

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Python Algorithms 0.2.2 documentation

Welcome to Python Algorithms’s documentation!

Contents:

	Python Algorithms
	Features

	Algorithms

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Update Python Packages

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2014-02-14)

	0.2.0 (2014-04-15)

API Reference

	pyalgs package
	Subpackages

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Algorithms 0.2.2 documentation

Python Algorithms

[image: https://badge.fury.io/py/python_algorithms.png]
 [http://badge.fury.io/py/python_algorithms][image: https://travis-ci.org/mihassan/python_algorithms.png?branch=develop]
 [https://travis-ci.org/mihassan/python_algorithms][image: https://coveralls.io/repos/mihassan/python_algorithms/badge.png?branch=develop]
 [https://coveralls.io/r/mihassan/python_algorithms?branch=develop]Python Algorithms contains a collection of useful algorithms written in python.
The algorithms include (but not limited to) topics such as searching, sorting,
graph, and string theory.

This project is inspired from the textbook Algorithms, 4th Edition by Robert
Sedgewick and Kevin Wayne and associated book-site
http://algs4.cs.princeton.edu/home/. The goal of this book is summarized in the
following excerpt from the book-site:

Our original goal for this book was to cover the 50 algorithms that every
programmer should know. We use the word programmer to refer to anyone
engaged in trying to accomplish something with the help of a computer,
including scientists, engineers, and applications developers, not to mention
college students in science, engineering, and computer science.

However, the algorithms for this project are not meant to be a ported version of
the algorithms found in the book. Efforts should be made to implement those
algorithms from the scratch following Pythonic coding style. Some of the
algorithms are well known and the reference for those algorithms should appear
in the documentation. While, some of the algorithms are very specific and
difficult implement in a different way while maintaining accuracy and
efficiency. Such algorithms appear in the scientific literatures and/or books
and those should be properly referenced as well.

Features

	Mainly for educational purposes, but can be useful in certain practical scenarios as well.

	Consequently, built-in algorithms are avoided as much as possible and detailed
implementation is done from the scratch.

	Preference is given towards a pythonic style rather than sticking to true OOP style.

	Free software: BSD license.

	Documentation: http://python_algorithms.rtfd.org.

Algorithms

Here is a list of algorithms divided into packages.

Note

Not all of the algorithms have been fully implemented yet.

Basic

A collection of few basic algorithms that do not fit in other packages. Trivial
algorithms and data structures that are built into python are skipped.

	Binary search

	Knuth shuffle

	Stack

	Queue

	Bag

	Union find

	Estimated Release:

		0.2.0

Searching

Specialized searching algorithms and/or corresponding data structures are included in this package.
Although some of the following data structures, such as Hash, are implemented in python,
they have been implemented for demonstration purpose.
Unless, specific needs arise, the built-in data structures should be preferred in production code.

	BST

	Red black BST

	Hash

	Estimated Release:

		0.3.0

Sorting

	Insertion

	Selection

	Merge

	Quick

	Quick 3 way

	Shell

	Heap

	Estimated Release:

		0.4.0

Graph

	Graph

	Directed graph

	BFS

	BFS paths

	DFS

	DFS paths

	Topological

	Estimated Release:

		0.5.0

String

	LSD

	MSD

	Quick 3 string

	TST

	KMP

	Rabin karp

	Estimated Release:

		0.6.0

 Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Algorithms 0.2.2 documentation

Installation

At the command line:

$ easy_install python_algorithms

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv python_algorithms
$ pip install python_algorithms

 Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Algorithms 0.2.2 documentation

Usage

To use Python Algorithms in a project:

import pyalgs

 Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Algorithms 0.2.2 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/mihassan/python_algorithms/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Python Algorithms could always use more documentation, whether as part of the
official Python Algorithms docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/mihassan/python_algorithms/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up python_algorithms for local development.

	Fork the python_algorithms repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/python_algorithms.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pyalgs
$ cd pyalgs/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

Alternatively, use git flow to start a new feature or bugfix branch and work
on that branch locally. Once, ready to publish, push the branch to github:

$ git flow feature start name-of-feature
$ echo "Develop the feature on this feature branch"
$ git flow feature finish
$ git push

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 pyalgs tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Update Python Packages

Be mindful of updating packages as it may break some dependencies. Still, from time to time we need to update the packages following these steps:

1. $ pip freeze --local | grep -v '^\-e' | cut -d = -f 1 | xargs -n1 pip install -U

2. $ pip freeze --local -r requirements.txt > requirements.txt

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4, and 3.5, and for PyPy.
Check https://travis-ci.org/mihassan/python_algorithms/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_pyalgs

 Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Algorithms 0.2.2 documentation

Credits

Development Lead

	Md. Imrul Hassan <mihassan@gmail.com>

Contributors

None yet. Why not be the first?

 Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Algorithms 0.2.2 documentation

History

0.1.0 (2014-02-14)

	First release on PyPI.

0.2.0 (2014-04-15)

	
	Implemented the following data structures and algorithms:

	
	Binary search

	Knuth shuffle

	Stack

	Queue

	Bag

	Union find

 Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python Algorithms 0.2.2 documentation

pyalgs package

Subpackages

	pyalgs.basic package
	Submodules

	pyalgs.basic.bag module

	pyalgs.basic.binary_search module

	pyalgs.basic.knuth_shuffle module

	pyalgs.basic.queue module

	pyalgs.basic.stack module

	pyalgs.basic.union_find module

	Module contents

Module contents

The module contains a collection of useful algorithms written in python.

 Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Python Algorithms 0.2.2 documentation

 	pyalgs package

pyalgs.basic package

Submodules

pyalgs.basic.bag module

This module implements a bag or multiset data structure.

A bag or multiset is a generalization of the set data structure which allows
repeated or duplicate items to be stored. Items can only be added to the bag
and may not be removed. When the items in the bag are iterated there is not
restriction on the ordering of the items.

In this module, the implementation of bag is similar to a linked list based
stack implementation. In the linked list based implementation, the bag object
need to keep track of only the head node. Each node contains an item and a link
to the next node.

Note

Python has a built-in class collections.Counter [https://docs.python.org/2/library/collections.html#collections.Counter]
which is similar to a bag or multiset. instead of adding an item, 1 need to
be added with the counter associated with that item and elements return all
items (including duplicates) in the bag.

	Complexity:

	
	add – O(1)

	
class pyalgs.basic.bag.Bag[source]

	Bases: object

An implementation of a bag or multiset with linked list.

	
add(item)[source]

	Inserts an item to the bag.

	
isEmpty()[source]

	Check if the bag is empty.

	Returns:

	True if the bag is empty.
False otherwise.

	
size

	The number of items in the bag.

pyalgs.basic.binary_search module

This module implements binary search method.

	
pyalgs.basic.binary_search.search(seq, val)[source]

	Search location of key in a sorted list.

The method searches the location of a value in a list using
binary searching algorithm. If it does not find the value, it returns -1.

	Args:

	seq: A sorted list from which the value(val) has to be searched.
val: A value to search for.

	Returns:

	The location of the value in the sorted list if found.
Otherwise returns -1.

pyalgs.basic.knuth_shuffle module

This module implements a shuffle method using Knuth’s algorithm.

	
pyalgs.basic.knuth_shuffle.shuffle(seq)[source]

	Shuffle a list randomly using Knuth’s algorithm.

The method randomly shuffles a list by iterating over each position and
exchanging the element with another random element.
The original list is not maintained and will change.

	Args:

	seq: A list to shuffle.

	Returns:

	The original list with all elements shuffled.

pyalgs.basic.queue module

This module implements a linked list based queue data structure.

A queue is a data structure to hold a collection of items in order ad which
supports operations such as the addition of an item (enqueue) and removal of
an item (dequeue) can be performed. The items are always enqueued at the rear
end of the queue and dequeued from the front end of the queue. As such, the
queue can be also viewed as a First-In-First-Out(FIFO) data structure. In a
FIFO data structure, the first item added to the structure is the first one to
be removed. Apart from those two operations, peek operation can also be
implemented, returning the value at the front end without removing it.

The particular implementation of queue in this module is based on linked list,
as array based queue implementation is already supported in python’s list. In
the linked list based implementation, the queue object need to keep track of
the front and the rear nodes where each node contains an item and a link to the
next node.

Note

For most practical purposes, the python’s implementation as dequeue
suffices as a queue object. Use append method instead of enqueue and
popleft method instead of dequeue for queue operations in a list.

	Complexity:

	
	push – O(1)

	pop – O(1)

	peek – O(1)

	
class pyalgs.basic.queue.Queue[source]

	Bases: object

An implementation of a simple queue with linked list.

	
dequeue()[source]

	Remove and return the first item from the queue.

