
python-102 Documentation
Release 0.1

Ashwin Srinath

Feb 10, 2023

Contents:

1 What you will learn 3

2 What you need to know 5

3 What you need to have 7
3.1 Organizing code for a Python project . 7
3.2 Testing your code . 14
3.3 Documenting your code . 20
3.4 Improving the usability of Python programs . 23
3.5 Improving the performance of Python programs . 27

4 Indices and tables 33

i

ii

python-102 Documentation, Release 0.1

This tutorial covers topics that are essential for scientific computing and data analysis in Python, but typically not
covered in an introductory course or workshop.

These are the thing you need to know if you are writing software that meets any of the following criteria:

• You expect to be working on it for more than a couple of weeks.

• You expect that it will be composed of more than a hundred or so lines of code.

• You want it to produce results that can be trusted - for example, if you are publishing a research paper based on
those results.

• You expect that it will be used by one or more other people.

• You are contributing to another project - e.g., an open-source software package.

Contents: 1

python-102 Documentation, Release 0.1

2 Contents:

CHAPTER 1

What you will learn

1. How to organize the code for your project, and how to make it an installable package rather than a loose
collection of files.

2. How to write tests for your code so that you can be sure it always produces the correct answer, even as you make
changes to it.

3. How to document your code so that it is easy for you and others to use and navigate.

4. How to improve the usability of your code.

5. How to improve the performance of your code.

3

python-102 Documentation, Release 0.1

4 Chapter 1. What you will learn

CHAPTER 2

What you need to know

This tutorial assumes you know the very basics of programming with Python.

If you can write a loop and a function in Python, and if you know how to run a .py script, you should be able to
follow this tutorial easily.

5

python-102 Documentation, Release 0.1

6 Chapter 2. What you need to know

CHAPTER 3

What you need to have

If you plan to participate in the hands-on exercises, you will need:

• A laptop with Anaconda installed on it

• 1 or more friends. It is highly encouraged to work in groups, so if you haven’t already, please introduce yourself
to your neighbour(s).

3.1 Organizing code for a Python project

A well structured project is easy to navigate and make changes and improvements to. It’s also more likely to be used
by other people – and that includes you a few weeks from now!

3.1.1 Organization basics

We want to write a Python program that draws triangles:

7

https://www.anaconda.com/download/

python-102 Documentation, Release 0.1

We use the the Polygon class of the matplotlib library and write a script called draw_triangles.py to do this:

Listing 1: draw_triangles.py

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

ax.set_xlabel('x')
ax.set_ylabel('y')

patch = plt.Polygon([
(0.2, 0.2),
(0.2, 0.6),
(0.4, 0.4)

])

ax.add_patch(patch)

ax.text(0.2, 0.4, '(0.2, 0.4)')
ax.text(0.2, 0.6, '(0.2, 0.6)')
ax.text(0.2, 0.4, '(0.2, 0.4)')

patch = plt.Polygon([
(0.6, 0.8),
(0.8, 0.8),
(0.5, 0.5)

])

ax.add_patch(patch)

ax.text(0.6, 0.8, '(0.6, 0.8)')
ax.text(0.8, 0.8, '(0.8, 0.8)')
ax.text(0.5, 0.5, '(0.5, 0.5)')

patch = plt.Polygon([
(0.6, 0.1),
(0.7, 0.3),

(continues on next page)

8 Chapter 3. What you need to have

https://matplotlib.org/gallery/api/patch_collection.html
https://matplotlib.org/

python-102 Documentation, Release 0.1

(continued from previous page)

(0.9, 0.2)
])

ax.add_patch(patch)

ax.text(0.6, 0.1, '(0.6, 0.1)')
ax.text(0.7, 0.3, '(0.7, 0.3)')
ax.text(0.9, 0.2, '(0.9, 0.2)')

plt.show()

Do you think this is a good way to organize the code? What do you think could be improved in the script
draw_triangles.py?

Functions

Functions facilitate code reuse. Whenever you see yourself typing the same code twice in the same program or project,
it is a clear indication that the code belongs in a function.

A good function:

• has a descriptive name. draw_triangle is a better name than plot.

• is small – no more than a couple of dozen lines – and does one thing. If a function is doing too much, then it
should probably be broken into smaller functions.

• can be easily tested – more on this soon.

• is well documented – more on this later.

In the script draw_triangles.py above, it would be a good idea to define a function called draw_triangle
that draws a single triangle, and re-use this function every time we need to draw a triangle:

Listing 2: draw_triangles.py

import matplotlib.pyplot as plt

def draw_triangle(points, ax=None):
if ax is None:

ax = plt.gca()
else:

fig, ax = plt.subplots()
ax.set_xlabel('x')
ax.set_ylabel('y')

patch = plt.Polygon(points)
ax.add_patch(patch)

for pt in points:
x, y = pt
ax.text(x, y, '({}, {})'.format(x, y))

draw_triangle([
(0.2, 0.2),
(0.2, 0.6),
(0.4, 0.4)

])

(continues on next page)

3.1. Organizing code for a Python project 9

python-102 Documentation, Release 0.1

(continued from previous page)

draw_triangle([
(0.6, 0.8),
(0.8, 0.8),
(0.5, 0.5)

])

draw_triangle([
(0.6, 0.1),
(0.7, 0.3),
(0.9, 0.2)

])

plt.show()

Python scripts and modules

A module is a file containing a collection of Python definitions and statements, typically named with a .py suffix.

