	Parameters

	
	cloudant_user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Username used to connect to Cloudant.

	auth_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – Authentication token used to connect to Cloudant.

	account (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Cloudant account name. If the account parameter
is present, it will be used to construct the Cloudant service URL.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – If the account is not present and the url parameter is
present then it will be used to set the Cloudant service URL. The
url must be a fully qualified http/https URL.

	x_cloudant_user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Override the X-Cloudant-User setting used to
authenticate. This is needed to authenticate on one’s behalf,
eg with an admin account. This parameter must be accompanied
by the url parameter. If the url parameter is omitted then
the x_cloudant_user parameter setting is ignored.

	encoder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional json Encoder object used to encode
documents for storage. Defaults to json.JSONEncoder.

	adapter (requests.HTTPAdapter) – Optional adapter to use for configuring requests.

	
bill(year=None, month=None)

	Retrieves Cloudant billing data, optionally for a given year and month.

	Parameters

	
	year (int [https://docs.python.org/3/library/functions.html#int]) – Year to query against, for example 2014.
Optional parameter. Defaults to None. If used, it must be
accompanied by month.

	month (int [https://docs.python.org/3/library/functions.html#int]) – Month to query against that must be an integer
between 1 and 12. Optional parameter. Defaults to None.
If used, it must be accompanied by year.

	Returns

	Billing data in JSON format

	
classmethod bluemix(vcap_services, instance_name=None, service_name=None, **kwargs)

	Create a Cloudant session using a VCAP_SERVICES environment variable.

	Parameters

	
	vcap_services (dict [https://docs.python.org/3/library/stdtypes.html#dict] or str [https://docs.python.org/3/library/stdtypes.html#str]) – VCAP_SERVICES environment variable

	instance_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional Bluemix instance name. Only required
if multiple Cloudant instances are available.

	service_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional Bluemix service name.

Example usage:

import os
from cloudant.client import Cloudant

client = Cloudant.bluemix(os.getenv('VCAP_SERVICES'),
 'Cloudant NoSQL DB')

print client.all_dbs()

	
cors_configuration()

	Retrieves the current CORS configuration.

	Returns

	CORS data in JSON format

	
cors_origins()

	Retrieves a list of CORS origins.

	Returns

	List of CORS origins

	
db_updates(raw_data=False, **kwargs)

	Returns the _db_updates feed iterator. The _db_updates feed can
be iterated over and once complete can also provide the last sequence
identifier of the feed. If necessary, the iteration can be stopped by
issuing a call to the stop() method on the returned iterator object.

For example:

Iterate over a "normal" _db_updates feed
db_updates = client.db_updates()
for db_update in db_updates:
 print(db_update)
print(db_updates.last_seq)

Iterate over a "continuous" _db_updates feed with additional options
db_updates = client.db_updates(feed='continuous', since='now', descending=True)
for db_update in db_updates:
 if some_condition:
 db_updates.stop()
 print(db_update)

	Parameters

	
	raw_data (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True then the raw response data will be
streamed otherwise if set to False then JSON formatted data will be
streamed. Default is False.

	descending (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether results should be returned in
descending order, i.e. the latest event first. By default, the
oldest event is returned first.

	feed (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of feed. Valid values are continuous,
longpoll, and normal. Default is normal.

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Time in milliseconds after which an empty line is
sent during longpoll or continuous if there have been no
changes. Must be a positive number. Default is no heartbeat.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of rows to return. Must be a positive
number. Default is no limit.

	since – Start the results from changes after the specified
sequence identifier. In other words, using since excludes from the
list all changes up to and including the specified sequence
identifier. If since is 0 (the default), or omitted, the request
returns all changes. If it is now, only changes made after the
time of the request will be emitted.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Number of milliseconds to wait for data before
terminating the response. heartbeat supersedes timeout if
both are supplied.

	chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – The HTTP response stream chunk size. Defaults to
512.

	Returns

	Feed object that can be iterated over as a _db_updates
feed.

	
disable_cors()

	Switches CORS off.

	Returns

	CORS status in JSON format

	
generate_api_key()

	Creates and returns a new API Key/pass pair.

	Returns

	API key/pass pair in JSON format

	
classmethod iam(account_name, api_key, **kwargs)

	Create a Cloudant client that uses IAM authentication.

	Parameters

	
	account_name – Cloudant account name; or use None and a url kwarg.

	api_key – IAM authentication API key.

	
infinite_db_updates(**kwargs)

	Returns an infinite (perpetually refreshed) _db_updates feed
iterator. If necessary, the iteration can be stopped by issuing a call
to the stop() method on the returned iterator object.

For example:

Iterate over an infinite _db_updates feed
db_updates = client.infinite_db_updates()
for db_update in db_updates:
 if some_condition:
 db_updates.stop()
 print(db_update)

	Parameters

	
	descending (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether results should be returned in
descending order, i.e. the latest event first. By default, the
oldest event is returned first.

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Time in milliseconds after which an empty line is
sent if there have been no changes. Must be a positive number.
Default is no heartbeat.

	since – Start the results from changes after the specified
sequence identifier. In other words, using since excludes from the
list all changes up to and including the specified sequence
identifier. If since is 0 (the default), or omitted, the request
returns all changes. If it is now, only changes made after the
time of the request will be emitted.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Number of milliseconds to wait for data before
terminating the response. heartbeat supersedes timeout if
both are supplied.

	chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – The HTTP response stream chunk size. Defaults to
512.

	Returns

	Feed object that can be iterated over as a _db_updates
feed.

	
requests_usage(year=None, month=None)

	Retrieves Cloudant requests usage data, optionally for a given
year and month.

	Parameters

	
	year (int [https://docs.python.org/3/library/functions.html#int]) – Year to query against, for example 2014.
Optional parameter. Defaults to None. If used, it must be
accompanied by month.

	month (int [https://docs.python.org/3/library/functions.html#int]) – Month to query against that must be an integer
between 1 and 12. Optional parameter. Defaults to None.
If used, it must be accompanied by year.

	Returns

	Requests usage data in JSON format

	
shared_databases()

	Retrieves a list containing the names of databases shared
with this account.

	Returns

	List of database names

	
update_cors_configuration(enable_cors=True, allow_credentials=True, origins=None, overwrite_origins=False)

	Merges existing CORS configuration with updated values.

	Parameters

	
	enable_cors (bool [https://docs.python.org/3/library/functions.html#bool]) – Enables/disables CORS. Defaults to True.

	allow_credentials (bool [https://docs.python.org/3/library/functions.html#bool]) – Allows authentication credentials.
Defaults to True.

	origins (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of allowed CORS origin(s). Special cases are
a list containing a single “*” which will allow any origin and
an empty list which will not allow any origin. Defaults to None.

	overwrite_origins (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether the origins list is
overwritten of appended to. Defaults to False.

	Returns

	CORS configuration update status in JSON format

	
volume_usage(year=None, month=None)

	Retrieves Cloudant volume usage data, optionally for a given
year and month.

	Parameters

	
	year (int [https://docs.python.org/3/library/functions.html#int]) – Year to query against, for example 2014.
Optional parameter. Defaults to None. If used, it must be
accompanied by month.

	month (int [https://docs.python.org/3/library/functions.html#int]) – Month to query against that must be an integer
between 1 and 12. Optional parameter. Defaults to None.
If used, it must be accompanied by year.

	Returns

	Volume usage data in JSON format

	
class cloudant.client.CouchDB(user, auth_token, admin_party=False, **kwargs)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Encapsulates a CouchDB client, handling top level user API calls having to
do with session and database management.

Maintains a requests.Session for working with the instance specified in the
constructor.

Parameters can be passed in to control behavior:

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Username used to connect to CouchDB.

	auth_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – Authentication token used to connect to CouchDB.

	admin_party (bool [https://docs.python.org/3/library/functions.html#bool]) – Setting to allow the use of Admin Party mode in
CouchDB. Defaults to False.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL for CouchDB server.

	encoder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional json Encoder object used to encode
documents for storage. Defaults to json.JSONEncoder.

	adapter (requests.HTTPAdapter) – Optional adapter to use for
configuring requests.

	connect (bool [https://docs.python.org/3/library/functions.html#bool]) – Keyword argument, if set to True performs the call to
connect as part of client construction. Default is False.

	auto_renew (bool [https://docs.python.org/3/library/functions.html#bool]) – Keyword argument, if set to True performs
automatic renewal of expired session authentication settings.
Default is False.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Timeout in seconds (use float for milliseconds, for
example 0.1 for 100 ms) for connecting to and reading bytes from the
server. If a single value is provided it will be applied to both the
connect and read timeouts. To specify different values for each timeout
use a tuple. For example, a 10 second connect timeout and a 1 minute
read timeout would be (10, 60). This follows the same behaviour as the
Requests library timeout argument [http://docs.python-requests.org/en/master/user/quickstart/#timeouts].
but will apply to every request made using this client.

	use_basic_auth (bool [https://docs.python.org/3/library/functions.html#bool]) – Keyword argument, if set to True performs basic
access authentication with server. Default is False.

	use_iam (bool [https://docs.python.org/3/library/functions.html#bool]) – Keyword argument, if set to True performs
IAM authentication with server. Default is False.
Use iam() to construct an IAM
authenticated client.

	iam_client_id (string) – Keyword argument, client ID to use when
authenticating with the IAM token server. Default is None.

	iam_client_secret (string) – Keyword argument, client secret to use when
authenticating with the IAM token server. Default is None.

	
__delitem__(key, remote=False)

	Overrides dictionary __delitem__ behavior to make deleting the
database key a proxy for deleting the database. If remote=True then
it will delete the database on the remote server, otherwise only
the local cached object will be removed.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Database name of the database to be deleted.

	remote (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether the locally cached
database is deleted or a remote request is made to delete
the database from the server. Defaults to False.

	
__getitem__(key)

	Overrides dictionary __getitem__ behavior to provide a database
instance for the specified key.

If the database instance does not exist locally, then a remote request
is made and the database is subsequently added to the local cache and
returned to the caller.

If the database instance already exists locally then it is returned and
a remote request is not performed.

A KeyError will result if the database does not exist locally or on the
server.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Database name used to retrieve the database object.

	Returns

	Database object

	
__setitem__(key, value, remote=False)

	Override dictionary __setitem__ behavior to verify that only
database instances are added as keys. If remote=True then also create
the database remotely if the database does not exist.

Note: The only way to override the default for the remote argument
setting it to True is to call __setitem__ directly. A much simpler
approach is to use
create_database() instead, if your
intention is to create a database remotely.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Database name to be used as the key for the database in
the locally cached dictionary.

	value – Database object to be used in the locally cached
dictionary.

	remote (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether the method will attempt to
create the database remotely or not. Defaults to False.

	
all_dbs()

	Retrieves a list of all database names for the current client.

	Returns

	List of database names for the client

	
basic_auth_str()

	Composes a basic http auth string, suitable for use with the
_replicator database, and other places that need it.

	Returns

	Basic http authentication string

	
change_credentials(user=None, auth_token=None)

	Change login credentials.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Username used to connect to server.

	auth_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – Authentication token used to connect to server.

	
connect()

	Starts up an authentication session for the client using cookie
authentication if necessary.

	
create_database(dbname, partitioned=False, **kwargs)

	Creates a new database on the remote server with the name provided
and adds the new database object to the client’s locally cached
dictionary before returning it to the caller. The method will
optionally throw a CloudantClientException if the database
exists remotely.

	Parameters

	
	dbname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to create the database.

	throw_on_exists (bool [https://docs.python.org/3/library/functions.html#bool]) – Boolean flag dictating whether or
not to throw a CloudantClientException when attempting to
create a database that already exists.

	partitioned (bool [https://docs.python.org/3/library/functions.html#bool]) – Create as a partitioned database. Defaults to
False.

	Returns

	The newly created database object

	
db_updates(raw_data=False, **kwargs)

	Returns the _db_updates feed iterator. While iterating over the
feed, if necessary, the iteration can be stopped by issuing a call to
the stop() method on the returned iterator object.

For example:

Iterate over a "longpoll" _db_updates feed
db_updates = client.db_updates()
for db_update in db_updates:
 if some_condition:
 db_updates.stop()
 print(db_update)

Iterate over a "continuous" _db_updates feed with additional options
db_updates = client.db_updates(feed='continuous', heartbeat=False)
for db_update in db_updates:
 if some_condition:
 db_updates.stop()
 print(db_update)

	Parameters

	
	raw_data (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True then the raw response data will be
streamed otherwise if set to False then JSON formatted data will be
streamed. Default is False.

	feed (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of feed. Valid values are continuous, and
longpoll. Default is longpoll.

	heartbeat (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether CouchDB will send a newline character
on timeout. Default is True.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Number of seconds to wait for data before
terminating the response.

	chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – The HTTP response stream chunk size. Defaults to
512.

	Returns

	Feed object that can be iterated over as a _db_updates
feed.

	
delete_database(dbname)

	Removes the named database remotely and locally. The method will throw
a CloudantClientException if the database does not exist.

	Parameters

	dbname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the database to delete.

	
disconnect()

	Ends a client authentication session, performs a logout and a clean up.

	
features()

	lazy fetch and cache features

	
get(key, default=None, remote=False)

	Overrides dictionary get behavior to retrieve database objects with
support for returning a default. If remote=True then a remote
request is made to retrieve the database from the remote server,
otherwise the client’s locally cached database object is returned.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Database name used to retrieve the database object.

	default (str [https://docs.python.org/3/library/stdtypes.html#str]) – Default database name. Defaults to None.

	remote (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether the locally cached
database is returned or a remote request is made to retrieve
the database from the server. Defaults to False.

	Returns

	Database object

	
is_iam_authenticated

	Show if a client has authenticated using an IAM API key.

	Returns

	True if client is IAM authenticated. False otherwise.

	
keys(remote=False)

	Returns the database names for this client. Default is
to return only the locally cached database names, specify
remote=True to make a remote request to include all databases.

	Parameters

	remote (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether the list of locally cached
database names are returned or a remote request is made to include
an up to date list of databases from the server. Defaults to False.