	Returns:

	The first item from the queue.

	Raises:

	IndexError: If the queue is empty.

	
enqueue(item)[source]

	Insert an item to the queue.

	
isEmpty()[source]

	Check if the queue is empty.

	Returns:

	True if the queue is empty.
False otherwise.

	
peek()[source]

	Return the first item from the queue.

	Returns:

	The first item from the queue.

	Raises:

	IndexError: If the queue is empty.

	
size

	The number of items in the queue.

pyalgs.basic.stack module

This module implements a linked list based stack data structure.

A stack is a data structure to hold a collection of items in which operations
such as the addition of an item (push) and removal of an item (pop) can
be performed. The items are always pushed or popped from the so called top
of the data structure which is the last item added or first item to be removed.
The stack can be also viewed as a Last-In-First-Out(LIFO) data structure. In
a LIFO data structure, the last item added to the structure must be the first
item one to be removed. Apart from those two operations, peek operation can
also be implemented, returning the value of the top item without removing it.

The particular implementation of stack in this module is based on linked list,
as array based stack implementation is already supported in python’s list. In
the linked list based implementation, the stack object need to keep track of
only the head node. Each node contains an item and a link to the next node.

Note

For most practical purposes, the python’s list suffices as a stack
object. Use append method instead of push and pop method as it is for
stack operations in a list.

	Complexity:

	
	push – O(1)

	pop – O(1)

	peek – O(1)

	
class pyalgs.basic.stack.Stack[source]

	Bases: object

An implementation of a simple stack with linked list.

	
isEmpty()[source]

	Check if the stack is empty.

	Returns:

	True if the stack is empty.
False otherwise.

	
peek()[source]

	Return the last added item from the stack.

	Returns:

	The last item added to the stack.

	Raises:

	IndexError: If the stack is empty.

	
pop()[source]

	Remove and return the last added item from the stack.

	Returns:

	The last item added to the stack.

	Raises:

	IndexError: If the stack is empty.

	
push(item)[source]

	Insert an item to the stack.

	
size

	The number of items in the stack.

pyalgs.basic.union_find module

This module implements an union find or disjoint set data structure.

An union find data structure can keep track of a set of elements into a number
of disjoint (nonoverlapping) subsets. That is why it is also known as the
disjoint set data structure. Mainly two useful operations on such a data
structure can be performed. A find operation determines which subset a
particular element is in. This can be used for determining if two
elements are in the same subset. An union Join two subsets into a
single subset.

The complexity of these two operations depend on the particular implementation.
It is possible to achieve constant time (O(1)) for any one of those operations
while the operation is penalized. A balance between the complexities of these
two operations is desirable and achievable following two enhancements:

	Using union by rank – always attach the smaller tree to the root of the
larger tree.

	Using path compression – flattening the structure of the tree whenever
find is used on it.

	complexity:

	
	find – [image: O(\alpha(N))] where [image: \alpha(n)] is
inverse ackerman function [http://en.wikipedia.org/wiki/Ackermann_function#Inverse].

	union – [image: O(\alpha(N))] where [image: \alpha(n)] is
inverse ackerman function [http://en.wikipedia.org/wiki/Ackermann_function#Inverse].

	
class pyalgs.basic.union_find.UF(N)[source]

	An implementation of union find data structure.
It uses weighted quick union by rank with path compression.

	
connected(p, q)[source]

	Check if the items p and q are on the same set or not.

	
count()[source]

	Return the number of items.

	
find(p)[source]

	Find the set identifier for the item p.

	
union(p, q)[source]

	Combine sets containing p and q into a single set.

Module contents

This module contains few basic algorithms that do not fit in other packages.
Trivial algorithms and data structures that are built into python are skipped.

 Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 modules |

 	Python Algorithms 0.2.2 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyalgs	

 	
 	
 pyalgs.basic	

 	
 	
 pyalgs.basic.bag	

 	
 	
 pyalgs.basic.binary_search	

 	
 	
 pyalgs.basic.knuth_shuffle	

 	
 	
 pyalgs.basic.queue	

 	
 	
 pyalgs.basic.stack	

 	
 	
 pyalgs.basic.union_find	

 Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 modules |

 	Python Algorithms 0.2.2 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | I
 | P
 | Q
 | S
 | U

A

 	

 	add() (pyalgs.basic.bag.Bag method)

B

 	

 	Bag (class in pyalgs.basic.bag)