A script is a module that is intended to be run by the Python interpreter. For example, the script draw_triangles.
py can be run from the command-line using the command:

$ python draw_triangles.py

If you are using an Integrated Development Environment like Spyder or PyCharm, then the script can be run by
opening it in the IDE and clicking on the “Run” button.

Modules, or specific functions from a module can be imported using the import statement:

import draw_triangles
from draw_triangles import draw_triangle

When a module is imported, all the statements in the module are executed by the Python interpreter. This happens
only the first time the module is imported.

It is sometimes useful to have both importable functions as well as executable statements in a single module. When
importing functions from this module, it is possible to avoid running other code by placing it under if __name__
== "__main__":

Listing 3: draw_triangles.py

import matplotlib.pyplot as plt

def draw_triangle(points, ax=None):
if ax is None:

ax = plt.gca()
else:

fig, ax = plt.subplots()
ax.set_xlabel('x')
ax.set_ylabel('y')

patch = plt.Polygon(points)
ax.add_patch(patch)

for pt in points:
x, y = pt

(continues on next page)

10 Chapter 3. What you need to have

https://www.jetbrains.com/pycharm/

python-102 Documentation, Release 0.1

(continued from previous page)

ax.text(x, y, '({}, {})'.format(x, y))

if __name__ == "__main__":

draw_triangle([
(0.2, 0.2),
(0.2, 0.6),
(0.4, 0.4)

])

draw_triangle([
(0.6, 0.8),
(0.8, 0.8),
(0.5, 0.5)

])

draw_triangle([
(0.6, 0.1),
(0.7, 0.3),
(0.9, 0.2)

])

plt.show()

When another module imports the module draw_triangles above, the code under if __name__ ==
"__main__" is not executed.

3.1.2 How to structure a Python project?

Let us now imagine we had a lot more code; for example, a collection of functions for:

• plotting shapes (like draw_triangle above)

• calculating areas

• geometric transformations

What are the different ways to organize code for a Python project that is more than a handful of lines long?

A single module

geometry
draw_triangles.py

One way to organize your code is to put all of it in a single .py file (module) like draw_triangles.py above.

Multiple modules

For a small number of functions the approach above is fine, and even recommended, but as the size and/or scope
of the project grows, it may be necessary to divide up code into different modules, each containing related data and
functionality.

3.1. Organizing code for a Python project 11

python-102 Documentation, Release 0.1

geometry
draw_triangles.py
graphics.py

Listing 4: graphics.py

import matplotlib.pyplot as plt

def draw_triangle(points, ax=None):
if ax is None:

ax = plt.gca()
else:

fig, ax = plt.subplots()
ax.set_xlabel('x')
ax.set_ylabel('y')

patch = plt.Polygon(points)
ax.add_patch(patch)

for pt in points:
x, y = pt
ax.text(x, y, '({}, {})'.format(x, y))

Typically, the “top-level” executable code is put in a separate script which imports functions and data from other
modules:

Listing 5: draw_triangles.py

import graphics

graphics.draw_triangle([
(0.2, 0.2),
(0.2, 0.6),
(0.4, 0.4)

])

graphics.draw_triangle([
(0.6, 0.8),
(0.8, 0.8),
(0.5, 0.5)

])

graphics.draw_triangle([
(0.6, 0.1),
(0.7, 0.3),
(0.9, 0.2)

])

Packages

A Python package is a directory containing a file called __init__.py, which can be empty. Packages can contain
modules as well as other packages (sometimes referred to as sub-packages).

For example, geometry below is a package, containing various modules:

12 Chapter 3. What you need to have

python-102 Documentation, Release 0.1

draw_triangles.py
geometry

graphics.py
__init__.py

A module from the package can be imported using the “dot” notation:

import geometry.graphics
geometry.graphics.draw_triangle(args)

It’s also possible to import a specific function from the module:

from geometry.graphics import draw_triangle
draw_triangle(args)

Packages can themselves be imported, which really just imports the __init__.py module.

import geometry

If __init__.py is empty, there is “nothing” in the imported geometry package, and the following line gives an
error:

geometry.graphics.draw_triangle(args)

AttributeError: module 'geometry' has no attribute 'graphics'

3.1.3 Importing from anywhere

sys.path

To improve their reusability, you typically want to be able to import your modules and packages from anywhere,
i.e., from any directory on your computer.

One way to do this is to use sys.path:

import sys
sys.path.append('/path/to/geometry')

import graphics

sys.path is a list of directories that Python looks for modules and packages in when you import them.

Installable projects

A better way is to make your project “installable” using setuptools. To do this, you will need to include a setup.py
with your project. Your project should be organized as follows:

draw_triangles.py
geometry

graphics.py
__init__.py

setup.py

A minimal setup.py can include the following

3.1. Organizing code for a Python project 13

https://setuptools.readthedocs.io/en/latest/

python-102 Documentation, Release 0.1

Listing 6: setup.py

from setuptools import setup

setup(name='geometry',
version='0.1',
author='Ashwin Srinath',
packages=['geometry'])

You can install the package using pip with the following command (run from the same directory as setup.py):

$ pip install -e . --user

This installs the package in editable mode, creating a link to it in the user’s site-packages directory, which
happens to already be in sys.path.

Once your project is installed, you don’t need to worry about adding it manually to sys.path each time you need to
use it.

It’s also easy to uninstall a package; just run the following command from the same directory as setup.py:

$ pip uninstall .

3.2 Testing your code

Note: This section is based heavily on Ned Batchelder’s excellent article and PyCon 2014 talk Getting Started Testing.

