
pytempus Documentation
Release 1.2.3

Hugo Mercier

Sep 25, 2019

Contents:

1 Getting started 1
1.1 Tempus main bindings . 1
1.2 Isochrone plugin . 3
1.3 Utilities . 6

2 Indices and tables 7

Python Module Index 9

Index 11

i

ii

CHAPTER 1

Getting started

This project provides Python bindings for the Tempus framework and some example codes to illustrate the way it
should be used.

1.1 Tempus main bindings

This page contains a definition of the existing wrappers that were defined for a range of seminal Tempus functions.
These wrappers are stored in module tempus.__init__.

1.1.1 Load a plugin

tempus.load_plugin(options, plugin_name=None, plugin_path=None)
Load a Tempus plugin.

Parameters

• options – dict - Database options in a dictionary; the main entry is db/options

• plugin_name – object - String designing the name of the plugin that must
be used (commonly supported: “sample_road_plugin”, “sample_multi_plugin”, “dy-
namic_multi_plugin”, “sample_pt_plugin”, “isochrone_plugin”)

• plugin_path – object - Relative path to the plugin sources (alternative to plugin_path
parameter, it is considered only if plugin_name is null)

Returns tempus.Plugin - routing plugin

1.1.2 Load a graph

tempus.load_graph(options, graph_type=’multimodal_graph’)
Load a Tempus graph

Parameters

1

http://ifsttar.github.io/Tempus/

pytempus Documentation, Release 1.2.3

• options – dict - Database options as a dictionary; the main entry is db/options

• graph_type – object - String designing the graph type to be used (supported: “multi-
modal_graph”, not yet supported: “ch_graph”)

Returns tempus.<graph_type>.Graph - routing graph

1.1.3 Do routing requests

This class is defined to contain the routing request results. It is a wrapper that allow to consider the request itself
associated with its result.

class tempus.ResultWrapper(plugin_request, results)
Tempus request result wrapper

Instanciated with a Tempus.PluginRequest (containing one or more tempus.ResultElement, i.e.
tempus.Roadmap or tempus.Isochrone) and a dict containing the request resolution metrics (i.e number
of iterations, execution time)

__getitem__(key)
Result item getter: consider results elements (of tempus.ResultElement)as a list, i.e. they must be
accessed through an index key

Parameters key – integer - id of the result object that must be get

__len__()
built-in result element length; gives the number of stored items in the request result

A binding function request is defined by exploiting this class as follows:

tempus.request(plugin, plugin_options=None, origin=None, steps=None, destination=None, al-
lowed_transport_modes=None, criteria=None, parking_location=None, net-
works=None)

Request the Tempus database according to the plugin capabilities, to get a shortest path structure between origin
and destination nodes that uses only allowed_transport_modes

Parameters

• plugin – Tempus.Plugin - Plugin to use for answering the request (ex:
isochrone_plugin)

• plugin_options – dict - Additional options to feed to the chosen plugin

• origin – integer - Id of the origin node

• steps – list - destination specifications (time constraint, parking at destination. . . for the
final destination, or intermediary steps)

• destination – integer - Id of the destination node

• allowed_transportation_modes – list - Id of the allowed transportation modes;
for having a mode glossary, please refer to your database (tempus.transport_mode)

• criteria – list - Optimization criteria (supported: tempus.Cost.Duration; not yet
supported: tempus.Cost.Distance, tempus.Cost.Calories, tempus.
Cost.Carbon, tempus.Cost.Elevation, tempus.Cost.Landmark,
tempus.Cost.NumberOfChanges, tempus.Cost.PathComplexity,
tempus.Cost.Price, tempus.Cost.Security, tempus.Cost.
Variability)

• parking_location – integer - Parking node id (NOT IMPLEMENTED)

• networks – integer - Network id (NOT IMPLEMENTED)

2 Chapter 1. Getting started

pytempus Documentation, Release 1.2.3

Returns ResultWrapper - a routing request result and some running metrics

1.2 Isochrone plugin

One possibility to test Python version of Tempus is the isochrone‘ plugin. This page summarizes the code in
test_isochrone.py module. It tests the Tempus isochrone plugin by running a simple isochrone request starting from a
random node in the network.