C

 	

 	connected() (pyalgs.basic.union_find.UF method)

 	

 	count() (pyalgs.basic.union_find.UF method)

D

 	

 	dequeue() (pyalgs.basic.queue.Queue method)

E

 	

 	enqueue() (pyalgs.basic.queue.Queue method)

F

 	

 	find() (pyalgs.basic.union_find.UF method)

I

 	

 	isEmpty() (pyalgs.basic.bag.Bag method)

 	

 	(pyalgs.basic.queue.Queue method)

 	(pyalgs.basic.stack.Stack method)

P

 	

 	peek() (pyalgs.basic.queue.Queue method)

 	

 	(pyalgs.basic.stack.Stack method)

 	pop() (pyalgs.basic.stack.Stack method)

 	push() (pyalgs.basic.stack.Stack method)

 	pyalgs (module)

 	pyalgs.basic (module)

 	pyalgs.basic.bag (module)

 	

 	pyalgs.basic.binary_search (module)

 	pyalgs.basic.knuth_shuffle (module)

 	pyalgs.basic.queue (module)

 	pyalgs.basic.stack (module)

 	pyalgs.basic.union_find (module)

Q

 	

 	Queue (class in pyalgs.basic.queue)

S

 	

 	search() (in module pyalgs.basic.binary_search)

 	shuffle() (in module pyalgs.basic.knuth_shuffle)

 	

 	size (pyalgs.basic.bag.Bag attribute)

 	

 	(pyalgs.basic.queue.Queue attribute)

 	(pyalgs.basic.stack.Stack attribute)

 	Stack (class in pyalgs.basic.stack)

U

 	

 	UF (class in pyalgs.basic.union_find)

 	

 	union() (pyalgs.basic.union_find.UF method)

 Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

 _modules/pyalgs/basic/stack.html

 Navigation

 		
 index

 		
 modules |

 		Python Algorithms 0.2.2 documentation »

 		Module code »

 Source code for pyalgs.basic.stack

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""This module implements a linked list based stack data structure.

A stack is a data structure to hold a collection of items in which operations
such as the addition of an item (*push*) and removal of an item (*pop*) can
be performed. The items are always pushed or popped from the so called *top*
of the data structure which is the last item added or first item to be removed.
The stack can be also viewed as a Last-In-First-Out(*LIFO*) data structure. In
a LIFO data structure, the last item added to the structure must be the first
item one to be removed. Apart from those two operations, *peek* operation can
also be implemented, returning the value of the top item without removing it.

The particular implementation of stack in this module is based on linked list,
as array based stack implementation is already supported in python's list. In
the linked list based implementation, the stack object need to keep track of
only the head node. Each node contains an item and a link to the next node.

.. note:: For most practical purposes, the python's list suffices as a stack
 object. Use append method instead of push and pop method as it is for
 stack operations in a list.

Complexity:
 * push -- O(1)
 * pop -- O(1)
 * peek -- O(1)
"""

class _Node(object):
 """An internal class that represents a node with a single item
 and a link to the next node.
 """

 def __init__(self, item):
 self.item = item
 self.next = None

[docs]class Stack(object):
 """An implementation of a simple stack with linked list."""

 def __init__(self):
 """Initialize an empty stack."""
 self._head = None
 self._size = 0

 @property
 def size(self):
 """The number of items in the stack."""
 return self._size

[docs] def isEmpty(self):
 """Check if the stack is empty.

 Returns:
 True if the stack is empty.
 False otherwise.
 """
 return self._size == 0

[docs] def push(self, item):
 """Insert an item to the stack."""
 n = _Node(item)
 n.next = self._head
 self._head = n
 self._size += 1

[docs] def pop(self):
 """Remove and return the last added item from the stack.

 Returns:
 The last item added to the stack.

 Raises:
 IndexError: If the stack is empty.
 """
 if self.isEmpty():
 raise IndexError("pop from empty stack")
 n = self._head
 self._head = self._head.next
 self._size -= 1
 return n.item

[docs] def peek(self):
 """Return the last added item from the stack.

 Returns:
 The last item added to the stack.