Tests are the dental floss of development: everyone knows they should do it more,
but they don’t, and they feel guilty about it.
- Ned Batchelder

Code without tests should be approached with a 10-foot pole.
- me

How can you write modular, extensible, and reusable code?

After making changes to a program, how do you ensure that it will still give the same answers as before?

How can we make finding and fixing bugs an easy, fun and rewarding experience?

These seemingly unrelated questions all have the same answer, and it is automated testing.

3.2.1 Testing by example: flip_string

Here is a function called flip_string that flips (reverses) a string. There are bug(s) in this function that we need
to find and fix. Test the function for various inputs and compare the results obtained with expected output.

14 Chapter 3. What you need to have

https://nedbatchelder.com/text/test0.html

python-102 Documentation, Release 0.1

Listing 7: flip_string.py

def flip_string(s):
"""
flip_string: Flip a string

Parameters

s : str

String to reverse

Returns

flipped : str

Copy of `s` with characters arranged in reverse order
"""

flipped = ''

Starting from the last character in `s`,
add the character to `flipped`,
and proceed to the previous character in `s`.
Stop whenever we reach the first character.

i = len(s)

while True:
i = i-1
char = s[i]
flipped = flipped + char

stop if we have reached the first character:
if char == s[0]:

break

return flipped

• What tests did you come up with? Why did you choose those tests?

• How did you organize and execute your tests?

• Can the results of your tests help you figure out what problem(s) there might be with the code?

Testing interactively

This is the most common type of testing, and something you have probably done before. To test a function or a line of
code, you simply fire up an interactive Python interpreter, import the function, and test away:

>>> from flip_string import flip_string
>>> flip_string('mario')
'oiram'
>>> flip_string('luigi')
'igiul'

While this kind of testing is better than not doing any testing at all, it leaves much to be desired. First, it needs to
be done each time flip_string is changed. It also requires that we manually inspect the output from each test to

3.2. Testing your code 15

python-102 Documentation, Release 0.1

decide if the code “passes” or “fails” that test. Further, we need to remember all the tests came up with today if we
want to test again tomorrow.

Writing a test script

A much better way to write tests is to put them in a script:

Listing 8: test_flip_string.py

from flip_string import flip_string

flipped = flip_string("mario")
print("mario flipped is:", flipped)

flipped = flip_string("luigi")
print("luigi flipped is:", flipped)

Now, running and re-running our tests is very easy - we just run the script:

$ python test_flip_string.py
mario flipped is: oiram
luigi flipped is: igiul

It’s also easy to add new tests, and there’s no need to remember all the tests we come up with.

Testing with assertions

One problem with the method above is that we still need to manually inspect the results of our tests.

Assertions can help with this.

The assert statement in Python is very simple: Given a condition, like 1 == 2, it checks to see if the condition is
true or false. If it is true, then assert does nothing, and if it false, it raises an AssertionError:

>>> assert 1 == 1
>>> assert 1 < 2
>>> assert 1 > 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AssertionError

We can re-write our script test_flip_string.py using assertions as follows:

Listing 9: test_flip_string.py

from flip_string import flip_string

assert flip_string('mario') == 'oiram'
assert flip_string('luigi') == 'igiul'

And we still run our tests the same way:

$ python test_flip_string.py

This time, there’s no need to inspect the test results. If we get an AssertionError, then we had a test fail, and if
not, all our tests passed.

16 Chapter 3. What you need to have

python-102 Documentation, Release 0.1

However, there’s no way to know if more than one test failed. The script stops executing after the first
AssertionError is encountered.

Let’s add another test to our test script and re-run it:

Listing 10: test_flip_string.py

from flip_string import flip_string

assert flip_string('mario') == 'oiram'
assert flip_string('luigi') == 'igiul'
assert flip_string('samus') == 'sumas'

$ python test_flip_string.py

Traceback (most recent call last):
File "test_flip_string.py", line 5, in <module>
assert flip_string('samus') == 'sumas'

AssertionError

This time we get a failed test, because - as we said - our code has bugs in it. Before adding more tests to investigate
further, we’ll discuss one more method for running tests.

Using a test runner

A test runner takes a bunch of tests, executes them all, and then reports which of them passed and which of them
failed.

A very popular test runner for Python is pytest.

To run our tests using pytest, we need to re-write them as follows (essentially, wrap each test in a function):

Listing 11: test_flip_string.py

from flip_string import flip_string

def test_flip_mario():
assert flip_string('mario') == 'oiram'

def test_flip_luigi():
assert flip_string('luigi') = 'igiul'

def test_flip_samus():
assert flip_string('samus') == 'sumas'

To run our tests, we simply type pytest on the command line. When we do this, pytest will look for all files
containing tests, run all the tests in those files, and report what it found:

$ pytest

collected 3 items

test_flip_string.py ..F [100%]

=================================== FAILURES ===================================
_______________________________ test_flip_samus ________________________________

(continues on next page)

3.2. Testing your code 17

https://docs.pytest.org/en/latest/

python-102 Documentation, Release 0.1

(continued from previous page)

def test_flip_samus():
> assert flip_string('samus') == 'sumas'
E AssertionError: assert 's' == 'sumas'
E - s
E + sumas

test_flip_string.py:10: AssertionError
====================== 1 failed, 2 passed in 0.07 seconds ======================

As you can see above, pytest prints a lot of useful information in its report. First, it prints a summary of passed v/s
failed tests:

test_flip_string.py ..F [100%]

A dot (.) indicates a passed test, while a F indicates a failed test.