Computing an isochrone needs to compute travel times to reach every other nodes from the starting node, and to
compare these travel times to a fixed time limit: the isochrone is the set of nodes reachable in this amount of time

1.2.1 Module preparation

To run the testing module, some other modules must be loaded.

1 from datetime import datetime
2 import random
3

4 import psycopg2
5

6 import tempus
7 from tempus import Cost, Request
8

9 import utils

In addition to tempus, datetime is useful for setting up a time constraint with the request, random is called to print a
roadmap from the origin node to a random destination node within the isochrone. psycopg2 seems unavoidable, as
a database connection is required to consider valid origin node and transportation mode. Finally, utils contains some
useful functions in the testing scope, see Utilities.

1.2.2 Tempus initialization

As a mandatory step before computing isochrones, the tempus framework must be initialized.

tempus.init()

1.2.3 Connection to database

Then a connection to the database can be opened. First a database option variable is set as follows in utils.py:

g_db_options = os.getenv('TEMPUS_DB_OPTIONS', 'dbname=tempus_test_db')

This variable is used by psycopg2 for database connection:

1 conn = psycopg2.connect(utils.g_db_options)
2 cursor = conn.cursor()

Note: At this point, it is crucial to remind that the database option declaration is a prerequisite to database connection.
That supposes that an environment variable TEMPUS_DB_OPTIONS was declared before running the Python module.
By default, this variable equals dbname=tempus_test_db, however its value may be changed by hand with a
command similar to:

1.2. Isochrone plugin 3

pytempus Documentation, Release 1.2.3

export TEMPUS_DB_OPTIONS="dbname=<dbname> port=<port> user=<user> password=<pwd>"

1.2.4 Plugin loading

As the goal here is to compute isochrones, the corresponding plugin is then loaded to be exploited in the following
section.

plugin = tempus.load_plugin({'db/options': utils.g_db_options}, plugin_name=
→˓"isochrone_plugin")

The database options are called again: the requests will be run in the same database than the one which received an ad
hoc connection.

Note: The plugins currently have a second option, namely db/schema. It is not mentionned here as the default value
is considered, i.e. tempus. As a consequence, the request will be solved with data stored in tables tempus.road_node,
tempus.road_section and so on. . .

1.2.5 Routing request

After loading the plugin, then comes the routing query solving, which is fairly the main part of the isochrone compu-
tation.

1 # prepare the request
2 origin = utils.sample_node(cursor) # Consider a random node
3 constraint = \
4 Request.TimeConstraint(type=Request.TimeConstraintType.ConstraintAfter,
5 date_time=datetime(2016,10,21,6,43))
6 step = Request.Step(constraint=constraint)
7 iso_limit = 20.0
8 db_modes = utils.get_transport_modes(cursor)
9 print("Available transport modes in the database: {}".format(db_modes))

10 allowed_modes = [1, 3]
11

12 print(("Compute isochrone from node {} with a time threshold of {} minutes and
→˓following modes: {}"

13 "").format(origin, iso_limit, [db_modes[k] for k in allowed_modes]))
14

15 # routing request
16 results = tempus.request(plugin = plugin,
17 origin = origin,
18 steps = [step],
19 plugin_options = { 'Isochrone/limit' : iso_limit },
20 criteria = [Cost.Duration],
21 allowed_transport_modes = allowed_modes)

The previous example brings into play a random node, a single constraint associated to the destination (the node
must be reached after the 16/10/21 at 21:06:43, that kind of constraint is meaningful if public transport and/or time-
dependent travel times are considered), a time threshold of 20 units to design the isochrone and two allowed modes,
identified by a specific id (see tempus.transport_mode table to know the available modes).

4 Chapter 1. Getting started

pytempus Documentation, Release 1.2.3

Note: In this example, the isochrone is computed relatively to the duration criterion. As a consequence the threshold
is expressed in minutes. Some other optimization criteria are thinkable, however they still are in development (see
function documentation in Tempus main bindings).