	Returns

	List of database names

	
metadata()

	Retrieves the remote server metadata dictionary.

	Returns

	Dictionary containing server metadata details

	
session()

	Retrieves information about the current login session
to verify data related to sign in.

	Returns

	Dictionary of session info for the current session.

	
session_cookie()

	Retrieves the current session cookie.

	Returns

	Session cookie for the current session

	
session_login(user=None, passwd=None)

	Performs a session login by posting the auth information
to the _session endpoint.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – Username used to connect to server.

	auth_token (str [https://docs.python.org/3/library/stdtypes.html#str]) – Authentication token used to connect to server.

	
session_logout()

	Performs a session logout and clears the current session by
sending a delete request to the _session endpoint.

database

API module that maps to a Cloudant or CouchDB database instance.

	
class cloudant.database.CloudantDatabase(client, database_name, fetch_limit=100, partitioned=False)

	Bases: cloudant.database.CouchDatabase

Encapsulates a Cloudant database. A CloudantDatabase object is
instantiated with a reference to a client/session.
It supports accessing the documents, and various database
features such as the document indexes, changes feed, design documents, etc.

	Parameters

	
	client (Cloudant) – Client instance used by the database.

	database_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Database name used to reference the database.

	fetch_limit (int [https://docs.python.org/3/library/functions.html#int]) – Optional fetch limit used to set the max number of
documents to fetch per query during iteration cycles. Defaults to 100.

	partitioned (bool [https://docs.python.org/3/library/functions.html#bool]) – Create as a partitioned database. Defaults to
False.

	
get_partitioned_search_result(partition_key, ddoc_id, index_name, **query_params)

	Retrieves the raw JSON content from the remote database based on the
partitioned search index on the server, using the query_params provided
as query parameters.

See get_search_result() method
for further details.

	Parameters

	
	partition_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Partition key.

	ddoc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Design document id used to get the search result.

	index_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used in part to identify the index.

	query_params – See
get_search_result() method
for available keyword arguments.

	Returns

	Search query result data in JSON format.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_search_result(ddoc_id, index_name, **query_params)

	Retrieves the raw JSON content from the remote database based on the
search index on the server, using the query_params provided as query
parameters. A query parameter containing the Lucene query
syntax is mandatory.

Example for search queries:

Assuming that 'searchindex001' exists as part of the
'ddoc001' design document in the remote database...
Retrieve documents where the Lucene field name is 'name' and
the value is 'julia*'
resp = db.get_search_result('ddoc001', 'searchindex001',
 query='name:julia*',
 include_docs=True)
for row in resp['rows']:
 # Process search index data (in JSON format).

Example if the search query requires grouping by using
the group_field parameter:

Assuming that 'searchindex001' exists as part of the
'ddoc001' design document in the remote database...
Retrieve JSON response content, limiting response to 10 documents
resp = db.get_search_result('ddoc001', 'searchindex001',
 query='name:julia*',
 group_field='name',
 limit=10)
for group in resp['groups']:
 for row in group['rows']:
 # Process search index data (in JSON format).

	Parameters

	
	ddoc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Design document id used to get the search result.

	index_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used in part to identify the index.

	bookmark (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional string that enables you to specify which
page of results you require. Only valid for queries that do not
specify the group_field query parameter.

	counts (list [https://docs.python.org/3/library/stdtypes.html#list]) – Optional JSON array of field names for which
counts should be produced. The response will contain counts for each
unique value of this field name among the documents matching the
search query.
Requires the index to have faceting enabled.

	drilldown (list [https://docs.python.org/3/library/stdtypes.html#list]) – Optional list of fields that each define a
pair of a field name and a value. This field can be used several
times. The search will only match documents that have the given
value in the field name. It differs from using
query=fieldname:value only in that the values are not analyzed.

	group_field (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional string field by which to group
search matches. Fields containing other data
(numbers, objects, arrays) can not be used.

	group_limit (int [https://docs.python.org/3/library/functions.html#int]) – Optional number with the maximum group count.
This field can only be used if group_field query parameter
is specified.

	group_sort – Optional JSON field that defines the order of the
groups in a search using group_field. The default sort order
is relevance. This field can have the same values as the sort field,
so single fields as well as arrays of fields are supported.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Optional number to limit the maximum count of the
returned documents. In case of a grouped search, this parameter
limits the number of documents per group.

	query/q – A Lucene query in the form of name:value.
If name is omitted, the special value default is used.
The query parameter can be abbreviated as q.

	ranges – Optional JSON facet syntax that reuses the standard
Lucene syntax to return counts of results which fit into each
specified category. Inclusive range queries are denoted by brackets.
Exclusive range queries are denoted by curly brackets.
For example ranges={"price":{"cheap":"[0 TO 100]"}} has an
inclusive range of 0 to 100.
Requires the index to have faceting enabled.

	sort – Optional JSON string of the form fieldname<type> for
ascending or -fieldname<type> for descending sort order.
Fieldname is the name of a string or number field and type is either
number or string or a JSON array of such strings. The type part is
optional and defaults to number.

	stale (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional string to allow the results from a stale
index to be used. This makes the request return immediately, even
if the index has not been completely built yet.

	highlight_fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – Optional list of fields which should be
highlighted.

	highlight_pre_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional string inserted before the
highlighted word in the highlights output. Defaults to .

	highlight_post_tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional string inserted after the
highlighted word in the highlights output. Defaults to .

	highlight_number (int [https://docs.python.org/3/library/functions.html#int]) – Optional number of fragments returned in
highlights. If the search term occurs less often than the number of
fragments specified, longer fragments are returned. Default is 1.

	highlight_size (int [https://docs.python.org/3/library/functions.html#int]) – Optional number of characters in each
fragment for highlights. Defaults to 100 characters.

	include_fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – Optional list of field names to include in
search results. Any fields included must have been indexed with the
store:true option.

	Returns

	Search query result data in JSON format

	
security_document()

	Retrieves the security document for the current database
containing information about the users that the database
is shared with.

	Returns

	Security document as a dict

	
security_url

	Constructs and returns the security document URL.

	Returns

	Security document URL

	
shards()

	Retrieves information about the shards in the current remote database.

	Returns

	Shard information retrieval status in JSON format

	
share_database(username, roles=None)

	Shares the current remote database with the username provided.
You can grant varying degrees of access rights,
default is to share read-only, but additional
roles can be added by providing the specific roles as a
list argument. If the user already has this database shared with
them then it will modify/overwrite the existing permissions.

	Parameters

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – Cloudant user to share the database with.

	roles (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of
roles [https://console.bluemix.net/docs/services/Cloudant/api/authorization.html#roles]
to grant to the named user.

	Returns

	Share database status in JSON format

	
unshare_database(username)

	Removes all sharing with the named user for the current remote database.
This will remove the entry for the user from the security document.
To modify permissions, use the
share_database() method
instead.

	Parameters

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – Cloudant user to unshare the database from.

	Returns

	Unshare database status in JSON format

	
class cloudant.database.CouchDatabase(client, database_name, fetch_limit=100, partitioned=False)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Encapsulates a CouchDB database. A CouchDatabase object is
instantiated with a reference to a client/session.
It supports accessing the documents, and various database
features such as the document indexes, changes feed, design documents, etc.

	Parameters

	
	client (CouchDB) – Client instance used by the database.

	database_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Database name used to reference the database.

	fetch_limit (int [https://docs.python.org/3/library/functions.html#int]) – Optional fetch limit used to set the max number of
documents to fetch per query during iteration cycles. Defaults to 100.

	partitioned (bool [https://docs.python.org/3/library/functions.html#bool]) – Create as a partitioned database. Defaults to
False.

	
__getitem__(key)

	Overrides dictionary __getitem__ behavior to provide a document
instance for the specified key from the current database.

If the document instance does not exist locally, then a remote request
is made and the document is subsequently added to the local cache and
returned to the caller.

If the document instance already exists locally then it is returned and
a remote request is not performed.

A KeyError will result if the document does not exist locally or in the
remote database.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Document id used to retrieve the document from the
database.

	Returns

	A Document or DesignDocument object depending on the
specified document id (key)

	
__iter__(remote=True)

	Overrides dictionary __iter__ behavior to provide iterable Document
results. By default, Documents are fetched from the remote database,
in batches equal to the database object’s defined fetch_limit,
yielding Document/DesignDocument objects.

If remote=False then the locally cached Document objects are
iterated over with no attempt to retrieve documents from the remote
database.

	Parameters

	remote (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether the locally cached
Document objects are returned or a remote request is made to
retrieve Document objects from the remote database.
Defaults to True.

	Returns

	Iterable of Document and/or DesignDocument objects

	
admin_party

	Returns the CouchDB Admin Party status. True if using Admin Party
False otherwise.

	Returns

	CouchDB Admin Party mode status

	
all_docs(**kwargs)

	Wraps the _all_docs primary index on the database, and returns the
results by value. This can be used as a direct query to the _all_docs
endpoint. More convenient/efficient access using keys, slicing
and iteration can be done through the result attribute.

Keyword arguments supported are those of the view/index access API.

	Parameters

	
	descending (bool [https://docs.python.org/3/library/functions.html#bool]) – Return documents in descending key order.

	endkey – Stop returning records at this specified key.

	endkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Stop returning records when the specified
document id is reached.

	include_docs (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the full content of the documents.

	inclusive_end (bool [https://docs.python.org/3/library/functions.html#bool]) – Include rows with the specified endkey.

	key – Return only documents that match the specified key.

	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – Return only documents that match the specified keys.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Limit the number of returned documents to the
specified count.

	skip (int [https://docs.python.org/3/library/functions.html#int]) – Skip this number of rows from the start.

	startkey – Return records starting with the specified key.

	startkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Return records starting with the specified
document ID.

	Returns

	Raw JSON response content from _all_docs endpoint

	
bulk_docs(docs)

	Performs multiple document inserts and/or updates through a single
request. Each document must either be or extend a dict as
is the case with Document and DesignDocument objects. A document
must contain the _id and _rev fields if the document
is meant to be updated.

	Parameters

	docs (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of Documents to be created/updated.

	Returns

	Bulk document creation/update status in JSON format

	
changes(raw_data=False, **kwargs)

	Returns the _changes feed iterator. The _changes feed can be
iterated over and once complete can also provide the last sequence
identifier of the feed. If necessary, the iteration can be stopped by
issuing a call to the stop() method on the returned iterator object.

For example:

Iterate over a "normal" _changes feed
changes = db.changes()
for change in changes:
 print(change)
print(changes.last_seq)

Iterate over a "continuous" _changes feed with additional options
changes = db.changes(feed='continuous', since='now', descending=True)
for change in changes:
 if some_condition:
 changes.stop()
 print(change)

	Parameters

	
	raw_data (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True then the raw response data will be
streamed otherwise if set to False then JSON formatted data will be
streamed. Default is False.

	conflicts (bool [https://docs.python.org/3/library/functions.html#bool]) – Can only be set if include_docs is True. Adds
information about conflicts to each document. Default is False.

	descending (bool [https://docs.python.org/3/library/functions.html#bool]) – Changes appear in sequential order. Default is
False.

	doc_ids (list [https://docs.python.org/3/library/stdtypes.html#list]) – To be used only when filter is set to
_doc_ids. Filters the feed so that only changes to the
specified documents are sent.

	feed (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of feed. Valid values are continuous,
longpoll, and normal. Default is normal.

	filter (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of filter function from a design document to get
updates. Default is no filter.

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Time in milliseconds after which an empty line is
sent during longpoll or continuous if there have been no
changes. Must be a positive number. Default is no heartbeat.

	include_docs (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the document with the result. The
document will not be returned as a
Document but instead will be returned as
either formated JSON or as raw response content. Default is False.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of rows to return. Must be a positive
number. Default is no limit.

	since – Start the results from changes after the specified
sequence identifier. In other words, using since excludes from the
list all changes up to and including the specified sequence
identifier. If since is 0 (the default), or omitted, the request
returns all changes. If it is now, only changes made after the
time of the request will be emitted.

	style (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies how many revisions are returned in the
changes array. The default, main_only, only returns the current
“winning” revision; all_docs returns all leaf revisions,
including conflicts and deleted former conflicts.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Number of milliseconds to wait for data before
terminating the response. heartbeat supersedes timeout if
both are supplied.

	chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – The HTTP response stream chunk size. Defaults to
512.

	Returns

	Feed object that can be iterated over as a _changes feed.

	
create(throw_on_exists=False)

	Creates a database defined by the current database object, if it
does not already exist and raises a CloudantException if the operation
fails. If the database already exists then this method call is a no-op.

	Parameters

	throw_on_exists (bool [https://docs.python.org/3/library/functions.html#bool]) – Boolean flag dictating whether or
not to throw a CloudantDatabaseException when attempting to
create a database that already exists.

	Returns

	The database object

	
create_document(data, throw_on_exists=False)

	Creates a new document in the remote and locally cached database, using
the data provided. If an _id is included in the data then depending on
that _id either a Document or a
DesignDocument
object will be added to the locally cached database and returned by this
method.

	Parameters

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of document JSON data, containing _id.

	throw_on_exists (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional flag dictating whether to raise
an exception if the document already exists in the database.

	Returns

	A Document or
DesignDocument instance
corresponding to the new document in the database.

	
create_query_index(design_document_id=None, index_name=None, index_type='json', partitioned=None, **kwargs)

	Creates either a JSON or a text query index in the remote database.

	Parameters

	
	index_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of the index to create. Can
be either ‘text’ or ‘json’. Defaults to ‘json’.

	design_document_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional identifier of the design
document in which the index will be created. If omitted the default
is that each index will be created in its own design document.
Indexes can be grouped into design documents for efficiency.
However, a change to one index in a design document will invalidate
all other indexes in the same document.

	index_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional name of the index. If omitted, a name
will be generated automatically.

	fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields that should be indexed. For JSON
indexes, the fields parameter is mandatory and should follow the
‘sort syntax’. For example fields=['name', {'age': 'desc'}]
will create an index on the ‘name’ field in ascending order and the
‘age’ field in descending order. For text indexes, the fields
parameter is optional. If it is included then each field element
in the fields list must be a single element dictionary where the
key is the field name and the value is the field type. For example
fields=[{'name': 'string'}, {'age': 'number'}]. Valid field
types are 'string', 'number', and 'boolean'.

	default_field (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Optional parameter that specifies how the
$text operator can be used with the index. Only valid when
creating a text index.

	selector (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Optional parameter that can be used to limit the
index to a specific set of documents that match a query. It uses
the same syntax used for selectors in queries. Only valid when
creating a text index.