For each failed test, it provides further information, including the expected value as well as the obtained value in the
failed assertion:

=================================== FAILURES ===================================
_______________________________ test_flip_samus ________________________________

def test_flip_samus():
> assert flip_string('samus') == 'sumas'
E AssertionError: assert 's' == 'sumas'
E - s
E + sumas

test_flip_string.py:10: AssertionError

Useful tests

Now that we know how to write and run tests, what kind of tests should we write? Testing flip_string for
arbitrary words like 'mario' and 'luigi' might not tell us much about where the problem might be.

Instead, we should choose tests that exercise specific functionality of the code we are testing, or represent different
conditions that the code may be exposed to.

Here are some examples of more useful tests:

• Flipping a string with a single character (no work needs to be done)

• Flipping a string with two characters (minmum amount of work needs to be done)

• Flipping a string that reads the same forwards and backwards

Listing 12: test_flip_string.py

from flip_string import flip_string

def test_flip_one_char():
assert flip_string('a') == 'a'

def test_flp_two_charsi():
assert flip_string('ab') == 'ba'

(continues on next page)

18 Chapter 3. What you need to have

python-102 Documentation, Release 0.1

(continued from previous page)

def test_flip_palindrome():
assert flip_string('aba') == 'aba'

collected 3 items

test_flip_string-v5.py ..F [100%]

=================================== FAILURES ===================================
_____________________________ test_flip_palindrome _____________________________

def test_flip_palindrome():
> assert flip_string('aba') == 'aba'
E AssertionError: assert 'a' == 'aba'
E - a
E + aba

test_flip_string.py:10: AssertionError
====================== 2 failed, 1 passed in 0.08 seconds ======================

Fixing the code

From the test results above, we see that flip_string failed for the input 'aba'. Now, can you trace the execution
of the code in the function flip_string for this input and figure out why it returned a?

After fixing the code, re-run the tests to make sure you didn’t break anything else in the process of fixing this bug –
this is one of the reasons tests are so valuable!

3.2.2 Types of testing

Software testing is a vast topic and there are many levels and types of software testing.

For scientific and research software, the focus of testing efforts is primarily:

1. Unit tests: Unit tests aim to test small, independent sections of code (a function or parts of a function), so that
when a test fails, the failure can easily be associated with that section of code. This is the kind of testing that we
have been doing so far.

2. Regression tests: Regression tests aim to check whether changes to the program result in it producing different
results from before. Regression tests can test larger sections of code than unit tests. As an example, if you are
writing a machine learning application, you may want to run your model on small data in an automated way
each time your software undergoes changes, and make sure that the same (or a better) result is produced.

3.2.3 Test-driven development

Test-driven development (TDD) is the practice of writing tests for a function or method before actually writing any
code for that function or method. The TDD process is to:

1. Write a test for a function or method

2. Write just enough code that the function or method passes that test

3. Ensure that all tests written so far pass

4. Repeat the above steps until you are satisfied with the code

3.2. Testing your code 19

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Test-driven_development

python-102 Documentation, Release 0.1

Proponents of TDD suggest that this results in better code. Whether or not TDD sounds appealing to you, writing tests
should be part of your development process, and never an afterthought. In the process of writing tests, you often come
up with new corner cases for your code, and realize better ways to organize it. The result is usually code that is more
modular, more reusable and of course, more testable, than if you didn’t do any testing.

3.2.4 Growing a useful test suite

More tests are always better than less, and your code should have as many tests as you are willing to write. That being
said, some tests are more useful than others. Designing a useful suite of tests is a challenge in itself, and it helps to
keep the following in mind when growing tests:

1. Tests should run quickly: testing is meant to be done as often as possible. Your entire test suite should complete
in no more than a few seconds, otherwise you won’t run your tests often enough for them to be useful. Always
test your functions or algorithms on very small and simple data; even if in practice they will be dealing with
more complex and large datasets.

2. Tests should be focused: each test should exercise a small part of your code. When a test fails, it should be easy
for you to figure out which part of your program you need to focus debugging efforts on. This can be difficult
if your code isn’t modular, i.e., if different parts of your code depend heavily on each other. This is one of the
reasons TDD is said to produce more modular code.

3. Tests should cover all possible code paths: if your function has multiple code paths (e.g., an if-else statement),
write tests that execute both the “if” part and the “else” part. Otherwise, you might have bugs in your code and
still have all tests pass.

4. Test data should include difficult and edge cases: it’s easy to write code that only handles cases with well-
defined inputs and outputs. In practice however, your code may have to deal with input data for which it isn’t
clear what the behaviour should be. For example, what should flip_string('') return? Make sure you
write tests for such cases, so that you force your code to handle them.

3.3 Documenting your code

Most people think of writing documentation as an unpleasant, but necessary task, done for the benefit of othe people
with no real benefit to themselves. So they choose not to do it, or they do it with little care.

But even if you are the only person who will ever use your code, it’s still a good idea to document it well. Being able
to document your own code gives you confidence that you understand it yourself, and a sign of well-written code is
that it can be easily documented. Code you wrote a few weeks ago may as well have been written by someone else,
and you will be glad that you documented it.

The good news is that writing documentation can be fun, and you really don’t need to write a lot of it.

3.3.1 Docstrings and comments

Documentation is not comments.

A docstring in Python is a string literal that appears at the beginning of a module, function, class, or method.

