
pysrim Documentation
Release 0.2.1

Chris Ostrouchov

Nov 08, 2018

Contents:

1 Installation 3
1.1 Docker . 3
1.2 Linux and OSX . 3
1.3 Windows . 4

2 Tutorial 5
2.1 Run a SRIM Calculation . 5
2.2 Plotting and Analysis of Results . 6

3 Benchmarks 9
3.1 Docker vs Standard Linux . 9

4 Indices and tables 11

i

ii

pysrim Documentation, Release 0.2.1

pysrim is a python package that aims to wrap and extend SRIM a popular tool for simulating ions traveling through
a material. There are many pain points to SRIM and this package aims to address them. These inclue compatibility
with all OS’s, automation and crash recovery of SRIM calculations, parsing of all output files, and publication quality
plots.

pysrim is heavily tested and documented. See modindex to search through api documentation or using the search
to find a specific function.

Please see installation for getting pysrim intalled on your machine. Next you will want to follow the simple tutorial to
get started. For a much more advanced example please see SiC ion damage production jupyter notebook.

Contents: 1

https://gitlab.com/costrouc/pysrim/blob/master/examples/notebooks/SiC.ipynb

pysrim Documentation, Release 0.2.1

2 Contents:

CHAPTER 1

Installation

Installation of pysrim is easy via pip or conda. If you do not have python installed on your machine and are new to
python I would suggest using anaconda.

Available on PyPi

• pip install pysrim

Available on Conda

• conda install -c costrouc pysrim

Available on Docker recommended no SRIM installation necessary

• docker pull costrouc/pysrim

You do not need to install SRIM if you are just doing analysis. Otherwise for windows this is straightforward and
normal while for Linux and OSX you will need wine additionally installed.

1.1 Docker

There is a docker container with pysrim and SRIM already installed. Some interesting tricks had to be done with
using wine and faking an X11 session. ‘xvfb-run -a ‘ creates a fake X11 session within the docker container therefore
allowing SRIM to run on servers without displays. This is the method that I always use to run SRIM calculations.

Image: costrouc/pysrim

See examples/docker for an example of how to use the docker image.

1.2 Linux and OSX

For linux an OSX you will need to first have wine installed. See this post on installation of wine on OSX. For linux you
will typically be able to install wine via apt get install wine or yum install wine. SRIM is compatible
with wine.

3

https://docs.anaconda.com/anaconda/install/
https://hub.docker.com/r/costrouc/pysrim/tags/
https://gitlab.com/costrouc/pysrim/tree/master/examples/docker
https://www.davidbaumgold.com/tutorials/wine-mac/
https://appdb.winehq.org/objectManager.php?sClass=version&iId=13202

pysrim Documentation, Release 0.2.1

Once you have wine installed run the installer script install.sh.

Click extract and then done. The installed version should be SRIM 2013. To check for this see that an executable
TRIM.exe is in the directory.

1.3 Windows

A collegue of mine has gotten it to work easily on Windows but I myself have no experience. Just download the
executable at srim.org. Next you will extract the SRIM files into a directory on your windows
machine. Note the directory of installation as it will be needed from trim.run(). Make sure that your installed version
is SRIM 2013. To check for this see that an executable TRIM.exe is in the directory.

4 Chapter 1. Installation

https://gitlab.com/costrouc/pysrim/raw/master/install.sh
http://srim.org/

CHAPTER 2

Tutorial

If you have already installed srim then lets get started! If not please make sure to look at installation first.

In this tutorial we will cover all of the basics of pysrim.

• running a TRIM simple calculation

• analyzing TRIM calculation output files

Most emphasis will be put on what is possible for analysis of SRIM calculations. Since all output files will be exposed
as numpy arrays the sky is the limit for plotting.

We will assume python 3 for this notebook and you should be using it too. Python 2.7 is going be depreciated in 2020.

import os

import numpy as np
import matplotlib.pyplot as plt

from srim import TRIM, Ion, Layer, Target
from srim.output import Results

There are not too many important objects to import from srim. The first srim import is for all of the components
needed for automating a SRIM calculation. While the second import is for the output results.

2.1 Run a SRIM Calculation

Running a srim calculation is much like the gui that SRIM provides.