	Returns

	An Index object representing the index created in the
remote database

	
creds

	Retrieves a dictionary of useful authentication information
that can be used to authenticate against this database.

	Returns

	Dictionary containing authentication information

	
custom_result(**options)

	Provides a context manager that can be used to customize the
_all_docs behavior and wrap the output as a
Result.

	Parameters

	
	descending (bool [https://docs.python.org/3/library/functions.html#bool]) – Return documents in descending key order.

	endkey – Stop returning records at this specified key.
Not valid when used with Result key
access and key slicing.

	endkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Stop returning records when the specified
document id is reached.

	include_docs (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the full content of the documents.

	inclusive_end (bool [https://docs.python.org/3/library/functions.html#bool]) – Include rows with the specified endkey.

	key – Return only documents that match the specified key.
Not valid when used with Result key
access and key slicing.

	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – Return only documents that match the specified keys.
Not valid when used with Result key
access and key slicing.

	page_size (int [https://docs.python.org/3/library/functions.html#int]) – Sets the page size for result iteration.

	startkey – Return records starting with the specified key.
Not valid when used with Result key
access and key slicing.

	startkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Return records starting with the specified
document ID.

For example:

with database.custom_result(include_docs=True) as rslt:
 data = rslt[100: 200]

	
database_partition_url(partition_key)

	Get the URL of the database partition.

	Parameters

	partition_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Partition key.

	Returns

	URL of the database partition.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
database_url

	Constructs and returns the database URL.

	Returns

	Database URL

	
delete()

	Deletes the current database from the remote instance.

	
delete_query_index(design_document_id, index_type, index_name)

	Deletes the query index identified by the design document id,
index type and index name from the remote database.

	Parameters

	
	design_document_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The design document id that the index
exists in.

	index_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of the index to be deleted. Must
be either ‘text’ or ‘json’.

	index_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The index name of the index to be deleted.

	
design_documents()

	Retrieve the JSON content for all design documents in this database.
Performs a remote call to retrieve the content.

	Returns

	All design documents found in this database in JSON format

	
doc_count()

	Retrieves the number of documents in the remote database

	Returns

	Database document count

	
exists()

	Performs an existence check on the remote database.

	Returns

	Boolean True if the database exists, False otherwise

	
get(key, remote=False)

	Overrides dict’s get method. This gets an item from the database or cache
like __getitem__, but instead of throwing an exception if the item is not
found, it simply returns None.

	Parameters

	remote (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether a remote request is made to
retrieve the doc, if it is not present in the local cache.
Defaults to False.

	
get_design_document(ddoc_id)

	Retrieves a design document. If a design document exists remotely
then that content is wrapped in a DesignDocument object and returned
to the caller. Otherwise a “shell” DesignDocument object is returned.

	Parameters

	ddoc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Design document id

	Returns

	A DesignDocument instance, if exists remotely then it will
be populated accordingly

	
get_list_function_result(ddoc_id, list_name, view_name, **kwargs)

	Retrieves a customized MapReduce view result from the specified
database based on the list function provided. List functions are
used, for example, when you want to access Cloudant directly
from a browser, and need data to be returned in a different
format, such as HTML.

Note: All query parameters for View requests are supported.
See get_view_result for
all supported query parameters.

For example:

Assuming that 'view001' exists as part of the
'ddoc001' design document in the remote database...
Retrieve documents where the list function is 'list1'
resp = db.get_list_function_result('ddoc001', 'list1', 'view001', limit=10)
for row in resp['rows']:
 # Process data (in text format).

For more detail on list functions, refer to the
Cloudant list documentation [https://console.bluemix.net/docs/services/Cloudant/api/design_documents.html#list-functions].

	Parameters

	
	ddoc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Design document id used to get result.

	list_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used in part to identify the
list function.

	view_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used in part to identify the view.

	Returns

	Formatted view result data in text format

	
get_partitioned_query_result(partition_key, selector, fields=None, raw_result=False, **kwargs)

	Retrieves the partitioned query result from the specified database based
on the query parameters provided.

See get_query_result() method for
further details.

	Parameters

	
	partition_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Partition key.

	selector (str [https://docs.python.org/3/library/stdtypes.html#str]) – Dictionary object describing criteria used to
select documents.

	fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields to be returned by the query.

	raw_result (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether the query result is returned
wrapped in a QueryResult or if the response JSON is returned.
Defaults to False.

	kwargs – See
get_query_result() method for
available keyword arguments.

	Returns

	The result content either wrapped in a QueryResult or
as the raw response JSON content.

	Return type

	QueryResult, dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_partitioned_view_result(partition_key, ddoc_id, view_name, raw_result=False, **kwargs)

	Retrieves the partitioned view result based on the design document and
view name.

See get_view_result() method for
further details.

	Parameters

	
	partition_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Partition key.

	ddoc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Design document id used to get result.

	view_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the view used to get result.

	raw_result (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether the view result is returned
as a default Result object or a raw JSON response.
Defaults to False.

	kwargs – See
get_view_result() method for
available keyword arguments.

	Returns

	The result content either wrapped in a QueryResult or
as the raw response JSON content.

	Return type

	QueryResult, dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_query_indexes(raw_result=False)

	Retrieves query indexes from the remote database.

	Parameters

	raw_result (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True then the raw JSON content for
the request is returned. Default is to return a list containing
Index,
TextIndex, and
SpecialIndex wrapped objects.

	Returns

	The query indexes in the database

	
get_query_result(selector, fields=None, raw_result=False, **kwargs)

	Retrieves the query result from the specified database based on the
query parameters provided. By default the result is returned as a
QueryResult which uses the skip and
limit query parameters internally to handle slicing and iteration
through the query result collection. Therefore skip and limit
cannot be used as arguments to get the query result when
raw_result=False. However, by setting raw_result=True, the
result will be returned as the raw JSON response content for the query
requested. Using this setting requires the developer to manage their
own slicing and iteration. Therefore skip and limit are valid
arguments in this instance.

For example:

Retrieve documents where the name field is 'foo'
selector = {'name': {'$eq': 'foo'}}
docs = db.get_query_result(selector)
for doc in docs:
 print doc

Retrieve documents sorted by the age field in ascending order
docs = db.get_query_result(selector, sort=['name'])
for doc in docs:
 print doc

Retrieve JSON response content, limiting response to 100 documents
resp = db.get_query_result(selector, raw_result=True, limit=100)
for doc in resp['docs']:
 print doc

For more detail on slicing and iteration, refer to the
QueryResult documentation.

	Parameters

	
	selector (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary object describing criteria used to
select documents.

	fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields to be returned by the query.

	raw_result (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether the query result is returned
wrapped in a QueryResult or if the response JSON is returned.
Defaults to False.

	bookmark (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that enables you to specify which page of
results you require.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of results returned. Only valid if
used with raw_result=True.

	page_size (int [https://docs.python.org/3/library/functions.html#int]) – Sets the page size for result iteration. Default
is 100. Only valid with raw_result=False.

	r (int [https://docs.python.org/3/library/functions.html#int]) – Read quorum needed for the result. Each document is read
from at least ‘r’ number of replicas before it is returned in the
results.

	skip (int [https://docs.python.org/3/library/functions.html#int]) – Skip the first ‘n’ results, where ‘n’ is the value
specified. Only valid if used with raw_result=True.

	sort (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields to sort by. Optionally the list can
contain elements that are single member dictionary structures that
specify sort direction. For example
sort=['name', {'age': 'desc'}] means to sort the query results
by the “name” field in ascending order and the “age” field in
descending order.

	use_index (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies a specific index for the query to run
against, rather than using the Cloudant Query algorithm which finds
what it believes to be the best index.

	Returns

	The result content either wrapped in a QueryResult or
as the raw response JSON content

	
get_revision_limit()

	Retrieves the limit of historical revisions to store for any single
document in the current remote database.

	Returns

	Revision limit value for the current remote database

	
get_security_document()

	Retrieves the database security document as a SecurityDocument object.
The returned object is useful for viewing as well as updating the
the database’s security document.

	Returns

	A SecurityDocument instance representing the database
security document

	
get_show_function_result(ddoc_id, show_name, doc_id)

	Retrieves a formatted document from the specified database
based on the show function provided. Show functions, for example,
are used when you want to access Cloudant directly from a browser,
and need data to be returned in a different format, such as HTML.

For example:

Assuming that 'view001' exists as part of the
'ddoc001' design document in the remote database...
Retrieve a formatted 'doc001' document where the show function is 'show001'
resp = db.get_show_function_result('ddoc001', 'show001', 'doc001')
for row in resp['rows']:
 # Process data (in text format).

For more detail on show functions, refer to the
Cloudant show documentation [https://console.bluemix.net/docs/services/Cloudant/api/design_documents.html#show-functions].

	Parameters

	
	ddoc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Design document id used to get the result.

	show_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used in part to identify the
show function.

	doc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The ID of the document to show.

	Returns

	Formatted document result data in text format

	
get_view_result(ddoc_id, view_name, raw_result=False, **kwargs)

	Retrieves the view result based on the design document and view name.
By default the result is returned as a
Result object which provides a key
accessible, sliceable, and iterable interface to the result collection.
Depending on how you are accessing, slicing or iterating through your
result collection certain query parameters are not permitted. See
Result for additional details.

However, by setting raw_result=True, the result will be returned as
the raw JSON response content for the view requested. With this setting
there are no restrictions on the query parameters used but it also
means that the result collection key access, slicing, and iteration is
the responsibility of the developer.

For example:

get Result based on a design document view
result = db.get_view_result('_design/ddoc_id_001', 'view_001')

get a customized Result based on a design document view
result = db.get_view_result('_design/ddoc_id_001', 'view_001',
 include_docs=True, reduce=False)

get raw response content based on a design document view
result = db.get_view_result('_design/ddoc_id_001', 'view_001',
 raw_result=True)

get customized raw response content for a design document view
db.get_view_result('_design/ddoc_id_001', 'view_001',
 raw_result=True, include_docs=True, skip=100, limit=100)

For more detail on key access, slicing and iteration, refer to the
Result documentation.

	Parameters

	
	ddoc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Design document id used to get result.

	view_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the view used to get result.

	raw_result (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether the view result is returned
as a default Result object or a raw JSON response.
Defaults to False.

	descending (bool [https://docs.python.org/3/library/functions.html#bool]) – Return documents in descending key order.

	endkey – Stop returning records at this specified key.
Not valid when used with Result key
access and key slicing.

	endkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Stop returning records when the specified
document id is reached.

	group (bool [https://docs.python.org/3/library/functions.html#bool]) – Using the reduce function, group the results to a
group or single row.

	group_level – Only applicable if the view uses complex keys: keys
that are lists. Groups reduce results for the specified number
of list fields.

	include_docs (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the full content of the documents.

	inclusive_end (bool [https://docs.python.org/3/library/functions.html#bool]) – Include rows with the specified endkey.

	key – Return only documents that match the specified key.
Not valid when used with Result key
access and key slicing.

	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – Return only documents that match the specified keys.
Not valid when used with Result key
access and key slicing.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Limit the number of returned documents to the
specified count. Not valid when used with
Result iteration.

	page_size (int [https://docs.python.org/3/library/functions.html#int]) – Sets the page size for result iteration.
Only valid if used with raw_result=False.

	reduce (bool [https://docs.python.org/3/library/functions.html#bool]) – True to use the reduce function, false otherwise.

	skip (int [https://docs.python.org/3/library/functions.html#int]) – Skip this number of rows from the start.
Not valid when used with Result iteration.

	stable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not the view results should be returned
from a “stable” set of shards.

	stale (str [https://docs.python.org/3/library/stdtypes.html#str]) – Allow the results from a stale view to be used. This
makes the request return immediately, even if the view has not been
completely built yet. If this parameter is not given, a response is
returned only after the view has been built. Note that this
parameter is deprecated and the appropriate combination of stable
and update should be used instead.

	startkey – Return records starting with the specified key.
Not valid when used with Result key
access and key slicing.

	startkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Return records starting with the specified
document ID.

	update (str [https://docs.python.org/3/library/stdtypes.html#str]) – Determine whether the view in question should be
updated prior to or after responding to the user. Valid values are:
false: return results before updating the view; true: Return results
after updating the view; lazy: Return the view results without
waiting for an update, but update them immediately after the request.

	Returns

	The result content either wrapped in a QueryResult or
as the raw response JSON content

	
infinite_changes(**kwargs)

	Returns an infinite (perpetually refreshed) _changes feed iterator.
If necessary, the iteration can be stopped by issuing a call to the
stop() method on the returned iterator object.

For example:

Iterate over an infinite _changes feed
changes = db.infinite_changes()
for change in changes:
 if some_condition:
 changes.stop()
 print(change)

	Parameters

	
	conflicts (bool [https://docs.python.org/3/library/functions.html#bool]) – Can only be set if include_docs is True. Adds
information about conflicts to each document. Default is False.

	descending (bool [https://docs.python.org/3/library/functions.html#bool]) – Changes appear in sequential order. Default is
False.

	doc_ids (list [https://docs.python.org/3/library/stdtypes.html#list]) – To be used only when filter is set to
_doc_ids. Filters the feed so that only changes to the
specified documents are sent.

	filter (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of filter function from a design document to get
updates. Default is no filter.

	heartbeat (int [https://docs.python.org/3/library/functions.html#int]) – Time in milliseconds after which an empty line is
sent if there have been no changes. Must be a positive number.
Default is no heartbeat.

	include_docs (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the document with the result. The
document will not be returned as a
Document but instead will be returned as
either formated JSON or as raw response content. Default is False.

	since – Start the results from changes after the specified
sequence identifier. In other words, using since excludes from the
list all changes up to and including the specified sequence
identifier. If since is 0 (the default), or omitted, the request
returns all changes. If it is now, only changes made after the
time of the request will be emitted.

	style (str [https://docs.python.org/3/library/stdtypes.html#str]) – Specifies how many revisions are returned in the
changes array. The default, main_only, only returns the current
“winning” revision; all_docs returns all leaf revisions,
including conflicts and deleted former conflicts.