"""
A docstring in Python that appears
at the beginning of a module, function, class or method.
"""

The docstring of a module, function, class or method becomes the __doc__ attribute of that object, and is printed if
you type help(object):

20 Chapter 3. What you need to have

python-102 Documentation, Release 0.1

In [1]: def fahr_to_celsius(F):
...: """
...: Convert temperature from Fahrenheit to Celsius.
...: """
...: return (F - 32) * (5/9)

In [2]: help(fahr_to_celsius)

Help on function fahr_to_celsius in module __main__:

fahr_to_celsius(F)
Convert temperature from Fahrenheit to Celsius.

A comment in Python is any line that begins with a #:

a comment.

The purpose of a docstring is to document a module, function, class, or method. The purpose of a comment is to
explain a very difficult piece of code, or to justify a choice that was made while writing it.

Docstrings should not be used in place of comments, or vice versa. Don’t do the following:

In [1]: def fahr_to_celsius(F):
...: # Convert temperature from Fahrenheit to Celsius.
...: return (F - 32) * (5/9)

Deleting code

Incidentally, many people use comments and string literals as a way of “deleting” code - also known as commenting
out code. See this article on a better way to delete code.

3.3.2 What to document?

So what goes in a dosctring?

At minimum, the docstring for a function or method should consist of the following:

1. A Summary section that describes in a sentence or two what the function does.

2. A Parameters section that provides a description of the parameters to the function, their types, and default
values (in the case of optional arguments).

3. A Returns section that similarly describes the return values.

4. Optionally, a Notes section that describes the implementation, and includes references.

Here is a simple example of this in action:

def flip_list(a, inplace=False):
"""
Flip (reverse) a list.

Parameters

a : list

List to be reversed.
inplace : bool, optional

(continues on next page)

3.3. Documenting your code 21

https://nedbatchelder.com/text/deleting-code.html

python-102 Documentation, Release 0.1

(continued from previous page)

Specifies whether to flip the list "in place",
or return a new list (default).

Returns

flipped : list (or None)

The flipped list. If `inplace=True`, None is returned.
"""
if inplace is True:

a[:] = a[::-1]
return None

else:
return a[::-1]

NumPy’s documentation guidelines are a great reference for more information about what and how to document your
code.

3.3.3 Doctests

In addition to the sections above, your documentation can also contain runnable tests. This is possible using the doctest
module.

Listing 13: flip_list.py

def flip_list(a, inplace=False):
"""
Flip (reverse) a list.

Parameters

a : list

List to be reversed.
inplace : bool, optional

Specifies whether to flip the list "in place",
or return a new list (default).

Returns

flipped : list (or None)

The flipped list. If `inplace=True`, None is returned.

>>> flip_list([1, 2, 3])
[3, 2, 1]

>>> a = [1, 2, 3]
>>> flip_list(a, inplace=True)
>>> a
[3, 2, 1]
"""
if inplace is True:

a[:] = a[::-1]
return None

else:
return a[::-1]

22 Chapter 3. What you need to have

https://numpydoc.readthedocs.io/en/latest/
https://docs.python.org/3/library/doctest.html

python-102 Documentation, Release 0.1

You can tell pytest to run doctests as well as other tests using the --doctest-modules switch:

$ pytest --doctest-modules flip_list.py

collected 1 item

flip_list.py . [100%]

=========================== 1 passed in 0.03 seconds ===========================

Doctests are great because they double up as documentation as well as tests. But they shouldn’t be the only kind of
tests you write.

3.3.4 Documentation generation

Finally, you can turn your documentation into a beautiful website (like this one!), a PDF manual, and various other
formats, using a document generator such as Sphinx. You can use services like readthedocs to build and host your
website for free.

3.4 Improving the usability of Python programs

3.4.1 Logging

It can be useful to print out either a message or the value of some variable, etc., while your code is running. This is
quite common and is usually accomplished with a simple call to the print function.

x = 1.234
print("The value of x is {0:0.4f}.".format(x))

The value of x is 1.2340.

Doing this is a good idea to keep track of milestones in your code. That way, both when you are developing your code
but also when other users are running the code, they can be notified of an event, progress, or value.

Printing a message is also useful for notifying the user when something is not going as expected. These are all different
levels of messaging.

Logging is simply engaging in this behavior of printing out messages, with the added feature that you include meta
data (e.g., a timestamp, the message category) with the message, as well as a filter where only messages with a high
enough level of criticality are actually allowed to be printed.

Logging Basics

The general idea is that there are multiple levels of messages that can be printed. Typically these include:

1. DEBUG - diagnostic purposes.

2. INFO - basic information (most common).

3. WARNING - indicating non-normal behavior.

4. ERROR - error (the operation cannot continue).

5. CRITICAL - error (the program cannot continue).

3.4. Improving the usability of Python programs 23

http://www.sphinx-doc.org/en/master/
http://readthedocs.org/

python-102 Documentation, Release 0.1

During the initialization portion of your code, you would configure a logger object with a format, where to print
messages (e.g., console, file, or both), and what level to use by default. Usually, you would set the default log level to
INFO and the debugging messages used for diagnostics would not actually be printed. Then, allow the user to override
this with a command line argument (e.g., --debug).