 Raises:
 IndexError: If the stack is empty.
 """
 if self.isEmpty():
 raise IndexError("pop from empty stack")
 return self._head.item

 def __iter__(self):
 """Return iterator for the stack."""
 current = self._head
 while current:
 yield current.item
 current = current.next

 def __str__(self):
 """String representation of the stack."""
 return " ".join(reversed([str(item) for item in self]))

 def __repr__(self):
 """Representation of the stack."""
 return "Stack(" + str(self) + ")"

if __name__ == "__main__":
 print("Stack using linked list.")
 s = Stack()
 while True:
 n = int(raw_input("Enter a number to enter or 0 to pop a number"
 "(exit when stack empty): "))
 if n:
 s.push(n)
 print("Pushed: " + str(s.peek()))
 print("Current stack: " + str(s))
 else:
 if s.isEmpty():
 print("Stack is empty.")
 break
 print("Popped: " + str(s.pop()))
 print("Current stack: " + str(s))

 © Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

_modules/pyalgs/basic/binary_search.html

 Navigation

 		
 index

 		
 modules |

 		Python Algorithms 0.2.2 documentation »

 		Module code »

 Source code for pyalgs.basic.binary_search

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""This module implements binary search method."""

[docs]def search(seq, val):
 """Search location of key in a sorted list.

 The method searches the location of a value in a list using
 binary searching algorithm. If it does not find the value, it returns -1.

 Args:
 seq: A sorted list from which the value(val) has to be searched.
 val: A value to search for.

 Returns:
 The location of the value in the sorted list if found.
 Otherwise returns -1.
 """

 lo, hi = 0, len(seq)-1
 while lo <= hi:
 mid = (lo + hi) // 2
 if val < seq[mid]:
 hi = mid - 1
 elif val > seq[mid]:
 lo = mid + 1
 else:
 return mid
 return -1

if __name__ == "__main__":
 import random

 print("Binary search.")
 print("Generating a list with random numbers (1-100)")
 n = input("How many numbers to generate: ") # We should simply use input(), if we know that the input is a number
 seq = sorted(list(set([random.randint(1, 100) for i in range(n)])))

 x = input("Enter the number to search for: ")
 pos = search(seq, x)

 if p == -1:
 print(str(x) + " is not in the list")
 else:
 print("Found! at position " + str(pos))

 © Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

_modules/pyalgs/basic/union_find.html

 Navigation

 		
 index

 		
 modules |

 		Python Algorithms 0.2.2 documentation »

 		Module code »

 Source code for pyalgs.basic.union_find

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""This module implements an union find or disjoint set data structure.

An union find data structure can keep track of a set of elements into a number
of disjoint (nonoverlapping) subsets. That is why it is also known as the
disjoint set data structure. Mainly two useful operations on such a data
structure can be performed. A *find* operation determines which subset a
particular element is in. This can be used for determining if two
elements are in the same subset. An *union* Join two subsets into a
single subset.

The complexity of these two operations depend on the particular implementation.
It is possible to achieve constant time (O(1)) for any one of those operations
while the operation is penalized. A balance between the complexities of these
two operations is desirable and achievable following two enhancements:

1. Using union by rank -- always attach the smaller tree to the root of the
 larger tree.
2. Using path compression -- flattening the structure of the tree whenever
 find is used on it.

complexity:
 * find -- :math:`O(\\alpha(N))` where :math:`\\alpha(n)` is
 `inverse ackerman function
 <http://en.wikipedia.org/wiki/Ackermann_function#Inverse>`_.
 * union -- :math:`O(\\alpha(N))` where :math:`\\alpha(n)` is
 `inverse ackerman function
 <http://en.wikipedia.org/wiki/Ackermann_function#Inverse>`_.

"""

[docs]class UF:
 """An implementation of union find data structure.
 It uses weighted quick union by rank with path compression.
 """

 def __init__(self, N):
 """Initialize an empty union find object with N items.

 Args:
 N: Number of items in the union find object.
 """

 self._id = list(range(N))
 self._count = N
 self._rank = [0] * N

[docs] def find(self, p):
 """Find the set identifier for the item p."""

 id = self._id
 while p != id[p]:
 id[p] = id[id[p]] # Path compression using halving.
 p = id[p]
 return p

[docs] def count(self):
 """Return the number of items."""

 return self._count

[docs] def connected(self, p, q):
 """Check if the items p and q are on the same set or not."""

 return self.find(p) == self.find(q)

[docs] def union(self, p, q):
 """Combine sets containing p and q into a single set."""