Note: This example of request shows that the only used plugin options is Isochrone/limit. It has a default value of 10
units. However the isochrone plugin allows also to define:

• Time/min_transfer_time: a minimal transfer time (default value = 2 minutes),

• Time/walking_speed and Time/cycling_speed: constant walking and cycling speeds (default values of respec-
tively 3.6 and 12km/h),

• Time/car_parking_search_time: a constant car parking search time (with default value of 5 minutes),

• Time/use_speed_profiles: a boolean (default as false) flag that indicates if speed profiles must be used,

• Time/profile_name: the speed profile name with option (which is an empty string by default),

• Debug/verbose: a debugging-purpose boolean that indicates if the processing must be verbose (false by default),

• Multimodal/max_mode_changes: the maximal number of mode changes (no constrained, by default)

• Multimodal/max_pt_changes: the maximal number of public transport changes (no constrained by default)

1.2.6 Result exploitation

Once the isochrone query has been solved, general results may be printed as follows:

1 result_isochrone = results[0].isochrone()
2 print("Resulting structure has size = {}".format(len(results)))
3 print("Number of reachable nodes: {}".format(len(result_isochrone)))
4 print("id, predecessor, x, y")
5 print("\n".join(["{},{},{},{}".format(x.uid, x.predecessor, x.x, x.y) for x in

→˓results[0].isochrone()]))

One may consequently evaluate the number of nodes that are contained in the isochrone structure, and get their
characteristics: node id, predecessor id (in the isochrone searching space), x and y coordinates.

To go further, the roadmap from the origin node to each valid destination in the isochrone may be rebuilt. The
following example shows how to proceed with a random chosen destination (the principle is easily reproducible and
generalizable):

1 vertices = {x.uid: x for x in result_isochrone}
2 v = random.choice(range(len(vertices)))
3 print("Path between node {} and node {}:".format(origin, v))
4 cost_per_mode, total_wait_time = utils.browse(vertices, v)
5 print("Waiting time: {:.1f} mins".format(total_wait_time))
6 print("Total cost: {:.1f} mins".format(sum(cost_per_mode.values())))
7 print("Accumulated costs per mode:")
8 print("\n".join("{}: {:.1f} mins".format(k,v) for k,v in cost_per_mode.items()))

1.2. Isochrone plugin 5

pytempus Documentation, Release 1.2.3

1.3 Utilities

This documentation page gather all functions contained into samples/utils.py module. If not working, please consider
module docstrings.

Here are documented some useful functions for testing the pytempus framework.

samples.utils.road_node_id_from_coordinates(cur, pt_xy)
Return a node stored into the database starting from its coordinates pt_xy

Parameters

• cur – psycopg2 cursor - Database connection cursor

• pt_xt – tuple - point coordinates, as floating numbers

Returns integer - id of the node that corresponds to pt_xy‘

samples.utils.sample_node(cur)
Return a random node id from the tempus node table

Parameters cur – psycopg2.cursor - database connexion tool

Returns tuple - node id

samples.utils.get_transport_modes(cur)
Get the available transport modes in the current database

Parameters cur – psycopg2.cursor - database connexion tool

Returns dict - id and name for each available transport mode

samples.utils.browse(vertices, v)
Recursively get the itinerary steps between the path origin and x, a selected destination node, and print the
intermediary node characteristics at each iteration

Parameters

• vertices – dict - tempus.IsochroneValue indexed by node ids

• v – integer - id of the node to browse

Returns tuple - cost per mode and total waiting time to reach the current destination

6 Chapter 1. Getting started

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

7

pytempus Documentation, Release 1.2.3

8 Chapter 2. Indices and tables

Python Module Index

s
samples.utils, 6

9

pytempus Documentation, Release 1.2.3

10 Python Module Index

Index

Symbols
__getitem__() (tempus.ResultWrapper method), 2
__len__() (tempus.ResultWrapper method), 2

B
browse() (in module samples.utils), 6

G
get_transport_modes() (in module sam-

ples.utils), 6

L
load_graph() (in module tempus), 1
load_plugin() (in module tempus), 1

R
request() (in module tempus), 2
ResultWrapper (class in tempus), 2
road_node_id_from_coordinates() (in mod-

ule samples.utils), 6

S
sample_node() (in module samples.utils), 6
samples.utils (module), 6

11

	Getting started
	Tempus main bindings
	Isochrone plugin
	Utilities

	Indices and tables
	Python Module Index
	Index