Example Setup

Python has a logging module as part of the standard library. It is very comprehensive and allows the user to heavily
customize many parts of the behavior. It is pretty strait forward to implement your own logging functionality; unless
you’re doing something special why not use the standard library?

import logging

log = logging.getLogger("ProjectName")

file_handler = logging.FileHandler("path/for/output.log")
console_handler = logging.StreamHandler()

formatter = logging.Formatter("%(levelname)s %(asctime)s %(name)s - %(message)s")
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)

log.addHandler(file_handler)
log.addHandler(console_handler)
log.setLevel(logging.INFO)

Then, somewhere in the code:

log.debug("report on some variable")
log.info("notification of milestone")
log.warn("non-standard behavior")
log.error("unrecoverable issue")
log.critical("panic!")

INFO 2018-07-24 09:41:56,683 ProjectName - notification of milestone
WARNING 2018-07-24 09:41:56,835 ProjectName - non-standard behavior
ERROR 2018-07-24 09:41:57,103 ProjectName - unrecoverable issue
CRITICAL 2018-07-24 09:41:57,103 ProjectName - panic!

Notice that the debug message was not printed. This is because we set the log level to INFO. Only messages with a
level equal to or higher then the assigned level will make it passed the filter.

Logging with Color

Finally, another common feature of logging is to add color as an indicator of the message type. Obviously, this only
applies to messages that are printed to the console. If you’ve ever started up a Jupyter notebook server you might have
noticed the logging messages it puts out a similar format as used here and the meta data is a bold color. The color
codes are generally as follows:

• DEBUG (blue)

• INFO (green)

• WARNING (orange or yellow)

• ERROR (red)

24 Chapter 3. What you need to have

https://docs.python.org/3/library/logging.html

python-102 Documentation, Release 0.1

• CRITICAL (purple)

3.4.2 Command Line Arguments

In addition to packaging your code in a way that other users or projects can import for use in their code, often it
makes sense to also make elements of the code executable from the command line as stand alone scripts. Python has
everything you need to do this built right in.

As with logging, there are several python packages available that handle command line argument parsing for you,
including a robust implementation provided right in the standard library - argparse.

The argparse module, as well as the others, rely on a universally excepted convention for how command line arguments
should be structured. Nearly all of the standard utilities on Unix/Linux systems use this same syntax. This convention
covers both the command line argument syntax as well as the structure of usage statements that your script prints out
(e.g., when supplying the --help option). The argparse module actually takes care of all of this for you.

Unix Convention

There is a fair bit of complexity to the convention surrounding the usage statements, but the argument syntax is fairly
simple.

Positional arguments are those that don’t have names. These are usually file paths in the context of analysis scripts.
Optional arguments are those that have defaults and may or may not accept a value.

Optional arguments can be specified with short form or long form names (usually both). The short form names are a
single letter preceded by a single dash (e.g., -a). Short form options that don’t take an argument can be stacked (e.g.,
-abc). Long form arguments are whole words and preceded by two dashes (e.g., --debug). Long form arguments
that are multiple words are usually joined with dashes (e.g., --output-directory).

There is more, but these are the basics.

Simple Example

The best (most robust and cross-platform) way of providing a stand along script with your package is to let your
setup.py file handle it. Doing the following will create the proper executable on both Windows and Unix systems and
put it in a place that is readily callable (i.e., on the user’s PATH).

setup.py

use "entry_points" to point to function and setuptools
will create executables on your behalf.
setup(
...

syntax: "{name}={package}.{module}:{function}"
"{name}" will be on your PATH in the same "/bin/"
alongside python/pip executables.
entry_points = {"console_scripts": [

"do_science=my_package.do_science:main",
]},

...
)

This says that I have a file, my_package/do_science.py, with a function called main that when called does
the thing I want the script to do. The function won’t be given any arguments, but we can get what we need from
sys.argv. This has the effect of creating an executable we can invoke with the name do_science that behaves
equivalent to the following.

3.4. Improving the usability of Python programs 25

https://docs.python.org/3/library/argparse.html

python-102 Documentation, Release 0.1

import sys
from my_package.do_science import main
sys.exit(main())

With this in mind, your function can and should return integer values which will be used as the exit status of the
command. This is another Unix convention; returning zero is for success, returning a non-zero status indicates some
specific error has occurred.

The following shows a basic usage of argparse and how to define your “main” function.

do_science.py
script for doing cool science things

import argparse

parser = argparse.ArgumentParser(prog="do_science",
description="do cool science thing")

positional argument
parser.add_argument("input_file", help="path to input data file")

optional argument
parser.add_argument("-d", "--debug", action="store_true",

help="enable debugging messages")

def main() -> int:
"""Main entry point for `do_science`.

Returns:
exit_status: int

0 if success, non-zero otherwise.
"""

parse_args() automatically grabs sys.argv if you don't provide them.
opts = parser.parse_args()
opts is a namespace
opts.input_file is a string with the value from the command line
opts.debug is True or False (default is False w/ "store_true")
return 0

After the package is installed, pip install my_package ..., you’ll be able to call the script:

> do_science
usage: do_science [-h] [-d] input_file

> do_science --help
usage: do_science [-h] [-d] input_file

do cool science thing

positional arguments:
input_file path to input data file

optional arguments:
-h, --help show this help message and exit
-d, --debug enable debugging messages

26 Chapter 3. What you need to have

python-102 Documentation, Release 0.1

3.5 Improving the performance of Python programs

3.5.1 Timing code and identifying bottlenecks

Of course, the first step toward improving performance is to figure out where to focus your efforts. This means
identifying the section of code in your program that is taking the most time, i.e., the “bottleneck”.

Sometimes, the bottleneck is very obvious (e.g., the training step in a machine learning application), and sometimes it
may not be clear. In the latter case, you need to be able to measure the time taken by various parts of your program.