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – Number of milliseconds to wait for data before
terminating the response. heartbeat supersedes timeout if
both are supplied.

	chunk_size (int [https://docs.python.org/3/library/functions.html#int]) – The HTTP response stream chunk size. Defaults to
512.

	Returns

	Feed object that can be iterated over as a _changes feed.

	
keys(remote=False)

	Retrieves the list of document ids in the database. Default is
to return only the locally cached document ids, specify remote=True
to make a remote request to include all document ids from the remote
database instance.

	Parameters

	remote (bool [https://docs.python.org/3/library/functions.html#bool]) – Dictates whether the list of locally cached
document ids are returned or a remote request is made to include
an up to date list of document ids from the server.
Defaults to False.

	Returns

	List of document ids

	
list_design_documents()

	Retrieves a list of design document names in this database.
Performs a remote call to retrieve the content.

	Returns

	List of names for all design documents in this database

	
metadata()

	Retrieves the remote database metadata dictionary.

	Returns

	Dictionary containing database metadata details

	
missing_revisions(doc_id, *revisions)

	Returns a list of document revision values that do not exist in the
current remote database for the specified document id and specified
list of revision values.

	Parameters

	
	doc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Document id to check for missing revisions against.

	revisions (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of document revisions values to check
against.

	Returns

	List of missing document revision values

	
new_document()

	Creates a new, empty document in the remote and locally cached database,
auto-generating the _id.

	Returns

	Document instance corresponding to the new document in the
database

	
partition_metadata(partition_key)

	Retrieves the metadata dictionary for the remote database partition.

	Parameters

	partition_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Partition key.

	Returns

	Metadata dictionary for the database partition.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
partitioned_all_docs(partition_key, **kwargs)

	Wraps the _all_docs primary index on the database partition, and returns
the results by value.

See all_docs() method for further
details.

	Parameters

	
	partition_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Partition key.

	kwargs – See all_docs()
method for available keyword arguments.

	Returns

	Raw JSON response content from _all_docs endpoint.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
r_session

	Returns the r_session from the client instance used by the database.

	Returns

	Client r_session

	
revisions_diff(doc_id, *revisions)

	Returns the differences in the current remote database for the specified
document id and specified list of revision values.

	Parameters

	
	doc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Document id to check for revision differences
against.

	revisions (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of document revisions values to check
against.

	Returns

	The revision differences in JSON format

	
set_revision_limit(limit)

	Sets the limit of historical revisions to store for any single document
in the current remote database.

	Parameters

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Number of revisions to store for any single document
in the current remote database.

	Returns

	Revision limit set operation status in JSON format

	
update_handler_result(ddoc_id, handler_name, doc_id=None, data=None, **params)

	Creates or updates a document from the specified database based on the
update handler function provided. Update handlers are used, for
example, to provide server-side modification timestamps, and document
updates to individual fields without the latest revision. You can
provide query parameters needed by the update handler function using
the params argument.

Create a document with a generated ID:

Assuming that 'update001' update handler exists as part of the
'ddoc001' design document in the remote database...
Execute 'update001' to create a new document
resp = db.update_handler_result('ddoc001', 'update001', data={'name': 'John',
 'message': 'hello'})

Create or update a document with the specified ID:

Assuming that 'update001' update handler exists as part of the
'ddoc001' design document in the remote database...
Execute 'update001' to update document 'doc001' in the database
resp = db.update_handler_result('ddoc001', 'update001', 'doc001',
 data={'month': 'July'})

For more details, see the update handlers documentation [https://console.bluemix.net/docs/services/Cloudant/api/design_documents.html#update-handlers].

	Parameters

	
	ddoc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Design document id used to get result.

	handler_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used in part to identify the
update handler function.

	doc_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional document id used to specify the
document to be handled.

	Returns

	Result of update handler function in text format

	
view_cleanup()

	Removes view files that are not used by any design document in the
remote database.

	Returns

	View cleanup status in JSON format

document

API module/class for interacting with a document in a database.

	
class cloudant.document.Document(database, document_id=None, **kwargs)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Encapsulates a JSON document. A Document object is instantiated with a
reference to a database and used to manipulate document content
in a CouchDB or Cloudant database instance.

In addition to basic CRUD style operations, a Document object also provides
a convenient context manager. This context manager removes having to
explicitly fetch() the document from the
remote database before commencing work on it as well as explicitly having
to save() the document once work is
complete.

For example:

Upon entry into the document context, fetches the document from the
remote database, if it exists. Upon exit from the context, saves the
document to the remote database with changes made within the context.
with Document(database, 'julia006') as document:
 # The document is fetched from the remote database
 # Changes are made locally
 document['name'] = 'Julia'
 document['age'] = 6
 # The document is saved to the remote database

	Parameters

	
	database – A database instance used by the Document. Can be
either a CouchDatabase or CloudantDatabase instance.

	document_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional document id used to identify the document.

	encoder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional JSON encoder object (extending json.JSONEncoder).

	decoder (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional JSON decoder object (extending json.JSONDecoder).

	
create()

	Creates the current document in the remote database and if successful,
updates the locally cached Document object with the _id
and _rev returned as part of the successful response.

	
delete()

	Removes the document from the remote database and clears the content of
the locally cached Document object with the exception of the _id
field. In order to successfully remove a document from the remote
database, a _rev value must exist in the locally cached Document
object.

	
delete_attachment(attachment, headers=None)

	Removes an attachment from a remote document and refreshes the locally
cached document object.

	Parameters

	
	attachment (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attachment file name used to identify the
attachment.

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Optional, additional headers to be sent
with request.

	Returns

	Attachment deletion status in JSON format

	
document_url

	Constructs and returns the document URL.

	Returns

	Document URL

	
exists()

	Retrieves whether the document exists in the remote database or not.

	Returns

	True if the document exists in the remote database,
otherwise False

	
fetch()

	Retrieves the content of the current document from the remote database
and populates the locally cached Document object with that content.
A call to fetch will overwrite any dictionary content currently in
the locally cached Document object.

	
static field_set(doc, field, value)

	Sets or replaces a value for a field in a locally cached Document
object. To remove the field set the value to None.

	Parameters

	
	doc (Document) – Locally cached Document object that can be a
Document, DesignDocument or dict.

	field (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the field to set.

	value – Value to set the field to.

	
get_attachment(attachment, headers=None, write_to=None, attachment_type=None)

	Retrieves a document’s attachment and optionally writes it to a file.
If the content_type of the attachment is ‘application/json’ then the
data returned will be in JSON format otherwise the response content will
be returned as text or binary.

	Parameters

	
	attachment (str [https://docs.python.org/3/library/stdtypes.html#str]) – Attachment file name used to identify the
attachment.

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Optional, additional headers to be sent
with request.

	write_to (file) – Optional file handler to write the attachment to.
The write_to file must be opened for writing prior to including it
as an argument for this method.

	attachment_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional setting to define how to handle the
attachment when returning its contents from this method. Valid
values are 'text', 'json', and 'binary' If
omitted then the returned content will be based on the
response Content-Type.

	Returns

	The attachment content

	
json()

	Retrieves the JSON string representation of the current locally cached
document object, encoded by the encoder specified in the associated
client object.

	Returns

	Encoded JSON string containing the document data

	
static list_field_append(doc, field, value)

	Appends a value to a list field in a locally cached Document object.
If a field does not exist it will be created first.

	Parameters

	
	doc (Document) – Locally cached Document object that can be a
Document, DesignDocument or dict.

	field (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the field list to append to.

	value – Value to append to the field list.

	
static list_field_remove(doc, field, value)

	Removes a value from a list field in a locally cached Document object.

	Parameters

	
	doc (Document) – Locally cached Document object that can be a
Document, DesignDocument or dict.

	field (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the field list to remove from.

	value – Value to remove from the field list.

	
put_attachment(attachment, content_type, data, headers=None)

	Adds a new attachment, or updates an existing attachment, to
the remote document and refreshes the locally cached
Document object accordingly.

	Parameters

	
	attachment – Attachment file name used to identify the
attachment.

	content_type – The http Content-Type of the attachment used
as an additional header.

	data – Attachment data defining the attachment content.

	headers – Optional, additional headers to be sent
with request.

	Returns

	Attachment addition/update status in JSON format

	
r_session

	Returns the database instance r_session used by the document.

	Returns

	Client r_session

	
save()

	Saves changes made to the locally cached Document object’s data
structures to the remote database. If the document does not exist
remotely then it is created in the remote database. If the object
does exist remotely then the document is updated remotely. In either
case the locally cached Document object is also updated accordingly
based on the successful response of the operation.

	
update_field(action, field, value, max_tries=10)

	Updates a field in the remote document. If a conflict exists,
the document is re-fetched from the remote database and the update
is retried. This is performed up to max_tries number of times.

Use this method when you want to update a single field in a document,
and don’t want to risk clobbering other people’s changes to
the document in other fields, but also don’t want the caller
to implement logic to deal with conflicts.

For example:

Append the string 'foo' to the 'words' list of Document doc.
doc.update_field(
 action=doc.list_field_append,
 field='words',
 value='foo'
)

	Parameters

	
	action (callable) – A routine that takes a Document object,
a field name, and a value. The routine should attempt to
update a field in the locally cached Document object with the
given value, using whatever logic is appropriate.
Valid actions are
list_field_append(),
list_field_remove(),
field_set()

	field (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the field to update

	value – Value to update the field with

	max_tries (int [https://docs.python.org/3/library/functions.html#int]) – In the case of a conflict, the number of retries
to attempt

design_document

API module/class for interacting with a design document in a database.

	
class cloudant.design_document.DesignDocument(database, document_id=None, partitioned=False)

	Bases: cloudant.document.Document

Encapsulates a specialized version of a
Document. A DesignDocument object is
instantiated with a reference to a database and
provides an API to view management, index management, list and show
functions, etc. When instantiating a DesignDocument or
when setting the document id (_id) field, the value must start with
_design/. If it does not, then _design/ will be prepended to
the provided document id value.

Note: Currently only the view management and search index management API
exists. Remaining design document functionality will be added later.

	Parameters

	
	database – A database instance used by the DesignDocument. Can be
either a CouchDatabase or CloudantDatabase instance.

	document_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional document id. If provided and does not
start with _design/, it will be prepended with _design/.

	partitioned (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional. Create as a partitioned design document.
Defaults to False for both partitioned and non-partitioned
databases.

	
add_list_function(list_name, list_func)

	Appends a list function to the locally cached DesignDocument
indexes dictionary.

	Parameters

	
	list_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the list function.

	list_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Javascript list function.

	
add_search_index(index_name, search_func, analyzer=None)

	Appends a Cloudant search index to the locally cached DesignDocument
indexes dictionary.

	Parameters

	
	index_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the search index.

	search_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Javascript search index function.

	analyzer – Optional analyzer for this search index.

	
add_show_function(show_name, show_func)

	Appends a show function to the locally cached DesignDocument
shows dictionary.

	Parameters

	
	show_name – Name used to identify the show function.

	show_func – Javascript show function.

	
add_view(view_name, map_func, reduce_func=None, **kwargs)

	Appends a MapReduce view to the locally cached DesignDocument View
dictionary. To create a JSON query index use
create_query_index() instead.
A CloudantException is raised if an attempt to add a QueryIndexView
(JSON query index) using this method is made.

	Parameters

	
	view_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the View.

	map_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Javascript map function.

	reduce_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional Javascript reduce function.

	
delete_index(index_name)

	Removes an existing index in the locally cached DesignDocument
indexes dictionary.

	Parameters

	index_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the index.

	
delete_list_function(list_name)

	Removes an existing list function in the locally cached DesignDocument
lists dictionary.

	Parameters

	list_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the list.

	
delete_show_function(show_name)

	Removes an existing show function in the locally cached DesignDocument
shows dictionary.

	Parameters

	show_name – Name used to identify the list.

	
delete_view(view_name)

	Removes an existing MapReduce view definition from the locally cached
DesignDocument View dictionary. To delete a JSON query index
use delete_query_index()
instead. A CloudantException is raised if an attempt to delete a
QueryIndexView (JSON query index) using this method is made.

	Parameters

	view_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the View.

	
document_partition_url(partition_key)

	Retrieve the design document partition URL.

	Parameters

	partition_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Partition key.

	Returns

	Design document partition URL.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
fetch()

	Retrieves the remote design document content and populates the locally
cached DesignDocument dictionary. View content is stored either as
View or QueryIndexView objects which are extensions of the dict
type. All other design document data are stored directly as
dict types.

	
filters

	Provides an accessor property to the filters dictionary in the locally cached
DesignDocument. Filter functions enable you to add tests for filtering each
of the objects included in the changes feed. If any of the function tests
fail, the object is filtered from the feed. If the function returns a true
result when applied to a change, the change remains in the feed.

Filter functions require two arguments: doc and req. The doc argument
represents the document being tested for filtering. The req argument contains
additional information about the HTTP request.

Filter function example:

Add the filter function to ``filters`` and save the design document
ddoc = DesignDocument(self.db, '_design/ddoc001')
Filter and remove documents that are not of ``type`` mail
ddoc['filters'] = {
 'filter001': 'function(doc, req){if (doc.type != 'mail'){return false;} '
 'return true;} '
}
ddoc.save()

To execute filter functions on a changes feed, see the database API
changes()

For more details, see the Filter functions documentation [https://console.bluemix.net/docs/services/Cloudant/api/design_documents.html#filter-functions].

