
pySerial-asyncio Documentation
Release 0.6

pySerial-team

Sep 30, 2021

Contents

1 Overview 3
1.1 Serial transports, protocols and streams . 3
1.2 Protocol Example . 3

2 pySerial-asyncio API 5

3 Appendix 7
3.1 License . 7

4 Indices and tables 9

Python Module Index 11

Index 13

i

ii

pySerial-asyncio Documentation, Release 0.6

Async I/O extension for the Python Serial Port package for OSX, Linux, BSD

It depends on pySerial and is compatible with Python 3.5 and later.

Other pages (online)

• project page on GitHub

• Download Page with releases

• This page, when viewed online is at https://pyserial-asyncio.readthedocs.io/en/latest/ or http://pythonhosted.org/
pyserial-asyncio/ .

Contents:

Contents 1

https://docs.python.org/3/library/asyncio.html
https://pypi.python.org/pypi/pyserial
https://github.com/pyserial/pyserial-asyncio/
http://pypi.python.org/pypi/pyserial-asyncio
https://pyserial-asyncio.readthedocs.io/en/latest/
http://pythonhosted.org/pyserial-asyncio/
http://pythonhosted.org/pyserial-asyncio/

pySerial-asyncio Documentation, Release 0.6

2 Contents

CHAPTER 1

Overview

1.1 Serial transports, protocols and streams

This module layers asyncio support onto pySerial. It provides support for working with serial ports through asyncio
Transports, Protocols, and Streams.

Transports are a low-level abstraction, provided by this package in the form of an asyncio.Transport imple-
mentation called SerialTransport, which manages the asynchronous transmission of data through an underlying
pySerial Serial instance. Transports are concerned with how bytes are transmitted through the serial port.

Protocols are a callback-based abstraction which determine which bytes are transmitted through an underly-
ing transport. You can implement a subclass of asyncio.Protocol which reads from, and/or writes to, a
SerialTransport. When a serial connection is established your protocol will be handed a transport, to which
your protocol implementation can write data as necessary. Incoming data and other serial connection lifecycle events
cause callbacks on your protocol to be invoked, so it can take action as necessary.

Usually, you will not create a SerialTransport directly. Rather, you will define a Protocol class and pass
that protocol to a function such as create_serial_connection() which will instantiate your Protocol and
connect it to a SerialTransport.

Streams are a coroutine-based alternative to callback-based protocols. This package provides a function
open_serial_connection() which returns asyncio.StreamReader and asyncio.StreamWriter
objects for interacting with underlying protocol and transport objects, which this library will create for you.

1.2 Protocol Example

This example defines a very simple Protocol which sends a greeting message through the serial port and displays to
the console any data received through the serial port, until a newline byte is received.

A call is made to create_serial_connection(), to which the protocol class (not an instance) is passed,
together with arguments destined for the Serial constructor. This call returns a coroutine object. When passed to
run_until_complete() the coroutine is scheduled to run as an asyncio.Task by the asyncio library, and the
result of the coroutine, which is a tuple containing the transport and protocol instances, return to the caller.

3

https://docs.python.org/3/library/asyncio.html
http://pyserial.readthedocs.io/
https://docs.python.org/3/library/asyncio-protocol.html#transports
https://docs.python.org/3/library/asyncio-protocol.html#protocols
https://docs.python.org/3/library/asyncio-stream.html
https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Transport
https://pyserial.readthedocs.io/en/latest/pyserial_api.html#serial.Serial
https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://pyserial.readthedocs.io/en/latest/pyserial_api.html#serial.Serial
https://docs.python.org/3/library/asyncio-task.html#asyncio.Task

pySerial-asyncio Documentation, Release 0.6

While the event loop is running (run_forever()), or until the protocol closes the transport itself, the protocol will
process data received through the serial port asynchronously:

import asyncio
import serial_asyncio

class OutputProtocol(asyncio.Protocol):
def connection_made(self, transport):

self.transport = transport
print('port opened', transport)
transport.serial.rts = False # You can manipulate Serial object via transport
transport.write(b'Hello, World!\n') # Write serial data via transport

def data_received(self, data):
print('data received', repr(data))
if b'\n' in data:

self.transport.close()

def connection_lost(self, exc):
print('port closed')
self.transport.loop.stop()

def pause_writing(self):
print('pause writing')
print(self.transport.get_write_buffer_size())

def resume_writing(self):
print(self.transport.get_write_buffer_size())
print('resume writing')

loop = asyncio.get_event_loop()
coro = serial_asyncio.create_serial_connection(loop, OutputProtocol, '/dev/ttyUSB0',
→˓baudrate=115200)
transport, protocol = loop.run_until_complete(coro)
loop.run_forever()
loop.close()

4 Chapter 1. Overview

CHAPTER 2

pySerial-asyncio API

The following high-level functions are provided for initiating a serial connection:

5

pySerial-asyncio Documentation, Release 0.6

6 Chapter 2. pySerial-asyncio API

CHAPTER 3

Appendix

3.1 License

Copyright (c) 2015-2021 pySerial-team (see CREDITS.rst) All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

7

pySerial-asyncio Documentation, Release 0.6

8 Chapter 3. Appendix

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

9

pySerial-asyncio Documentation, Release 0.6

10 Chapter 4. Indices and tables

Python Module Index

s
serial_asyncio, 5

11

pySerial-asyncio Documentation, Release 0.6

12 Python Module Index

Index

S
serial_asyncio (module), 5

13

	Overview
	Serial transports, protocols and streams
	Protocol Example

	pySerial-asyncio API
	Appendix
	License

	Indices and tables
	Python Module Index
	Index