 id = self._id
 rank = self._rank

 i = self.find(p)
 j = self.find(q)
 if i == j:
 return

 self._count -= 1
 if rank[i] < rank[j]:
 id[i] = j
 elif rank[i] > rank[j]:
 id[j] = i
 else:
 id[j] = i
 rank[i] += 1

 def __str__(self):
 """String representation of the union find object."""
 return " ".join([str(x) for x in self._id])

 def __repr__(self):
 """Representation of the union find object."""
 return "UF(" + str(self) + ")"

if __name__ == "__main__":
 print("Union find data structure.")
 N = int(raw_input("Enter number of items: "))
 uf = UF(N)
 print("Enter a sequence of space separated pairs of integers: ")
 while True:
 try:
 p, q = [int(x) for x in raw_input().split()]
 uf.union(p, q)
 except:
 break

 print(str(uf.count()) + " components: " + str(uf))

 © Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

_images/math/8c3df0de87594eb292fec35fb362c54bdfa7b997.png

_modules/pyalgs/basic/queue.html

 Navigation

 		
 index

 		
 modules |

 		Python Algorithms 0.2.2 documentation »

 		Module code »

 Source code for pyalgs.basic.queue

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""This module implements a linked list based queue data structure.

A queue is a data structure to hold a collection of items in order ad which
supports operations such as the addition of an item (*enqueue*) and removal of
an item (*dequeue*) can be performed. The items are always enqueued at the rear
end of the queue and dequeued from the front end of the queue. As such, the
queue can be also viewed as a First-In-First-Out(*FIFO*) data structure. In a
FIFO data structure, the first item added to the structure is the first one to
be removed. Apart from those two operations, *peek* operation can also be
implemented, returning the value at the front end without removing it.

The particular implementation of queue in this module is based on linked list,
as array based queue implementation is already supported in python's list. In
the linked list based implementation, the queue object need to keep track of
the front and the rear nodes where each node contains an item and a link to the
next node.

.. note:: For most practical purposes, the python's implementation as dequeue
 suffices as a queue object. Use append method instead of enqueue and
 popleft method instead of dequeue for queue operations in a list.

Complexity:
 * push -- O(1)
 * pop -- O(1)
 * peek -- O(1)
"""

class _Node(object):
 """An internal class that represents a node with a single value
 and links to other nodes.
 """

 def __init__(self, item):
 self.item = item
 self.next = None

[docs]class Queue(object):
 """An implementation of a simple queue with linked list."""

 def __init__(self):
 """Initialize an empty queue."""
 self._first = None
 self._last = None
 self._size = 0

 @property
 def size(self):
 """The number of items in the queue."""
 return self._size

[docs] def isEmpty(self):
 """Check if the queue is empty.

 Returns:
 True if the queue is empty.
 False otherwise.
 """
 return self._size == 0

[docs] def enqueue(self, item):
 """Insert an item to the queue."""
 n = self._last
 self._last = _Node(item)
 if self.isEmpty():
 self._first = self._last
 else:
 n.next = self._last
 self._size += 1

[docs] def dequeue(self):
 """Remove and return the first item from the queue.

 Returns:
 The first item from the queue.

 Raises:
 IndexError: If the queue is empty.
 """
 if self.isEmpty():
 raise IndexError("dequeue from empty queue")
 n = self._first
 self._first = self._first.next
 self._size -= 1
 return n.item

[docs] def peek(self):
 """Return the first item from the queue.

 Returns:
 The first item from the queue.

 Raises:
 IndexError: If the queue is empty.
 """
 if self.isEmpty():
 raise IndexError("peek at empty queue")
 return self._first.item

 def __iter__(self):
 """Return iterator for the queue."""
 current = self._first
 while current:
 yield current.item
 current = current.next

 def __str__(self):
 """String representation of the queue."""
 return " ".join([str(item) for item in self])

 def __repr__(self):
 """Representation of the queue."""
 return "Queue(" + str(self) + ")"

if __name__ == "__main__":
 print("Queue using linked list.")
 q = Queue()
 while True:
 n = int(raw_input("Enter a number to enter or 0 to pop a number"
 " (exit when queue empty): "))
 if n:
 q.enqueue(n)
 print("Queued: " + str(n))
 print("Current queue: " + str(q))
 else:
 if q.isEmpty():
 print("Queue is empty.")
 break
 print("Dequeued: " + str(q.dequeue()))
 print("Current queue: " + str(q))

 © Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

_modules/pyalgs/basic/knuth_shuffle.html

 Navigation

 		
 index

 		
 modules |

 		Python Algorithms 0.2.2 documentation »

 		Module code »

 Source code for pyalgs.basic.knuth_shuffle

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""This module implements a shuffle method using Knuth's algorithm."""

import random

[docs]def shuffle(seq):
 """Shuffle a list randomly using Knuth's algorithm.