	Returns

	Dictionary containing filter function names and functions
as key/value

	
get_index(index_name)

	Retrieves a specific index from the locally cached DesignDocument
indexes dictionary by name.

	Parameters

	index_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the index.

	Returns

	Index dictionary for the specified index name

	
get_list_function(list_name)

	Retrieves a specific list function from the locally cached DesignDocument
lists dictionary by name.

	Parameters

	list_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the list function.

	Returns

	String form of the specified list function

	
get_show_function(show_name)

	Retrieves a specific show function from the locally cached DesignDocument
shows dictionary by name.

	Parameters

	show_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the show function.

	Returns

	String form of the specified show function

	
get_view(view_name)

	Retrieves a specific View from the locally cached DesignDocument by
name.

	Parameters

	view_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the View.

	Returns

	View object for the specified view_name

	
indexes

	Provides an accessor property to the indexes dictionary in the
locally cached DesignDocument.

	Returns

	Dictionary containing index names and index objects
as key/value

	
iterindexes()

	Provides a way to iterate over the locally cached DesignDocument
indexes dictionary.

For example:

for index_name, search_func in ddoc.iterindexes():
 # Perform search index processing

	Returns

	Iterable containing index name and associated
index object

	
iterlists()

	Provides a way to iterate over the locally cached DesignDocument
lists dictionary.

	Returns

	Iterable containing list function name and associated
list function

	
itershows()

	Provides a way to iterate over the locally cached DesignDocument
shows dictionary.

	Returns

	Iterable containing show function name and associated
show function

	
iterviews()

	Provides a way to iterate over the locally cached DesignDocument View
dictionary.

For example:

for view_name, view in ddoc.iterviews():
 # Perform view processing

	Returns

	Iterable containing view name and associated View object

	
list_indexes()

	Retrieves a list of available indexes in the locally cached
DesignDocument.

	Returns

	List of index names

	
list_list_functions()

	Retrieves a list of available list functions in the locally cached
DesignDocument lists dictionary.

	Returns

	List of list function names

	
list_show_functions()

	Retrieves a list of available show functions in the locally cached
DesignDocument shows dictionary.

	Returns

	List of show function names

	
list_views()

	Retrieves a list of available View objects in the locally cached
DesignDocument.

	Returns

	List of view names

	
lists

	Provides an accessor property to the lists dictionary in the locally
cached DesignDocument.

	Returns

	Dictionary containing list names and objects as key/value

	
rewrites

	Provides an accessor property to a list of dictionaries with rewrite
rules in the locally cached DesignDocument. Each rule for URL rewriting
is a JSON object with four fields: from, to, method,
and query.

Note: Requests that match the rewrite rules must have a URL path that
starts with /$DATABASE/_design/doc/_rewrite.

Rewrite rule example:

Add the rule to ``rewrites`` and save the design document
ddoc = DesignDocument(self.db, '_design/ddoc001')
ddoc['rewrites'] = [
 {"from": "/old/topic",
 "to": "/new/",
 "method": "GET",
 "query": {}
 }
]
ddoc.save()

Once the rewrite rule is saved to the remote database, the GET
request URL /$DATABASE/_design/doc/_rewrite/old/topic?k=v would be
rewritten as /$DATABASE/_design/doc/_rewrite/new?k=v.

For more details on URL rewriting, see the rewrite rules
documentation [https://console.bluemix.net/docs/services/Cloudant/api/design_documents.html#rewrite-rules].

	Returns

	List of dictionaries containing rewrite rules as key/value

	
save()

	Saves changes made to the locally cached DesignDocument object’s data
structures to the remote database. If the design document does not
exist remotely then it is created in the remote database. If the object
does exist remotely then the design document is updated remotely. In
either case the locally cached DesignDocument object is also updated
accordingly based on the successful response of the operation.

	
search_disk_size(search_index)

	Retrieves disk size information about a specified search index within
the design document, returns dictionary

GET databasename/_design/{ddoc}/_search_disk_size/{search_index}

	
search_info(search_index)

	Retrieves information about a specified search index within the design
document, returns dictionary

GET databasename/_design/{ddoc}/_search_info/{search_index}

	
shows

	Provides an accessor property to the shows dictionary in the
locally cached DesignDocument.

	Returns

	Dictionary containing show names and functions
as key/value

	
st_indexes

	Provides an accessor property to the Cloudant Geospatial
(a.k.a. Cloudant Geo) indexes dictionary in the locally cached
DesignDocument. Each Cloudant Geo index is a JSON object within the
st_indexes containing an index name and a javascript function.

Note: To make it easier to work with Cloudant Geo documents, it is best
practice to create a separate design document specifically for
Cloudant Geo indexes.

Geospatial index example:

Add the Cloudant Geo index to ``st_indexes`` and save the design document
ddoc = DesignDocument(self.db, '_design/ddoc001')
ddoc['st_indexes'] = {
 'geoidx': {
 'index': 'function(doc) { '
 'if (doc.geometry && doc.geometry.coordinates) { '
 'st_index(doc.geometry);}} '
 }
}
ddoc.save()

Once the Cloudant Geo index is saved to the remote database, you can
query the index with a GET request. To issue a request against the
_geo endpoint, see the steps outlined in the endpoint access section.

For more details, see the Cloudant Geospatial
documentation [https://console.bluemix.net/docs/services/Cloudant/api/cloudant-geo.html].

	Returns

	Dictionary containing Cloudant Geo names and index objects
as key/value

	
update_list_function(list_name, list_func)

	Modifies/overwrites an existing list function in the
locally cached DesignDocument indexes dictionary.

	Parameters

	
	list_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the list function.

	list_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Javascript list function.

	
update_search_index(index_name, search_func, analyzer=None)

	Modifies/overwrites an existing Cloudant search index in the
locally cached DesignDocument indexes dictionary.

	Parameters

	
	index_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the search index.

	search_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Javascript search index function.

	analyzer – Optional analyzer for this search index.

	
update_show_function(show_name, show_func)

	Modifies/overwrites an existing show function in the
locally cached DesignDocument shows dictionary.

	Parameters

	
	show_name – Name used to identify the show function.

	show_func – Javascript show function.

	
update_view(view_name, map_func, reduce_func=None, **kwargs)

	Modifies/overwrites an existing MapReduce view definition in the
locally cached DesignDocument View dictionary. To update a JSON
query index use
delete_query_index() followed
by create_query_index()
instead. A CloudantException is raised if an attempt to update a
QueryIndexView (JSON query index) using this method is made.

	Parameters

	
	view_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used to identify the View.

	map_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Javascript map function.

	reduce_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional Javascript reduce function.

	
updates

	Provides an accessor property to the updates dictionary in the locally
cached DesignDocument. Update handlers are custom functions stored on
Cloudant’s server that will create or update a document.
To execute the update handler function, see
update_handler_result().

Update handlers receive two arguments: doc and req. If a document ID is
provided in the request to the update handler, then doc will be the
document corresponding with that ID.
If no ID was provided, doc will be null.

Update handler example:

Add the update handler to ``updates`` and save the design document
ddoc = DesignDocument(self.db, '_design/ddoc001')
ddoc001['updates'] = {
 'update001': 'function(doc, req) { if (!doc) '
 '{ if ('id' in req && req.id){ return [{_id: req.id}, '
 '"New World"] } return [null, "Empty World"] } '
 'doc.world = 'hello'; '
 'return [doc, "Added world.hello!"]} '
}
ddoc.save()

Note: Update handler functions must return an array of two elements,
the first being the document to save (or null, if you don’t want to
save anything), and the second being the response body.

	Returns

	Dictionary containing update handler names and objects
as key/value

	
validate_doc_update

	Provides an accessor property to the update validators dictionary in
the locally cached DesignDocument. Update validators evaluate whether a
document should be written to disk when insertions and updates are attempted.

Update validator example:

Add the update validator to ``validate_doc_update`` and save the design document
ddoc = DesignDocument(self.db, '_design/ddoc001')
ddoc['validate_doc_update'] = (
 'function(newDoc, oldDoc, userCtx, secObj) { '
 'if (newDoc.address === undefined) { '
 'throw({forbidden: 'Document must have an address.'}); }}')
ddoc.save()

For more details, see the Update Validators documentation [https://console.bluemix.net/docs/services/Cloudant/api/design_documents.html#update-validators].

	Returns

	Dictionary containing update validator functions

	
views

	Provides an accessor property to the View dictionary in the locally
cached DesignDocument.

	Returns

	Dictionary containing view names and View objects as key/value

security_document

API module/class for interacting with a security document in a database.

	
class cloudant.security_document.SecurityDocument(database)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Encapsulates a JSON security document. A SecurityDocument object is
instantiated with a reference to a database and used to manipulate security
document content in a CouchDB or Cloudant database instance.

In addition to basic read/write operations, a SecurityDocument object also
provides a convenient context manager. This context manager removes having
to explicitly fetch()
the security document from the remote database before commencing work on it
as well as explicitly having to
save() the security
document once work is complete.

For example:

Upon entry into the security document context, fetches the security
document from the remote database, if it exists. Upon exit from the
context, saves the security document to the remote database with
changes made within the context.
with SecurityDocument(database) as security_document:
 # The security document is fetched from the remote database
 # Changes are made locally
 security_document['Cloudant']['julia'] = ['_reader', '_writer']
 security_document['Cloudant']['ruby'] = ['_admin', '_replicator']
 # The security document is saved to the remote database

	Parameters

	database – A database instance used by the SecurityDocument. Can be
either a CouchDatabase or CloudantDatabase instance.

	
document_url

	Constructs and returns the security document URL.

	Returns

	Security document URL

	
fetch()

	Retrieves the content of the current security document from the remote
database and populates the locally cached SecurityDocument object with
that content. A call to fetch will overwrite any dictionary content
currently in the locally cached SecurityDocument object.

	
json()

	Retrieves the JSON string representation of the current locally cached
security document object, encoded by the encoder specified in the
associated client object.

	Returns

	Encoded JSON string containing the security document data

	
r_session

	Returns the Python requests session used by the security document.

	Returns

	The Python requests session

	
save()

	Saves changes made to the locally cached SecurityDocument object’s data
structures to the remote database.

view

API module for interacting with a view in a design document.

	
class cloudant.view.QueryIndexView(ddoc, view_name, map_fields, reduce_func, **kwargs)

	Bases: cloudant.view.View

A view that defines a JSON query index in a design document.

If you wish to manage a view that represents a JSON query index it
is strongly recommended that
create_query_index()
and delete_query_index() are used.

	
__call__(**kwargs)

	QueryIndexView objects are not callable. If you wish to execute a query
using a query index, use
get_query_result() instead.

	
custom_result(**options)

	This method overrides the View base class
custom_result() method with the sole purpose of
disabling it. Since QueryIndexView objects are not callable, there is
no reason to wrap their output in a Result. If you wish to execute a
query using a query index, use
get_query_result() instead.

	
map

	Provides a map property accessor and setter.

	Parameters

	map_func (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of fields defining the index.

	Returns

	Fields defining the index

	
reduce

	Provides a reduce property accessor and setter.

	Parameters

	reduce_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string representation of the reduce function
used in part to define the index.

	Returns

	Reduce function as a string

	
class cloudant.view.View(ddoc, view_name, map_func=None, reduce_func=None, partition_key=None, **kwargs)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Encapsulates a view as a dictionary based object, exposing the map and
reduce functions as attributes and supporting query/data access through
the view. A View object is instantiated with a reference to a
DesignDocument and is typically used as part of the
DesignDocument view management API.

A View object provides a key accessible, sliceable, and iterable default
result collection that can be used to query the view data through the
result attribute.

For example:

Access result collection through individual keys
view.result[100]
view.result['foo']

Access result collection through index slicing:
view.result[100: 200]
view.result[: 200]
view.result[100:]
view.result[:]

Access result collection through key slicing:
view.result['bar': 'foo']
view.result['bar':]
view.result[: 'foo']

Iterate over the result collection:
for doc in view.result:
 print doc

The default result collection provides basic functionality,
which can be customized with other arguments using the
custom_result() context manager.

For example:

Including documents as part of a custom result
with view.custom_result(include_docs=True) as rslt:
 rslt[100: 200] # slice by result
 rslt[['2013', '10']: ['2013', '11']] # slice by startkey/endkey

 # Iteration
 for doc in rslt:
 print doc

Iteration over a view within startkey/endkey range:
with view.custom_result(startkey='2013', endkey='2014') as rslt:
 for doc in rslt:
 print doc

Note: A view must exist as part of a design document remotely in order to
access result content as depicted in the above examples.

	Parameters

	
	ddoc (DesignDocument) – DesignDocument instance used in part to
identify the view.

	view_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name used in part to identify the view.

	map_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional Javascript map function.

	reduce_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional Javascript reduce function.

	partition_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Specify a view partition key. Defaults
to None resulting in global queries.

	
__call__(**kwargs)

	Makes the View object callable and retrieves the raw JSON content
from the remote database based on the View definition on the server,
using the kwargs provided as query parameters.

For example:

Construct a View
view = View(ddoc, 'view001')
Assuming that 'view001' exists as part of the
design document ddoc in the remote database...
Use view as a callable
for row in view(include_docs=True, limit=100, skip=100)['rows']:
 # Process view data (in JSON format).

Note: Rather than using the View callable directly, if you wish to
retrieve view results in raw JSON format use raw_result=True with
the provided database API of
get_view_result() instead.

	Parameters

	
	descending (bool [https://docs.python.org/3/library/functions.html#bool]) – Return documents in descending key order.

	endkey – Stop returning records at this specified key.

	endkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Stop returning records when the specified
document id is reached.

	group (bool [https://docs.python.org/3/library/functions.html#bool]) – Using the reduce function, group the results to a
group or single row.

	group_level – Only applicable if the view uses complex keys: keys
that are JSON arrays. Groups reduce results for the specified number
of array fields.

	include_docs (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the full content of the documents.

	inclusive_end (bool [https://docs.python.org/3/library/functions.html#bool]) – Include rows with the specified endkey.

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Return only documents that match the specified key.