The time function

The time function can be used to time a section of code as follows:

import time
import numpy as np

t1 = time.time()
a = np.random.rand(5000, 5000)
t2 = time.time()
print("Generating random array took {} seconds".format(t2-t1))

Generating random array took 0.44880104064941406 seconds

%timeit and %%timeit

%timeit% and %%timeit are magic statements that can be used in IPython or in Jupyter Notebook for timing a
single line of code or a block of code conveniently:

In [1]: import numpy as np

In [2]: %timeit np.random.rand(5000, 5000)
410 ms ± 2.59 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [3]: %%timeit
...: a = np.random.rand(5000, 5000)
...: b = np.random.rand(5000, 5000)
...: c = a * b
...:

897 ms ± 10.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Profilers

time and timeit should help with most of your measurement needs, but if you need to profile a very long program
with lots of functions, you may benefit from using a profiler.

There is also a line_profiler that can help you automatically profile each line in a script, and a memory_profiler to
measure memory consumption.

3.5. Improving the performance of Python programs 27

https://docs.python.org/3/library/time.html#time.time
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://docs.python.org/3/library/profile.html
https://github.com/rkern/line_profiler
https://github.com/pythonprofilers/memory_profiler

python-102 Documentation, Release 0.1

3.5.2 Install optimized versions of libraries

This is the easiest way to get “free” performance improvements. If your computer supports it, install optimized version
of Python libraries, for example, those provided by the Intel Distribution for Python.

Another option is PyPy.

3.5.3 Choose the right algorithm

This is one of the most effective ways to improve the performance of a program.

When choosing a function from a library or writing your own, ensure that you understand how it will perform for
the type and size of data you have, and what options there may be to boost its performance. Always benchmark to
compare with other functions and libraries.

For example, if you are doing linear algebra, you may benefit from the use of sparse matrices and algorithms if you
are dealing with very large matrices with relatively few non-zeros.

As another example, many kinds of algorithms are iterative and require an initial “guess” for the solution. Typically,
the closer this initial guess is to the actual solution, the faster the algorithm performs.

3.5.4 Choose the appropriate data format

Familiarize yourself with the various data formats available for the type of data you are dealing with, and the perfor-
mance considerations for each. For example, this page provides a good overview of various data formats for tabular
data supported by the Pandas library. Performance for each is reported here.

3.5.5 Don’t reinvent the wheel

Resist any temptation to write your own implementation for a common task or a well-known algorithm. Rely instead
on other well-tested and well-used implementations.

For instance, it’s easy to write a few lines of Python to read data from a .csv file into a Pandas DataFrame:

Listing 14: my_csv.py

def read_csv(fname):
with open(fname) as f:

col_names = f.readline().rstrip().split(',')
df = pandas.DataFrame(columns=col_names)

for line in f:
record = pandas.DataFrame([line.rstrip().split(',')], columns=col_

→˓names)
df = df.append(record, ignore_index=True)

return df

But such code performs poorly. Compare the performance with Pandas’ read_csv function:

In [1]: from my_csv import read_csv

In [2]: %time data = read_csv('feet.csv')
CPU times: user 2min 3s, sys: 1.39 s, total: 2min 4s
Wall time: 2min 5s

28 Chapter 3. What you need to have

https://software.intel.com/en-us/distribution-for-python
https://pypy.org/compat.html
https://en.wikipedia.org/wiki/Sparse_matrix
https://pandas.pydata.org/pandas-docs/stable/io.html
https://pandas.pydata.org/pandas-docs/stable/io.html#performance-considerations

python-102 Documentation, Release 0.1

In [1]: from pandas import read_csv

In [2]: %time data = read_csv('feet.csv')
CPU times: user 28.5 ms, sys: 10.8 ms, total: 39.3 ms
Wall time: 54.2 ms

It also isn’t nearly as versatile, and doesn’t account for the dozens of edge cases than Pandas does.

3.5.6 Benchmark, benchmark, benchmark!

If there are two ways of doing the same thing, benchmark to see which is faster for different problem sizes.

For example, let’s say we want to compute the average hindfooth_length for all species in plot_id 13 in the
following dataset:

In [1]: data = pandas.read_csv('feet.csv')

In [2]: data.head()
Out[2]:

plot_id species_id hindfoot_length
0 2 NL 32.0
1 3 NL 33.0
2 2 DM 37.0
3 7 DM 36.0
4 3 DM 35.0

One way to do this would be to group by the plot_id, compute the mean hindfoot length for each group, and extract
the result for the group with plot_id 13:

In [2]: data.groupby('plot_id')['hindfoot_length'].mean()[13]
Out[2]: 27.570887035633056

Another way would be to filter the data first, keeping only records with plot_id 13, and then computing the mean
of the hindfoot_length column:

In [3]: data[data['plot_id'] == 13]['hindfoot_length'].mean()
Out[3]: 27.570887035633056

Both methods give identical results, but the difference in performance is significant:

In [4]: %timeit data.groupby('plot_id')['hindfoot_length'].mean()[13]
1.34 ms ± 24.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

In [5]: %timeit data[data['plot_id'] == 13]['hindfoot_length'].mean()
750 µs ± 506 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Why do you think the first method is slower?

3.5.7 Avoid explicit loops

Very often, you need to operate on multiple elements of a collection such as a NumPy array or Pandas DataFrame.

In such cases, it is almost always a bad idea to write an explicit for loop over the elements.