Concepts:

• a list of Layers forms a Target

• a Layer is a dict of elements, with density, and a width

• an Element can be specified by symbol, atomic number, or name, with a custom mass [amu]

5

pysrim Documentation, Release 0.2.1

• an Ion is like an Element except that it also requires an energy in [eV]

Construct a 3MeV Nickel ion
ion = Ion('Ni', energy=3.0e6)

Construct a layer of nick 20um thick with a displacement energy of 30 eV
layer = Layer({

'Ni': {
'stoich': 1.0,
'E_d': 30.0,
'lattice': 0.0,
'surface': 3.0

}}, density=8.9, width=20000.0)

Construct a target of a single layer of Nickel
target = Target([layer])

Initialize a TRIM calculation with given target and ion for 25 ions, quick
→˓calculation
trim = TRIM(target, ion, number_ions=25, calculation=1)

Specify the directory of SRIM.exe
For windows users the path will include C://...
srim_executable_directory = '/tmp/srim'

takes about 10 seconds on my laptop
results = trim.run(srim_executable_directory)
If all went successfull you should have seen a TRIM window popup and run 25 ions!

The following code does a quick SRIM calculation of a 3 MeV Nickel ion in a nickel target. We have set the displace-
ment energy for Nickel at 30 eV with a density of 8.9 [g/cm^3]. Also notice that after running the simulation with
trim.run the results are automatically parsed for us. After the calculation has completed many times we will want
to copy the results to a different directory.

output_directory = '/tmp/srim_outputs'
os.makedirs(output_directory, exist_ok=True)
TRIM.copy_output_files('/tmp/srim', output_directory)

If at a later point you would like to parse the srim calcualtions you can use the srim.output.Results class to
gather all the output.

srim_executable_directory = '/tmp/srim'
results = Results(srim_executable_directory)

2.2 Plotting and Analysis of Results

Now we assume that we have completed several interesting SRIM calculations. For this tutorial we will use results
within the pysrim repository. You will need to download these files. We will analyze results such as damage energy,
ionization, and vacancy production.

def plot_damage_energy(folder, ax):
results = Results(folder)
phon = results.phonons
dx = max(phon.depth) / 100.0 # to units of Angstroms
energy_damage = (phon.ions + phon.recoils) * dx

(continues on next page)

6 Chapter 2. Tutorial

https://gitlab.com/costrouc/pysrim/tree/master/test_files

pysrim Documentation, Release 0.2.1

(continued from previous page)

ax.plot(phon.depth, energy_damage / phon.num_ions, label='{}'.format(folder))
return sum(energy_damage)

def plot_ionization(folder, ax):
results = Results(folder)
ioniz = results.ioniz
dx = max(ioniz.depth) / 100.0 # to units of Angstroms
ax.plot(ioniz.depth, ioniz.ions, label='Ionization from Ions')
ax.plot(ioniz.depth, ioniz.recoils, label='Ionization from Recoils')

def plot_vacancies(folder, ax):
results = Results(folder)
vac = results.vacancy
vacancy_depth = vac.knock_ons + np.sum(vac.vacancies, axis=1)
ax.plot(vac.depth, vacancy_depth, label="Total vacancies at depth")
return sum(vacancy_depth)

folders = ['test_files/2', 'test_files/4']
image_directory = 'examples/images'
os.makedirs(image_directory, exist_ok=True)

Here we initialize three plotting functions.

Damage energy vs depth.

fig, axes = plt.subplots(1, len(folders), sharex=True, sharey=True)

for ax, folder in zip(np.ravel(axes), folders):
energy_damage = plot_damage_energy(folder, ax)
print("Damage energy: {} eV".format(energy_damage))
ax.set_xlabel('Depth [Angstroms]')
ax.set_ylabel('eV')
ax.legend()

fig.suptitle('Damage Energy vs. Depth', fontsize=15)
fig.set_size_inches((20, 6))
fig.savefig(os.path.join(image_directory, 'damagevsdepth.png'), transparent=True)

Ionization energy vs depth

fig, axes = plt.subplots(1, len(folders), sharey=True, sharex=True)

for ax, folder in zip(np.ravel(axes), folders):

(continues on next page)

2.2. Plotting and Analysis of Results 7

pysrim Documentation, Release 0.2.1

(continued from previous page)

plot_damage_energy(folder, ax)
plot_ionization(folder, ax)
ax.legend()
ax.set_ylabel('eV')
ax.set_xlabel('Depth [Angstroms]')

fig.suptitle('Ionization Energy vs Depth', fontsize=15)
fig.set_size_inches((20, 6))
fig.savefig(os.path.join(image_directory, 'ionizationvsdepth.png'), transparent=True)