	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – Return only documents that match the specified keys.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Limit the number of returned documents to the
specified count.

	reduce (bool [https://docs.python.org/3/library/functions.html#bool]) – True to use the reduce function, false otherwise.

	skip (int [https://docs.python.org/3/library/functions.html#int]) – Skip this number of rows from the start.

	stale (str [https://docs.python.org/3/library/stdtypes.html#str]) – Allow the results from a stale view to be used. This
makes the request return immediately, even if the view has not been
completely built yet. If this parameter is not given, a response is
returned only after the view has been built.

	startkey – Return records starting with the specified key.

	startkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Return records starting with the specified
document ID.

	Returns

	View result data in JSON format

	
custom_result(**options)

	Customizes the Result behavior and provides
a convenient context manager for the Result. Result customizations
can be made by providing extra options to the result call using this
context manager. Depending on how you are accessing, slicing or
iterating through your result collection certain query parameters are
not permitted. See Result for additional
details.

For example:

with view.custom_result(include_docs=True, reduce=False) as rslt:
 data = rslt[100: 200]

	Parameters

	
	descending (bool [https://docs.python.org/3/library/functions.html#bool]) – Return documents in descending key order.

	endkey – Stop returning records at this specified key.
Not valid when used with Result key
access and key slicing.

	endkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Stop returning records when the specified
document id is reached.

	group (bool [https://docs.python.org/3/library/functions.html#bool]) – Using the reduce function, group the results to a
group or single row.

	group_level – Only applicable if the view uses complex keys: keys
that are JSON arrays. Groups reduce results for the specified number
of array fields.

	include_docs (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the full content of the documents.

	inclusive_end (bool [https://docs.python.org/3/library/functions.html#bool]) – Include rows with the specified endkey.

	key – Return only documents that match the specified key.
Not valid when used with Result key
access and key slicing.

	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – Return only documents that match the specified keys.
Not valid when used with Result key
access and key slicing.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Limit the number of returned documents to the
specified count. Not valid when used with
Result iteration.

	page_size (int [https://docs.python.org/3/library/functions.html#int]) – Sets the page size for result iteration.

	reduce (bool [https://docs.python.org/3/library/functions.html#bool]) – True to use the reduce function, false otherwise.

	skip (int [https://docs.python.org/3/library/functions.html#int]) – Skip this number of rows from the start.
Not valid when used with Result iteration.

	stale (str [https://docs.python.org/3/library/stdtypes.html#str]) – Allow the results from a stale view to be used. This
makes the request return immediately, even if the view has not been
completely built yet. If this parameter is not given, a response is
returned only after the view has been built.

	startkey – Return records starting with the specified key.
Not valid when used with Result key
access and key slicing.

	startkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Return records starting with the specified
document ID.

	Returns

	View result data wrapped in a Result instance

	
map

	Provides an map property accessor and setter.

For example:

Set the View map property
view.map = 'function (doc) {\n emit(doc._id, 1);\n}'
print view.map

	Parameters

	js_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Javascript function.

	Returns

	Codified map function

	
reduce

	Provides an reduce property accessor and setter.

For example:

Set the View reduce property
view.reduce = '_count'
Get and print the View reduce property
print view.reduce

	Parameters

	js_func (str [https://docs.python.org/3/library/stdtypes.html#str]) – Javascript function.

	Returns

	Codified reduce function

	
url

	Constructs and returns the View URL.

	Returns

	View URL

query

API module for composing and executing Cloudant queries.

	
class cloudant.query.Query(database, **kwargs)

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Encapsulates a query as a dictionary based object, providing a sliceable
and iterable query result collection that can be used to process query
output data through the result attribute.

For example:

Slicing to skip/limit:
query.result[100:200]
query.result[:200]
query.result[100:]
query.result[:]

Iteration is supported via the result attribute:
for doc in query.result:
 print doc

The query result collection provides basic functionality,
which can be customized with other arguments using the
custom_result() context.

For example:

Setting the read quorum as part of a custom result
with query.custom_result(r=3) as rslt:
 rslt[100:200] # slice the result

 # Iteration
 for doc in rslt:
 print doc

Iteration over a query result sorted by the "name" field:
with query.custom_result(sort=[{'name': 'asc'}]) as rslt:
 for doc in rslt:
 print doc

	Parameters

	
	database (CloudantDatabase) – A Cloudant database instance used by the
Query.

	bookmark (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that enables you to specify which page of
results you require.

	fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields to be returned by the query.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of results returned.

	r (int [https://docs.python.org/3/library/functions.html#int]) – Read quorum needed for the result. Each document is read from
at least ‘r’ number of replicas before it is returned in the results.

	selector (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary object describing criteria used to select
documents.

	skip (int [https://docs.python.org/3/library/functions.html#int]) – Skip the first ‘n’ results, where ‘n’ is the value
specified.

	sort (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields to sort by. Optionally the list can
contain elements that are single member dictionary structures that
specify sort direction. For example sort=['name', {'age': 'desc'}]
means to sort the query results by the “name” field in ascending order
and the “age” field in descending order.

	use_index (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies a specific index for the query to run
against, rather than using the Cloudant Query algorithm which finds
what it believes to be the best index.

	partition_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional. Specify a query partition key. Defaults
to None resulting in global queries.

	
__call__(**kwargs)

	Makes the Query object callable and retrieves the raw JSON content
from the remote database based on the current Query definition,
and any additional kwargs provided as query parameters.

For example:

Construct a Query
query = Query(database, selector={'_id': {'$gt': 0}})
Use query as a callable limiting results to 100,
skipping the first 100.
for doc in query(limit=100, skip=100)['docs']:
 # Process query data (in JSON format).

Note: Rather than using the Query callable directly, if you wish to
retrieve query results in raw JSON format use the provided database API
of get_query_result()
and set raw_result=True instead.

	Parameters

	
	bookmark (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that enables you to specify which page of
results you require.

	fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields to be returned by the query.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of results returned.

	r (int [https://docs.python.org/3/library/functions.html#int]) – Read quorum needed for the result. Each document is read
from at least ‘r’ number of replicas before it is returned in the
results.

	selector (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary object describing criteria used to
select documents.

	skip (int [https://docs.python.org/3/library/functions.html#int]) – Skip the first ‘n’ results, where ‘n’ is the value
specified.

	sort (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields to sort by. Optionally the list can
contain elements that are single member dictionary structures that
specify sort direction. For example
sort=['name', {'age': 'desc'}] means to sort the query results
by the “name” field in ascending order and the “age” field in
descending order.

	use_index (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies a specific index for the query to run
against, rather than using the Cloudant Query algorithm which finds
what it believes to be the best index.

	Returns

	Query result data in JSON format

	
custom_result(**options)

	Customizes the QueryResult behavior and
provides a convenient context manager for the QueryResult. QueryResult
customizations can be made by providing extra options to the query
result call using this context manager. The use of skip and
limit as options are not valid when using a QueryResult since the
skip and limit functionality is handled in the QueryResult.

For example:

with query.custom_result(sort=[{'name': 'asc'}]) as rslt:
 data = rslt[100:200]

	Parameters

	
	bookmark (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that enables you to specify which page of
results you require.

	fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields to be returned by the query.

	page_size (int [https://docs.python.org/3/library/functions.html#int]) – Sets the page size for result iteration. Default
is 100.

	r (int [https://docs.python.org/3/library/functions.html#int]) – Read quorum needed for the result. Each document is read
from at least ‘r’ number of replicas before it is returned in the
results.

	selector (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary object describing criteria used to
select documents.

	sort (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields to sort by. Optionally the list can
contain elements that are single member dictionary structures that
specify sort direction. For example
sort=['name', {'age': 'desc'}] means to sort the query results
by the “name” field in ascending order and the “age” field in
descending order.

	use_index (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies a specific index for the query to run
against, rather than using the Cloudant Query algorithm which finds
what it believes to be the best index.

	Returns

	Query result data wrapped in a QueryResult instance

	
url

	Constructs and returns the Query URL.

	Returns

	Query URL

index

API module for managing/viewing query indexes.

	
class cloudant.index.Index(database, design_document_id=None, name=None, partitioned=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides an interface for managing a JSON query index. Primarily
meant to be used by the database convenience methods
create_query_index(),
delete_query_index(), and
get_query_indexes(). It is
recommended that you use those methods to manage an index rather than
directly interfacing with Index objects.

	Parameters

	
	database (CloudantDatabase) – A Cloudant database instance used by the
Index.

	design_document_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional identifier of the design document.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional name of the index.

	partitioned (bool [https://docs.python.org/3/library/functions.html#bool]) – Optional. Create as a partitioned index. Defaults
to False for both partitioned and non-partitioned databases.

	kwargs – Options used to construct the index definition for the
purposes of index creation. For more details on valid options See
create_query_index().

	
as_a_dict()

	Displays the index as a dictionary. This includes the design document
id, index name, index type, and index definition.

	Returns

	Dictionary representation of the index as a dictionary

	
create()

	Creates the current index in the remote database.

	
definition

	Displays the index definition. This could be either the definiton to
be used to construct the index or the definition as it is returned by
a GET request to the _index endpoint.

	Returns

	Index definition as a dictionary

	
delete()

	Removes the current index from the remote database.

	
design_document_id

	Displays the design document id.

	Returns

	Design document that this index belongs to

	
index_url

	Constructs and returns the index URL.

	Returns

	Index URL

	
name

	Displays the index name.

	Returns

	Name for this index

	
partitioned

	Check if this index is partitioned.

	Returns

	True if index is partitioned, else False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
type

	Displays the index type.

	Returns

	Type of this index

	
class cloudant.index.SpecialIndex(database, design_document_id=None, name='_all_docs', **kwargs)

	Bases: cloudant.index.Index

Provides an interface for viewing the “special” primary index of a database.
Primarily meant to be used by the database convenience method
get_query_indexes(). It is
recommended that you use that method to view the “special” index rather than
directly interfacing with the SpecialIndex object.

	
create()

	A “special” index cannot be created. This method is disabled for a
SpecialIndex object.

	
delete()

	A “special” index cannot be deleted. This method is disabled for a
SpecialIndex object.

	
class cloudant.index.TextIndex(database, design_document_id=None, name=None, **kwargs)

	Bases: cloudant.index.Index

Provides an interface for managing a text query index. Primarily
meant to be used by the database convenience methods
create_query_index(),
delete_query_index(), and
get_query_indexes(). It is
recommended that you use those methods to manage an index rather than
directly interfacing with TextIndex objects.

	Parameters

	
	database (CloudantDatabase) – A Cloudant database instance used by the
TextIndex.

	design_document_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional identifier of the design document.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional name of the index.

	kwargs – Options used to construct the index definition for the
purposes of index creation. For more details on valid options See
create_query_index().

result

API module for interacting with result collections.

	
class cloudant.result.QueryResult(query, **options)

	Bases: cloudant.result.Result

Provides a index key accessible, sliceable and iterable interface to query
result collections by extending the Result class.
A QueryResult object is constructed with a raw data callable reference to
the Query __call__() callable, which is used to
retrieve data. A QueryResult object can also use optional extra arguments
for result customization and supports efficient, paged iteration over the
result collection to avoid large result data from adversely affecting
memory.

In Python, slicing returns by value, whereas iteration will yield
elements of the sequence. This means that index key access and slicing will
perform better for smaller data collections, whereas iteration will be more
efficient for larger data collections.

For example:

Key access:

Access by index value:
query_result = QueryResult(query)
query_result[9] # skip first 9 documents and get 10th

Slice access:

Access by index slices:
query_result = QueryResult(query)
query_result[100: 200] # get documents after the 100th and up to and including the 200th
query_result[:200] # get documents up to and including the 200th
query_result[100:] # get all documents after the 100th
query_result[:] # get all documents

Iteration:

Iterate over the entire result collection
query_result = QueryResult(query)
for doc in query_result:
 print doc

Iterate over the result collection, with an overriding query sort
query_result = QueryResult(query, sort=[{'name': 'desc'}])
for doc in query_result:
 print doc

Iterate over the entire result collection,
explicitly setting the index and in batches of 1000.
query_result = QueryResult(query, use_index='my_index', page_size=1000)
for doc in query_result:
 print doc

Note: Only access by index value, slicing by index values and iteration are
supported by QueryResult. Also, since QueryResult object iteration uses the
skip and limit query parameters to handle its processing, skip
and limit are not permitted to be part of the query callable or be
included as part of the QueryResult customized parameters.

	Parameters

	
	query – A reference to the query callable that returns
the JSON content result to be wrapped.

	bookmark (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that enables you to specify which page of
results you require.

	fields (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields to be returned by the query.

	page_size (int [https://docs.python.org/3/library/functions.html#int]) – Sets the page size for result iteration. Default
is 100.

	r (int [https://docs.python.org/3/library/functions.html#int]) – Read quorum needed for the result. Each document is read
from at least ‘r’ number of replicas before it is returned in the
results.

	selector (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary object describing criteria used to
select documents.

	sort (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of fields to sort by. Optionally the list can
contain elements that are single member dictionary structures that
specify sort direction. For example
sort=['name', {'age': 'desc'}] means to sort the query results
by the “name” field in ascending order and the “age” field in
descending order.

	use_index (str [https://docs.python.org/3/library/stdtypes.html#str]) – Identifies a specific index for the query to run
against, rather than using the Cloudant Query algorithm which finds
what it believes to be the best index.

	
__getitem__(arg)

	Provides QueryResult index access and index slicing support.

An int argument will be interpreted as a skip and then a get of
the next document. For example [100] means skip the first 100
documents and then get the next document.

An int slice argument will be interpreted as a skip:limit-skip
style pair. For example [100: 200] means skip the first 100
documents then get up to and including the 200th document so that you
get the range between the supplied slice values.

See QueryResult for more detailed index access
and index slicing examples.

	Parameters

	arg – A single value representing a key or a pair of values
representing a slice. The argument value(s) must be int.