 The method randomly shuffles a list by iterating over each position and
 exchanging the element with another random element.
 The original list is not maintained and will change.

 Args:
 seq: A list to shuffle.

 Returns:
 The original list with all elements shuffled.
 """

 N = len(seq)
 for i in range(N - 1):
 j = random.randint(i+1, N-1)
 seq[i], seq[j] = seq[j], seq[i]
 return seq

if __name__ == "__main__":
 print("Knuth shuffle.")
 print("Generating a list with numbers (1-100)")
 seq = list(range(1, 101))

 print("The list after shuffling: ")
 shuffle(seq)
 print(seq)

 © Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

_modules/pyalgs/basic/bag.html

 Navigation

 		
 index

 		
 modules |

 		Python Algorithms 0.2.2 documentation »

 		Module code »

 Source code for pyalgs.basic.bag

#!/usr/bin/env python
-*- coding: utf-8 -*-

"""This module implements a bag or multiset data structure.

A bag or multiset is a generalization of the set data structure which allows
repeated or duplicate items to be stored. Items can only be added to the bag
and may not be removed. When the items in the bag are iterated there is not
restriction on the ordering of the items.

In this module, the implementation of bag is similar to a linked list based
stack implementation. In the linked list based implementation, the bag object
need to keep track of only the head node. Each node contains an item and a link
to the next node.

.. note:: Python has a built-in class `collections.Counter
 <https://docs.python.org/2/library/collections.html#collections.Counter>`_
 which is similar to a bag or multiset. instead of adding an item, 1 need to
 be added with the counter associated with that item and elements return all
 items (including duplicates) in the bag.

Complexity:
 * add -- O(1)
"""

class _Node(object):
 """ An internal class that represents a node with a single item
 and links to other nodes.
 """

 def __init__(self, item):
 self.item = item
 self.next = None

[docs]class Bag(object):
 """An implementation of a bag or multiset with linked list."""

 def __init__(self):
 """Initializes an empty bag."""
 self._head = None
 self._size = 0

 @property
 def size(self):
 """The number of items in the bag."""
 return self._size

[docs] def isEmpty(self):
 """Check if the bag is empty.

 Returns:
 True if the bag is empty.
 False otherwise.
 """
 return self._size == 0

[docs] def add(self, item):
 """Inserts an item to the bag."""
 n = _Node(item)
 n.next = self._head
 self._head = n
 self._size += 1

 def __iter__(self):
 """Return iterator for the bag."""
 current = self._head
 while current:
 yield current.item
 current = current.next

 def __str__(self):
 """String representation of the bag."""
 return " ".join([str(item) for item in self])

 def __repr__(self):
 """Representation of the bag."""
 return "Bag(" + str(self) + ")"

if __name__ == "__main__":
 print("Bag using linked list")
 b = Bag()
 while True:
 n = int(raw_input("Enter a number to add to the bag"
 "or enter 0 to exit:"))
 if n:
 b.add(n)
 print("Added: " + str(n))
 print("Current bag: " + str(b))
 else:
 break

 © Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

_static/comment-close.png

_static/up.png

_images/math/cb101ee21644a798cbe6a7573c19e3e51c4cf774.png
Ola(N))

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Python Algorithms 0.2.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

modules.html

 Navigation

 		
 index

 		
 modules |

 		Python Algorithms 0.2.2 documentation »

pyalgs

		pyalgs package
		Subpackages
		pyalgs.basic package
		Submodules

		pyalgs.basic.bag module

		pyalgs.basic.binary_search module

		pyalgs.basic.knuth_shuffle module

		pyalgs.basic.queue module

		pyalgs.basic.stack module

		pyalgs.basic.union_find module

		Module contents

		Module contents

 © Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Python Algorithms 0.2.2 documentation »

 All modules for which code is available

		pyalgs.basic.bag

		pyalgs.basic.binary_search

		pyalgs.basic.knuth_shuffle

		pyalgs.basic.queue

		pyalgs.basic.stack

		pyalgs.basic.union_find

 © Copyright 2015, Md Imrul Hassan.
 Created using Sphinx 1.4.5.