For instance, looping over the rows (a.k.a, indices or records) of a Pandas DataFrame is considered poor practice, and
is very slow. Consider replacing values in a column of a dataframe:

3.5. Improving the performance of Python programs 29

python-102 Documentation, Release 0.1

In [5]: %%timeit
...: for i in range(len(data['species_id'])):
...: if data.loc[i, 'species_id'] == 'NL':
...: data.loc[i, 'species_id'] = 'NZ'
...:

308 ms ± 4.49 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

A better way to do this is simply to use the replace() method:

In [2]: %time data['species_id'].replace('NL', 'NZ', inplace=True)
CPU times: user 3.1 ms, sys: 652 µs, total: 3.75 ms
Wall time: 3.34 ms

In addition to being faster, this also leads to more readable code.

Of course, loops are unavoidable in many situations; but look for alternatives before you write a for loop over the
elements of an array, DataFrame, or similar data structure.

3.5.8 Avoid repeatedly allocating, copying and rearranging data

Repeatedly creating and destroying new data can be very expensive especially if you are working with very large
arrays or data frames. So avoid, for instance, creating a new array each time inside a loop. When operating on NumPy
arrays, memory is allocated for intermediate results. Packages like numexpr aim to help with this.

Understand when data needs to be copied v/s when data can be operated “in-place”. It also helps to know when copies
are made. For example, do you think the following code results in two copies of the same array?

import numpy as np

a = np.random.rand(50, 50)
b = a

This article clears up a lot of confusion about how names and values work in Python and when copies are made v/s
when they are not.

3.5.9 Access data from memory efficiently

Accessing data in the “wrong order”: it is always more efficient to access values that are “closer together” in memory
than values that are farther apart. For example, looping over the elements along the rows of a 2-d NumPy array is much
more efficient than looping over the elements along its columns. Similarly, looping over the columns of a DataFrame
in Pandas will be faster than looping over its rows.

• Redundant computations / computing “too much”: if you only need to compute on a subset of your data, filter
before doing the computation rather than after.

3.5.10 Interfacing with compiled code

You may have heard that Python is “slow” compared to other languages like C, C++, or Fortran. This is somewhat true
in that Python programs written in “pure Python”, i.e., without the use of any libraries except the standard libraries,
will be slow compared to their C/Fortran counterparts. One of the reasons that C is so much faster than Python is that
it is a compiled language, while Python is an interpreted language.

However, the core of libraries like NumPy are actually written in C, making them much faster than “pure Python”.

30 Chapter 3. What you need to have

https://github.com/pydata/numexpr
https://nedbatchelder.com/text/names.html
https://en.wikipedia.org/wiki/Compiled_language
https://en.wikipedia.org/wiki/Interpreted_language

python-102 Documentation, Release 0.1

It’s also possible for you to write your own code so that it interfaces with languages like C, C++ or Fortran. Better
still, you often don’t even need to write any code in those languages, and instead can have other libraries “generate”
them for you.

Numba is a library that lets you compile code written in Python using a very convenient “decorator” syntax.

As an example, consider numerically evaluating the derivative of a function using finite differences. A function that
uses NumPy to do this might look like the following:

Listing 15: derivatives.py

import numpy as np

def dfdx(f, dx, y):
y[1:-1] = (f[2:] - f[:-2]) / (2*dx)
y[0] = (f[1] - f[0]) / dx
y[1] = (f[-2] - f[-1]) / dx
return y

Below, we time the function for a grid of 10000000 points:

In [1]: x = np.linspace(0, 1, 10000000)

In [2]: dx = x[1] - x[0]

In [3]: f = np.sin(2 * np.pi * x / 1000000)

In [4]: y = np.zeros_like(f)

In [5]: %timeit dfdx(f, dx, y)
61.1 ms ± 2.62 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Below is a function that is compiled using Numba to do the same task:

Listing 16: derivatives.py

from numba import jit, prange

@jit(parallel=True, nopython=True)
def dfdx(f, dx, y):

for i in prange(1, len(y)-1):
y[i] = (f[i+1] - f[i-1]) / 2*dx

y[0] = (f[1] - f[0]) / dx
y[-1] = (f[-1] - f[-2]) / dx
return y

We see much better performance for the same grid size:

In [1]: %timeit dfdx(f, dx, y)
14.6 ms ± 282 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)

Cython is another option for interfacing with compiled code. It performs about the same as Numba but requires much
more effort; although it can do many things that Numba cannot, such as generating C code, and interface with C/C++
libraries.

3.5. Improving the performance of Python programs 31

https://numba.pydata.org/
http://cython.org/

python-102 Documentation, Release 0.1

3.5.11 Parallelization

Finally, if your computer has multiple cores, or if you have access to a bigger computer (e.g., a high-performance
computing cluster), parallelizing your code may be an option.

• Note that many libraries support parallelization without any effort on your part. Libraries like Numba and
Tensorflow can use all the cores on your CPU, and even your GPU for accelerating computations.

• Dask is a great library for parallelizing computations and operating on large datasets that don’t fit in RAM.

• The multiprocessing package is useful when you have several independent tasks that can all be done concur-
rently. joblib is another popular library for this.

32 Chapter 3. What you need to have

https://www.tensorflow.org/
https://dask.pydata.org/en/latest/
https://docs.python.org/3/library/multiprocessing.html
https://pythonhosted.org/joblib/

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

33

	What you will learn
	What you need to know
	What you need to have
	Organizing code for a Python project
	Testing your code
	Documenting your code
	Improving the usability of Python programs
	Improving the performance of Python programs

	Indices and tables