	Returns

	Document data as a list in JSON format

	
class cloudant.result.Result(method_ref, **options)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides a key accessible, sliceable, and iterable interface to result
collections. A Result object is constructed with a raw data callable
reference such as the database API convenience method
all_docs() or the View
__call__() callable, used to retrieve data.
A Result object can also use optional extra arguments for result
customization and supports efficient, paged iteration over the result
collection to avoid large result data from adversely affecting memory.

In Python, slicing returns by value, whereas iteration will yield
elements of the sequence. This means that individual key access and slicing
will perform better for smaller data collections, whereas iteration will
be more efficient for larger data collections.

For example:

Key access:

Access by index value:
result = Result(callable)
result[9] # skip first 9 records and get 10th

Access by key value:
result = Result(callable)
result['foo'] # get records matching 'foo'
result[ResultByKey(9)] # get records matching 9

Slice access:

Access by index slices:
result = Result(callable)
result[100: 200] # get records after the 100th and up to and including the 200th
result[: 200] # get records up to and including the 200th
result[100:] # get all records after the 100th
result[:] # get all records

Access by key slices:
result = Result(callable)
result['bar':'foo'] # get records between and including 'bar' and 'foo'
result['foo':] # get records after and including 'foo'
result[:'foo'] # get records up to and including 'foo'

result[['foo', 10]:
 ['foo', 11]] # Complex key access and slicing works the same as simple keys

result[ResultByKey(5):
 ResultByKey(10)] # key slice access of integer keys

Iteration:

Iterate over the entire result collection
result = Result(callable)
for i in result:
 print i

Iterate over the result collection between startkey and endkey
result = Result(callable, startkey='2013', endkey='2014')
for i in result:
 print i

Iterate over the entire result collection in batches of 1000, including documents.
result = Result(callable, include_docs=True, page_size=1000)
for i in result:
 print i

Note: Since Result object key access, slicing, and iteration use query
parameters behind the scenes to handle their processing, some query
parameters are not permitted as part of a Result customization,
depending on whether key access, slicing, or iteration is being performed.

Such as:

	Access/Slicing by index value

	No restrictions

	Access/Slicing by key value

	key, keys, startkey, endkey not permitted

	Iteration

	limit, skip not permitted

	Parameters

	
	method_ref (str [https://docs.python.org/3/library/stdtypes.html#str]) – A reference to the method or callable that returns
the JSON content result to be wrapped as a Result.

	descending (bool [https://docs.python.org/3/library/functions.html#bool]) – Return documents in descending key order.

	endkey – Stop returning records at this specified key.
Not valid when used with key access and key slicing.

	endkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Stop returning records when the specified
document id is reached.

	group (bool [https://docs.python.org/3/library/functions.html#bool]) – Using the reduce function, group the results to a
group or single row.

	group_level – Only applicable if the view uses complex keys: keys
that are JSON arrays. Groups reduce results for the specified number
of array fields.

	include_docs (bool [https://docs.python.org/3/library/functions.html#bool]) – Include the full content of the documents.

	inclusive_end (bool [https://docs.python.org/3/library/functions.html#bool]) – Include rows with the specified endkey.

	key – Return only documents that match the specified key.
Not valid when used with key access and key slicing.

	keys (list [https://docs.python.org/3/library/stdtypes.html#list]) – Return only documents that match the specified keys.
Not valid when used with key access and key slicing.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – Limit the number of returned documents to the
specified count. Not valid when used with key iteration.

	page_size (int [https://docs.python.org/3/library/functions.html#int]) – Sets the page size for result iteration.

	reduce (bool [https://docs.python.org/3/library/functions.html#bool]) – True to use the reduce function, false otherwise.

	skip (int [https://docs.python.org/3/library/functions.html#int]) – Skip this number of rows from the start.
Not valid when used with key iteration.

	stable (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not the view results should be returned from
a “stable” set of shards.

	stale (str [https://docs.python.org/3/library/stdtypes.html#str]) – Allow the results from a stale view to be used. This makes
the request return immediately, even if the view has not been completely
built yet. If this parameter is not given, a response is returned only
after the view has been built. Note that this parameter is deprecated
and the appropriate combination of stable and update should be used
instead.

	startkey – Return records starting with the specified key.
Not valid when used with key access and key slicing.

	startkey_docid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Return records starting with the specified
document ID.

	update (str [https://docs.python.org/3/library/stdtypes.html#str]) – Determine whether the view in question should be
updated prior to or after responding to the user. Valid values are:
false: return results before updating the view; true: Return results
after updating the view; lazy: Return the view results without
waiting for an update, but update them immediately after the request.

	
__getitem__(arg)

	Provides Result key access and slicing support.

An int argument will be interpreted as a skip and then a get of
the next record. For example [100] means skip the first 100 records
and then get the next record.

A str, list or ResultByKey argument
will be interpreted as a key and then get all records that match the
given key. For example ['foo'] will get all records that match
the key ‘foo’.

An int slice argument will be interpreted as a skip:limit-skip
style pair. For example [100: 200] means skip the first 100 records
then get up to and including the 200th record so that you get the range
between the supplied slice values.

A slice argument that contains str, list, or
ResultByKey will be interpreted as a
startkey: endkey style pair. For example ['bar': 'foo'] means
get the range of records where the keys are between and including
‘bar’ and ‘foo’.

See Result for more detailed key access and
slicing examples.

	Parameters

	arg – A single value representing a key or a pair of values
representing a slice. The argument value(s) can be int,
str, list (in the case of complex keys), or
ResultByKey.

	Returns

	Rows data as a list in JSON format

	
__iter__()

	Provides iteration support, primarily for large data collections.
The iterator uses the startkey, startkey_docid, and limit
options to consume data in chunks controlled by the page_size
option. It retrieves a batch of data from the result collection
and then yields each element.

See Result for Result iteration examples.

	Returns

	Iterable data sequence

	
all()

	Retrieve all results.

Specifying a limit parameter in the Result constructor will
limit the number of documents returned. Be aware that the page_size
parameter is not honoured.

	Returns

	results data as list in JSON format.

	
class cloudant.result.ResultByKey(value)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides a wrapper for a value used to retrieve records from a result
collection based on an actual document key value. This comes in handy when
the document key value is an int.

For example:

result = Result(callable)
result[ResultByKey(9)] # gets records where the key matches 9
as opposed to:
result[9] # gets the 10th record of the result collection

:param value: A value representing a Result key.

replicator

API module/class for handling database replications

	
class cloudant.replicator.Replicator(client)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides a database replication API. A Replicator object is instantiated
with a reference to a client/session. It retrieves the _replicator
database for the specified client and uses that database object to manage
replications.

	Parameters

	client – Client instance used by the database. Can either be a
CouchDB or Cloudant client instance.

	
create_replication(source_db=None, target_db=None, repl_id=None, **kwargs)

	Creates a new replication task.

	Parameters

	
	source_db – Database object to replicate from. Can be either a
CouchDatabase or CloudantDatabase instance.

	target_db – Database object to replicate to. Can be either a
CouchDatabase or CloudantDatabase instance.

	repl_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Optional replication id. Generated internally if
not explicitly set.

	user_ctx (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Optional user to act as. Composed internally
if not explicitly set.

	create_target (bool [https://docs.python.org/3/library/functions.html#bool]) – Specifies whether or not to
create the target, if it does not already exist.

	continuous (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True then the replication will be
continuous.

	Returns

	Replication document as a Document instance

	
follow_replication(repl_id)

	Blocks and streams status of a given replication.

For example:

for doc in replicator.follow_replication(repl_doc_id):
 # Process replication information as it comes in

	Parameters

	repl_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Replication id used to identify the replication to
inspect.

	Returns

	Iterable stream of copies of the replication Document
and replication state as a str for the specified replication id

	
list_replications()

	Retrieves all replication documents from the replication database.

	Returns

	List containing replication Document objects

	
replication_state(repl_id)

	Retrieves the state for the given replication. Possible values are
triggered, completed, error, and None (meaning not yet
triggered).

	Parameters

	repl_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Replication id used to identify the replication to
inspect.

	Returns

	Replication state as a str

	
stop_replication(repl_id)

	Stops a replication based on the provided replication id by deleting
the replication document from the replication database. The
replication can only be stopped if it has not yet completed. If it has
already completed then the replication document is still deleted from
replication database.

	Parameters

	repl_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Replication id used to identify the replication to
stop.

feed

Module containing the Feed class which provides iterator support for consuming
continuous and non-continuous feeds like _changes and _db_updates.

	
class cloudant.feed.Feed(source, raw_data=False, **options)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Provides an iterator for consuming client and database feeds such as
_db_updates and _changes. A Feed object is constructed with a
client or a database which it uses to
issue HTTP requests to the appropriate feed endpoint. Instead of using this
class directly, it is recommended to use the client APIs
db_updates(),
db_updates(), or the database API
changes(). Reference those methods
for a list of valid feed options.

	Parameters

	
	source – Either a client object or a
database object.

	raw_data (bool [https://docs.python.org/3/library/functions.html#bool]) – If set to True then the raw response data will be
streamed otherwise if set to False then JSON formatted data will be
streamed. Default is False.

	
last_seq

	Returns the last sequence identifier for the feed. Only available after
the feed has iterated through to completion.

	Returns

	A string representing the last sequence number of a feed.

	
next()

	Handles the iteration by pulling the next line out of the stream,
attempting to convert the response to JSON if necessary.

	Returns

	Data representing what was seen in the feed

	
stop()

	Stops a feed iteration.

	
class cloudant.feed.InfiniteFeed(source, **options)

	Bases: cloudant.feed.Feed

Provides an infinite iterator for consuming client and database feeds such
as _db_updates and _changes. An InfiniteFeed object is constructed
with a Cloudant object or a
database object which it uses to issue HTTP requests to the
appropriate feed endpoint. An infinite feed is NOT supported for use with a
CouchDB object and unlike a
Feed which can be a normal, longpoll,
or continuous feed, an InfiniteFeed can only be continuous and the
iterator will only stream formatted JSON objects. Instead of using this
class directly, it is recommended to use the client
API infinite_db_updates() or the database
API _infinite_changes(). Reference
those methods for a valid list of feed options.

Note: The infinite iterator is not exception resilient so if an
unexpected exception occurs, the iterator will terminate. Any unexpected
exceptions should be handled in code outside of this library. If you wish
to restart the infinite iterator from where it left off that can be done by
constructing a new InfiniteFeed object with the since option set to the
sequence number of the last row of data prior to termination.

	Parameters

	source – Either a Cloudant object or a
database object.

	
next()

	Handles the iteration by pulling the next line out of the stream and
converting the response to JSON.

	Returns

	Data representing what was seen in the feed

error

Module that contains common exception classes for the Cloudant Python client
library.

	
exception cloudant.error.CloudantArgumentError(code=100, *args)

	Bases: cloudant.error.CloudantException

Provides a way to issue Cloudant Python client library specific exceptions
that pertain to invalid argument errors.

Note: The intended use for this class is internal to the Cloudant Python
client library.

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – An optional code value used to identify the exception.
Defaults to 100.

	args – A list of arguments used to format the exception message.

	
exception cloudant.error.CloudantClientException(code=100, *args)

	Bases: cloudant.error.CloudantException

Provides a way to issue Cloudant library client specific exceptions.

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – A code value used to identify the client exception.

	args – A list of arguments used to format the exception message.

	
exception cloudant.error.CloudantDatabaseException(code=100, *args)

	Bases: cloudant.error.CloudantException

Provides a way to issue Cloudant library database specific exceptions.

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – A code value used to identify the database exception.

	args – A list of arguments used to format the exception message.

	
exception cloudant.error.CloudantDesignDocumentException(code=100, *args)

	Bases: cloudant.error.CloudantException

Provides a way to issue Cloudant library design document exceptions.

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – A code value used to identify the design doc exception.

	args – A list of arguments used to format the exception message.

	
exception cloudant.error.CloudantDocumentException(code=100, *args)

	Bases: cloudant.error.CloudantException

Provides a way to issue Cloudant library document specific exceptions.

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – A code value used to identify the document exception.

	args – A list of arguments used to format the exception message.

	
exception cloudant.error.CloudantException(msg, code=None)

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

Provides a way to issue Cloudant Python client library specific exceptions.
A CloudantException object is instantiated with a message and optional code.

Note: The intended use for this class is internal to the Cloudant Python
client library.

	Parameters

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – A message that describes the exception.

	code (int [https://docs.python.org/3/library/functions.html#int]) – A code value used to identify the exception.

	
exception cloudant.error.CloudantFeedException(code=100, *args)

	Bases: cloudant.error.CloudantException

Provides a way to issue Cloudant library feed specific exceptions.

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – A code value used to identify the feed exception.

	args – A list of arguments used to format the exception message.

	
exception cloudant.error.CloudantIndexException(code=100, *args)

	Bases: cloudant.error.CloudantException

Provides a way to issue Cloudant library index specific exceptions.

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – A code value used to identify the index exception.

	args – A list of arguments used to format the exception message.

	
exception cloudant.error.CloudantReplicatorException(code=100, *args)

	Bases: cloudant.error.CloudantException

Provides a way to issue Cloudant library replicator specific exceptions.

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – A code value used to identify the replicator exception.

	args – A list of arguments used to format the exception message.

	
exception cloudant.error.CloudantViewException(code=100, *args)

	Bases: cloudant.error.CloudantException

Provides a way to issue Cloudant library view specific exceptions.

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – A code value used to identify the view exception.

	args – A list of arguments used to format the exception message.

	
exception cloudant.error.ResultException(code=100, *args)

	Bases: cloudant.error.CloudantException

Provides a way to issue Cloudant Python client library result specific
exceptions.

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – A code value used to identify the result exception.
Defaults to 100.

	args – A list of arguments used to format the exception message.

adapters

Module that contains default transport adapters for use with requests.

	
class cloudant.adapters.Replay429Adapter(retries=3, initialBackoff=0.25)

	Bases: requests.adapters.HTTPAdapter

A requests TransportAdapter that extends the default HTTPAdapter with configuration
to replay requests that receive a 429 Too Many Requests response from the server.
The duration of the sleep between requests will be doubled for each 429 response
received.