Total number of vacancies vs depth.

fig, ax = plt.subplots()

for i, folder in enumerate(folders):
total_vacancies = plot_vacancies(folder, ax)
print("Total number of vacancies {}: {}".format(folder, total_vacancies))

ax.set_xlabel('Depth [Angstroms]')
ax.set_ylabel('Number of Vacancies')
ax.set_title('Vacancies vs. Depth')
ax.legend()
fig.set_size_inches((15, 6))
fig.savefig(os.path.join(image_directory, 'vacanciesvsdepth.png'), transparent=True)

For a much more advanced example please see SiC ion damage production jupyter notebook. This tutorial is also
available in notebook form.

8 Chapter 2. Tutorial

https://gitlab.com/costrouc/pysrim/blob/master/examples/notebooks/SiC.ipynb
https://gitlab.com/costrouc/pysrim/blob/master/examples/notebooks/Analysis.ipynb

CHAPTER 3

Benchmarks

3.1 Docker vs Standard Linux

I wanted to benchmark running srim calculations on normal linux vs within a docker container. TRIM on linux showed
more variability between job runs. When I refer to TRIM on linux it is equivalent to wine TRIM.exe.

I used the parallel command to test differing number of cores. Yes this is a simple approach but will be in the right
ballpark and trends are certainly compelling for the docker container. All test we done on my two core Lenovo t440s.

Docker startup cost is 8.5 seconds vs 5.8 seconds for standard linux process. But the docker container is significantly
faster using =xvfb-run= best performance is linux 8.3 ions/second vs docker 13.2 ions/second. These tests indicate
that the docker container may have better performance due to rending in a virtual X frame buffer.

The python simple script to be run is a Nickel in Nickel irradiation.

import os
from srim import Ion, Layer, Target, TRIM

ion = Ion('Ni', energy=3.0e6)
layer = Layer({

'Ni': {
'stoich': 1.0,
'E_d': 30.0,
'lattice': 0.0,
'surface': 3.0

}}, density=8.9, width=20000.0)
target = Target([layer])
trim = TRIM(target, ion, number_ions=100, calculation=1)
srim_executable_directory = '/tmp/srim'
results = trim.run(srim_executable_directory)
os.makedirs('/tmp/output', exist_ok=True)
TRIM.copy_output_files('/tmp/srim', '/tmp/output')

And the benchmarks results.

9

pysrim Documentation, Release 0.2.1

time parallel -j 6 python ni.py -- 1 2

ions cores linux [s] linux [ion/s] linux [ion/s core]
1 1 5.8 0.17241379 0.17241379
100 1 29 3.4482759 3.4482759
200 1 53 3.7735849 3.7735849
200 2 35 5.7142857 2.8571429
400 2 63 6.3492063 3.1746032
300 3 43 6.9767442 2.3255814
600 3 79 7.5949367 2.5316456
400 4 55 7.2727273 1.8181818
800 4 101 7.9207921 1.9801980
1600 4 192 8.3333333 2.0833333
500 5 65 7.6923077 1.5384615
1000 5 121 8.2644628 1.6528926

time parallel -j 6 \
docker run \

-v $PWD/examples/docker/:/opt/pysrim/ \
-v /tmp/output:/tmp/output
-it costrouc/pysrim sh -c "xvfb-run -a python3.6 /opt/pysrim/ni.py" --

→˓1 2

ions cores docker [s] docker [ion/s] docker [ion/s core]
1 1 8.5 0.11764706 0.11764706
100 1 27 3.7037037 3.7037037
200 1 46 4.3478261 4.3478261
200 2 31 6.4516129 3.2258065
400 2 52 7.6923077 3.8461538
300 3 39 7.6923077 2.5641026
600 3 69 8.6956522 2.8985507
400 4 39 10.256410 2.5641026
800 4 67 11.940299 2.9850746
1600 4 121 13.223140 3.3057851
500 5 51 9.8039216 1.9607843
1000 5 69 14.492754 2.8985507

10 Chapter 3. Benchmarks

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

11

	Installation
	Docker
	Linux and OSX
	Windows

	Tutorial
	Run a SRIM Calculation
	Plotting and Analysis of Results

	Benchmarks
	Docker vs Standard Linux

	Indices and tables