Parameters can be passed in to control behavior:

	Parameters

	
	retries (int [https://docs.python.org/3/library/functions.html#int]) – the number of times the request can be replayed before failing.

	initialBackoff (float [https://docs.python.org/3/library/functions.html#float]) – time in seconds for the first backoff.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cloudant	

 	
 	
 cloudant.adapters	

 	
 	
 cloudant.client	

 	
 	
 cloudant.database	

 	
 	
 cloudant.design_document	

 	
 	
 cloudant.document	

 	
 	
 cloudant.error	

 	
 	
 cloudant.feed	

 	
 	
 cloudant.index	

 	
 	
 cloudant.query	

 	
 	
 cloudant.replicator	

 	
 	
 cloudant.result	

 	
 	
 cloudant.security_document	

 	
 	
 cloudant.view	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	
 	__call__() (cloudant.query.Query method)

 	(cloudant.view.QueryIndexView method)

 	(cloudant.view.View method)

 	__delitem__() (cloudant.client.CouchDB method)

 	__getitem__() (cloudant.client.CouchDB method)

 	(cloudant.database.CouchDatabase method)

 	(cloudant.result.QueryResult method)

 	(cloudant.result.Result method)

 	
 	__iter__() (cloudant.database.CouchDatabase method)

 	(cloudant.result.Result method)

 	__setitem__() (cloudant.client.CouchDB method)

A

 	
 	add_list_function() (cloudant.design_document.DesignDocument method)

 	add_search_index() (cloudant.design_document.DesignDocument method)

 	add_show_function() (cloudant.design_document.DesignDocument method)

 	add_view() (cloudant.design_document.DesignDocument method)

 	
 	admin_party (cloudant.database.CouchDatabase attribute)

 	all() (cloudant.result.Result method)

 	all_dbs() (cloudant.client.CouchDB method)

 	all_docs() (cloudant.database.CouchDatabase method)

 	as_a_dict() (cloudant.index.Index method)

B

 	
 	basic_auth_str() (cloudant.client.CouchDB method)

 	bill() (cloudant.client.Cloudant method)

 	
 	bluemix() (cloudant.client.Cloudant class method)

 	bulk_docs() (cloudant.database.CouchDatabase method)

C

 	
 	change_credentials() (cloudant.client.CouchDB method)

 	changes() (cloudant.database.CouchDatabase method)

 	Cloudant (class in cloudant.client)

 	cloudant (module)

 	cloudant() (in module cloudant)

 	cloudant.adapters (module)

 	cloudant.client (module)

 	cloudant.database (module)

 	cloudant.design_document (module)

 	cloudant.document (module)

 	cloudant.error (module)

 	cloudant.feed (module)

 	cloudant.index (module)

 	cloudant.query (module)

 	cloudant.replicator (module)

 	cloudant.result (module)

 	cloudant.security_document (module)

 	cloudant.view (module)

 	cloudant_bluemix() (in module cloudant)

 	cloudant_iam() (in module cloudant)

 	CloudantArgumentError

 	CloudantClientException

 	CloudantDatabase (class in cloudant.database)

 	CloudantDatabaseException

 	CloudantDesignDocumentException

 	
 	CloudantDocumentException

 	CloudantException

 	CloudantFeedException

 	CloudantIndexException

 	CloudantReplicatorException

 	CloudantViewException

 	connect() (cloudant.client.CouchDB method)

 	cors_configuration() (cloudant.client.Cloudant method)

 	cors_origins() (cloudant.client.Cloudant method)

 	CouchDatabase (class in cloudant.database)

 	CouchDB (class in cloudant.client)

 	couchdb() (in module cloudant)

 	couchdb_admin_party() (in module cloudant)

 	create() (cloudant.database.CouchDatabase method)

 	(cloudant.document.Document method)

 	(cloudant.index.Index method)

 	(cloudant.index.SpecialIndex method)

 	create_database() (cloudant.client.CouchDB method)

 	create_document() (cloudant.database.CouchDatabase method)

 	create_query_index() (cloudant.database.CouchDatabase method)

 	create_replication() (cloudant.replicator.Replicator method)

 	creds (cloudant.database.CouchDatabase attribute)

 	custom_result() (cloudant.database.CouchDatabase method)

 	(cloudant.query.Query method)

 	(cloudant.view.QueryIndexView method)

 	(cloudant.view.View method)

D

 	
 	database_partition_url() (cloudant.database.CouchDatabase method)

 	database_url (cloudant.database.CouchDatabase attribute)

 	db_updates() (cloudant.client.Cloudant method)

 	(cloudant.client.CouchDB method)

 	definition (cloudant.index.Index attribute)

 	delete() (cloudant.database.CouchDatabase method)

 	(cloudant.document.Document method)

 	(cloudant.index.Index method)

 	(cloudant.index.SpecialIndex method)

 	delete_attachment() (cloudant.document.Document method)

 	delete_database() (cloudant.client.CouchDB method)

 	delete_index() (cloudant.design_document.DesignDocument method)

 	delete_list_function() (cloudant.design_document.DesignDocument method)

 	
 	delete_query_index() (cloudant.database.CouchDatabase method)

 	delete_show_function() (cloudant.design_document.DesignDocument method)

 	delete_view() (cloudant.design_document.DesignDocument method)

 	design_document_id (cloudant.index.Index attribute)

 	design_documents() (cloudant.database.CouchDatabase method)

 	DesignDocument (class in cloudant.design_document)

 	disable_cors() (cloudant.client.Cloudant method)

 	disconnect() (cloudant.client.CouchDB method)

 	doc_count() (cloudant.database.CouchDatabase method)

 	Document (class in cloudant.document)

 	document_partition_url() (cloudant.design_document.DesignDocument method)

 	document_url (cloudant.document.Document attribute)

 	(cloudant.security_document.SecurityDocument attribute)

E

 	
 	exists() (cloudant.database.CouchDatabase method)

 	(cloudant.document.Document method)

F

 	
 	features() (cloudant.client.CouchDB method)

 	Feed (class in cloudant.feed)

 	fetch() (cloudant.design_document.DesignDocument method)

 	(cloudant.document.Document method)

 	(cloudant.security_document.SecurityDocument method)

 	
 	field_set() (cloudant.document.Document static method)

 	filters (cloudant.design_document.DesignDocument attribute)

 	follow_replication() (cloudant.replicator.Replicator method)

G

 	
 	generate_api_key() (cloudant.client.Cloudant method)

 	get() (cloudant.client.CouchDB method)

 	(cloudant.database.CouchDatabase method)

 	get_attachment() (cloudant.document.Document method)

 	get_design_document() (cloudant.database.CouchDatabase method)

 	get_index() (cloudant.design_document.DesignDocument method)

 	get_list_function() (cloudant.design_document.DesignDocument method)

 	get_list_function_result() (cloudant.database.CouchDatabase method)

 	get_partitioned_query_result() (cloudant.database.CouchDatabase method)

 	get_partitioned_search_result() (cloudant.database.CloudantDatabase method)

 	
 	get_partitioned_view_result() (cloudant.database.CouchDatabase method)

 	get_query_indexes() (cloudant.database.CouchDatabase method)

 	get_query_result() (cloudant.database.CouchDatabase method)

 	get_revision_limit() (cloudant.database.CouchDatabase method)

 	get_search_result() (cloudant.database.CloudantDatabase method)

 	get_security_document() (cloudant.database.CouchDatabase method)

 	get_show_function() (cloudant.design_document.DesignDocument method)

 	get_show_function_result() (cloudant.database.CouchDatabase method)

 	get_view() (cloudant.design_document.DesignDocument method)

 	get_view_result() (cloudant.database.CouchDatabase method)

I

 	
 	iam() (cloudant.client.Cloudant class method)

 	Index (class in cloudant.index)

 	index_url (cloudant.index.Index attribute)

 	indexes (cloudant.design_document.DesignDocument attribute)

 	infinite_changes() (cloudant.database.CouchDatabase method)

 	infinite_db_updates() (cloudant.client.Cloudant method)

 	
 	InfiniteFeed (class in cloudant.feed)

 	is_iam_authenticated (cloudant.client.CouchDB attribute)

 	iterindexes() (cloudant.design_document.DesignDocument method)

 	iterlists() (cloudant.design_document.DesignDocument method)

 	itershows() (cloudant.design_document.DesignDocument method)

 	iterviews() (cloudant.design_document.DesignDocument method)

J

 	
 	json() (cloudant.document.Document method)

 	(cloudant.security_document.SecurityDocument method)

K

 	
 	keys() (cloudant.client.CouchDB method)

 	(cloudant.database.CouchDatabase method)

L

 	
 	last_seq (cloudant.feed.Feed attribute)

 	list_design_documents() (cloudant.database.CouchDatabase method)

 	list_field_append() (cloudant.document.Document static method)

 	list_field_remove() (cloudant.document.Document static method)

 	list_indexes() (cloudant.design_document.DesignDocument method)

 	
 	list_list_functions() (cloudant.design_document.DesignDocument method)

 	list_replications() (cloudant.replicator.Replicator method)

 	list_show_functions() (cloudant.design_document.DesignDocument method)

 	list_views() (cloudant.design_document.DesignDocument method)

 	lists (cloudant.design_document.DesignDocument attribute)

M

 	
 	map (cloudant.view.QueryIndexView attribute)

 	(cloudant.view.View attribute)

 	
 	metadata() (cloudant.client.CouchDB method)

 	(cloudant.database.CouchDatabase method)

 	missing_revisions() (cloudant.database.CouchDatabase method)

N

 	
 	name (cloudant.index.Index attribute)

 	new_document() (cloudant.database.CouchDatabase method)

 	
 	next() (cloudant.feed.Feed method)

 	(cloudant.feed.InfiniteFeed method)

P

 	
 	partition_metadata() (cloudant.database.CouchDatabase method)

 	partitioned (cloudant.index.Index attribute)

 	
 	partitioned_all_docs() (cloudant.database.CouchDatabase method)

 	put_attachment() (cloudant.document.Document method)

Q

 	
 	Query (class in cloudant.query)

 	
 	QueryIndexView (class in cloudant.view)

 	QueryResult (class in cloudant.result)

R

 	
 	r_session (cloudant.database.CouchDatabase attribute)

 	(cloudant.document.Document attribute)

 	(cloudant.security_document.SecurityDocument attribute)

 	reduce (cloudant.view.QueryIndexView attribute)

 	(cloudant.view.View attribute)

 	Replay429Adapter (class in cloudant.adapters)

 	replication_state() (cloudant.replicator.Replicator method)

 	
 	Replicator (class in cloudant.replicator)

 	requests_usage() (cloudant.client.Cloudant method)

 	Result (class in cloudant.result)

 	ResultByKey (class in cloudant.result)

 	ResultException

 	revisions_diff() (cloudant.database.CouchDatabase method)

 	rewrites (cloudant.design_document.DesignDocument attribute)

S

 	
 	save() (cloudant.design_document.DesignDocument method)

 	(cloudant.document.Document method)

 	(cloudant.security_document.SecurityDocument method)

 	search_disk_size() (cloudant.design_document.DesignDocument method)

 	search_info() (cloudant.design_document.DesignDocument method)

 	security_document() (cloudant.database.CloudantDatabase method)

 	security_url (cloudant.database.CloudantDatabase attribute)

 	SecurityDocument (class in cloudant.security_document)

 	session() (cloudant.client.CouchDB method)

 	session_cookie() (cloudant.client.CouchDB method)

 	
 	session_login() (cloudant.client.CouchDB method)

 	session_logout() (cloudant.client.CouchDB method)

 	set_revision_limit() (cloudant.database.CouchDatabase method)

 	shards() (cloudant.database.CloudantDatabase method)

 	share_database() (cloudant.database.CloudantDatabase method)

 	shared_databases() (cloudant.client.Cloudant method)

 	shows (cloudant.design_document.DesignDocument attribute)

 	SpecialIndex (class in cloudant.index)

 	st_indexes (cloudant.design_document.DesignDocument attribute)

 	stop() (cloudant.feed.Feed method)

 	stop_replication() (cloudant.replicator.Replicator method)

T

 	
 	TextIndex (class in cloudant.index)

 	
 	type (cloudant.index.Index attribute)

U

 	
 	unshare_database() (cloudant.database.CloudantDatabase method)

 	update_cors_configuration() (cloudant.client.Cloudant method)

 	update_field() (cloudant.document.Document method)

 	update_handler_result() (cloudant.database.CouchDatabase method)

 	update_list_function() (cloudant.design_document.DesignDocument method)

 	
 	update_search_index() (cloudant.design_document.DesignDocument method)

 	update_show_function() (cloudant.design_document.DesignDocument method)

 	update_view() (cloudant.design_document.DesignDocument method)

 	updates (cloudant.design_document.DesignDocument attribute)

 	url (cloudant.query.Query attribute)

 	(cloudant.view.View attribute)

V

 	
 	validate_doc_update (cloudant.design_document.DesignDocument attribute)

 	View (class in cloudant.view)

 	
 	view_cleanup() (cloudant.database.CouchDatabase method)

 	views (cloudant.design_document.DesignDocument attribute)

 	volume_usage() (cloudant.client.Cloudant method)

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 python-cloudant documentation

 		
 Compatibility

 		
 Getting started

 		
 Connections

 		
 Connecting with a client

 		
 Authentication

 		
 Identity and Access Management (IAM)

 		
 Resource sharing

 		
 Using library in app server environment

 		
 Databases

 		
 Creating a database

 		
 Opening a database

 		
 Deleting a database

 		
 Partitioned Databases

 		
 Documents

 		
 Creating a document

 		
 Retrieving a document

 		
 Checking if a document exists

 		
 Retrieve all documents

 		
 Update a document

 		
 Delete a document

 		
 Dealing with results

 		
 Context managers

 		
 Endpoint access

 		
 TLS 1.2 Support

 		
 Cloudant client library API

 		
 Modules

 		
 client

 		
 database

 		
 document

 		
 design_document

 		
 security_document

 		
 view

 		
 query

 		
 index

 		
 result

 		
 replicator

 		
 feed

 		
 error

 		
 adapters

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

