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PySEF provides an implementation of the Similarity Embedding Framework (SEF) on top of the PyTorch library.
PySEF is an easy to use Python library that exposes a scikit-learn-like interface, allows for easily implementing novel
dimensionality reduction techniques and can efficiently handle large-scale dataset using the GPU.
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CHAPTER 1

What is the Similarity Embedding Framework?

The vast majority of Dimensionality Reduction techniques rely on second-order statistics to define their optimization
objective. Even though this provides adequate results in most cases, it comes with several shortcomings. The methods
require carefully designed regularizers and they are usually prone to outliers. The Similarity Embedding Framework
can overcome the aforementioned limitations and provides a conceptually simpler way to express optimization targets
similar to existing DR techniques. Deriving a new DR technique using the Similarity Embedding Framework becomes
simply a matter of choosing an appropriate target similarity matrix. A variety of classical tasks, such as performing
supervised dimensionality reduction and providing out-of-of-sample extensions, as well as, new novel techniques,
such as providing fast linear embeddings for complex techniques, are demonstrated.

1.1 Installation

1.1.1 Recommended (pip-based) installation

A working installation of PyTorch is required before installing PySEF. To install PyTorch, please follow the instruc-
tions given in the PyTorch site.

The recommended way to install PySEF is simply to use the pip package manager:

pip install pysef

All the other required dependecies will be automatically downloaded and installed.

PySEF is developed and tested on Linux (both Python 2.7 and Python 3.5 are supported). However, it is expected to
run on Windows/Mac OSX as well, since all of its components are cross-platform.

1.1.2 Bleeding-edge installation

To install the latest version availabe at github, clone our repository and manually install the package:

3
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git clone https://github.com/passalis/sef
cd sef
python setup.py install --user

1.2 Using PySEF

1.2.1 How to get started?

After installing PySEF (see Installation), simply import sef_dr, create a SEF object, fit it and transform your data:

import sef_dr
proj = sef_dr.LinearSEF(input_dimensionality=784, output_dimensionality=9)
proj.fit(data=data, target_labels=data, target='supervised', iters=10)
transformed_data = proj.transform(data)

The input_dimensionality parameter defines the dimensionality of the input data, while the output_dimensionality
refers to the desired dimensionality of the data. Then, we can learn the projection using the .fit() function. The method
that will be used for reducing the dimensionality of the data is specified in the target parameter of the .fit() method
(PySEF provides many predefined targets/methods for dimensionality reduction, even though new methods can be also
easily implemented as shown in Extending PySEF). Several different dimensionality reduction scenarios are discussed
in the following sections (for all the conducted experiments the well-known MNIST dataset is used).

1.2.2 Using GPU acceleration

Following the PyTorch calling conventions, to use the GPU for the optimization/projection the .cuda() method can be
used:

proj.cuda()

To move the model back to cpu, the .cpu() method should be called:

proj.cpu()

1.2.3 Data loading

To allow for easily evaluating and comparing different dimensionality reduction techniques we have included data
loading capabilities in PySEF. Before running any of the following examples, please download the pre-extracted
feature vectors from the following drobpox folder. After downloading them into a folder, e.g., let’s say that we
download them into the /home/nick/my_data folder, you can easily load any of the six supported datasets as follows:

from sef_dr.datasets import dataset_loader
train_data, train_labels, test_data, test_labels = dataset_loader(dataset='mnist',
→˓dataset_path='/home/nick/my_data')
train_data, train_labels, test_data, test_labels = dataset_loader(dataset='20ng',
→˓dataset_path='/home/nick/my_data')
train_data, train_labels, test_data, test_labels = dataset_loader(dataset='15scene',
→˓dataset_path='/home/nick/my_data')
train_data, train_labels, test_data, test_labels = dataset_loader(dataset='corel',
→˓dataset_path='/home/nick/my_data')

4 Chapter 1. What is the Similarity Embedding Framework?
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train_data, train_labels, test_data, test_labels = dataset_loader(dataset='yale',
→˓dataset_path='da/home/nick/my_datata')
train_data, train_labels, test_data, test_labels = dataset_loader(dataset='kth',
→˓dataset_path='da/home/nick/my_datata')

The MNIST dataset and the 20NG dataset will be automatically downloaded into the specified folder the first time that
the dataset_loader() function will be called. Please refer to this paper for a detailed description of the evaluation setup
and feature extraction process.

1.2.4 Recreating the geometry of a high dimensional space into a space with less
dimensions

In unsupervised_approximation.py we demonstrate how to recreate the 50-d PCA using just 10 dimensions:

# Learn a high dimensional projection
proj_to_copy = PCA(n_components=50)
proj_to_copy.fit(train_data[:n_train_samples, :])
target_data = np.float32(proj_to_copy.transform(train_data[:n_train_samples, :]))

# Approximate it using the SEF and 10 dimensions
proj = LinearSEF(train_data.shape[1], output_dimensionality=10)
proj.cuda()
loss = proj.fit(data=train_data[:n_train_samples, :], target_data=target_data, target=
→˓'copy', epochs=50, batch_size=128, verbose=True, learning_rate=0.001, regularizer_
→˓weight=0.001)

# Evaluate the method
acc = evaluate_svm(proj.transform(train_data[:n_train_samples, :]), train_labels[:n_
→˓train_samples], proj.transform(test_data), test_labels)

The experimental results demonstrate the ability of the proposed method to efficiently recreate the geometry of a high
dimensional space into a space with less dimensions:

Method Accuracy
PCA 10-d 82.88%
Linear SEF mimics PCA-20d 84.87%

1.2.5 Re-deriving similarity-based versions of well-known techniques

In supervised_reduction.py we demonstrate how to rederive similarity-based versions of well-known techniques. More
specifically, a similarity-based LDA-like technique is derived:

proj = LinearSEF(train_data.shape[1], output_dimensionality=(n_classes - 1))
proj.cuda()
loss = proj.fit(data=train_data[:n_train, :], target_labels=train_labels[:n_train],
→˓epochs=50, target='supervised', batch_size=128, regularizer_weight=0.001,
→˓verbose=True)

The SEF-based method leads to superior results:

1.2. Using PySEF 5
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https://github.com/passalis/sef/blob/master/examples/unsupervised_approximation.py
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Method Dimensionality Accuracy
LDA 9d 85.66%
Linear SEF 9d 88.89%
Linear SEF 18d 89.48%

1.2.6 Providing out-of-sample extensions

In linear_outofsample.py and kernel_outofsample.py we use the SEF to provide (linear and kernel) out-of-sample
extensions for the ISOMAP technique. Note that the SEF, unlike the regression-based method, is not limited by the
number of dimensions of the original technique:

isomap = Isomap(n_components=10, n_neighbors=20)
train_data_isomap = np.float32(isomap.fit_transform(train_data[:n_train_samples, :]))
proj = LinearSEF(train_data.shape[1], output_dimensionality=10)
proj.cuda()
loss = proj.fit(data=train_data[:n_train_samples, :], target_data=train_data_isomap,
→˓target='copy', epochs=50, batch_size=128, verbose=True, learning_rate=0.001,
→˓regularizer_weight=0.001)

The results are shown in the following tables:

Method Dimensionality Accuracy
Linear Regression 10d 85.25%
Linear SEF 10d 85.76%
Linear SEF 20d 89.48%

Method Dimensionality Accuracy
Kernel Regression 10d 89.48%
Kernel SEF 10d 88.60%
Kernel SEF 20d 90.88%

1.2.7 Performing SVM-based analysis

Finally, in svm_approximation.py an SVM-based analysis technique that mimics the similarity induced by the hyper-
planes of the 1-vs-1 SVMs is used to perform DR. This method allows for using a light-weight classifier, such as the
NCC, to perform fast classification:

# Learn an SVM
scaler = MinMaxScaler()
train_data = scaler.fit_transform(train_data)
test_data = scaler.transform(test_data)

parameters = {'kernel': ['linear'], 'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000]}
model = grid_search.GridSearchCV(svm.SVC(max_iter=10000, decision_function_shape='ovo
→˓'), parameters, n_jobs=-1, cv=3)
model.fit(train_data[:n_train], train_labels[:n_train])

# Learn a similarity embedding
params = {'model': model, 'n_labels': np.unique(train_labels).shape[0], 'scaler':
→˓scaler}
proj = LinearSEF(train_data.shape[1], output_dimensionality=dims)
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https://github.com/passalis/sef/blob/master/examples/linear_outofsample.py
https://github.com/passalis/sef/blob/master/examples/kernel_outofsample.py
https://github.com/passalis/sef/blob/master/examples/svm_approximation.py
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proj.cuda()
loss = proj.fit(data=train_data[:n_train, :], target_data=train_data[:n_train, :],
→˓target_labels=train_labels[:n_train], target='svm', target_params=params, epochs=50,
→˓ learning_rate=0.001, batch_size=128, verbose=True, regularizer_weight=0.001)

This code repeatedly calls the SVM to calculate the similarity matrix for the samples in each batch. If the whole
similarity matrix can fit into the memory, we can speed up this process by using a precomputed similarity matrix as
follows:

from sef_dr.targets import generate_svm_similarity_matrix, sim_target_svm_precomputed

# Precompute the similarity matrix
Gt = generate_svm_similarity_matrix(train_data, train_labels, len(np.unique(train_
→˓labels)), model, scaler)
params = {'Gt': Gt}

proj = LinearSEF(train_data.shape[1], output_dimensionality=dims)
proj.cuda()
loss = proj.fit(data=train_data, target_data=train_data, target_labels=train_labels,
→˓target=sim_target_svm_precomputed, target_params=params, epochs=50, learning_rate=0.
→˓001, batch_size=128, verbose=True, regularizer_weight=0.001)

The results are shown in the following table:

Method Dimensionality Accuracy
NCC - Original 784d 80.84%
NCC - Linear SEF 10d 86.50%
NCC - Linear SEF 20d 86.67%

1.3 Examples and Tutorials

We provide examples using six different datasets (15-Scene, Corel, MNIST, Yale, KTH, and 20NG) to reproduce the
results obtained in the original research paper. Note that slight differences from the original paper are due to some
changes (batch-based optimization, faster estimation of the scaling factor, port to PyTorch). For all the reported results
a Linear SVM is trained, unless otherwise stated.

1.3.1 Prerequisites

To run the examples you have to install PySEF (please also refer to Installation):

pip install pysef

Before running any of the following examples, please download the pre-extracted feature vectors from the following
drobpox folder into a folder named data and execute the script from the same root folder (or simply update the data
path in the code). Refer to Data loading for more details.

Please also install matplotlib, which is also needed for some of the following examples/tutorials:

pip install matplotlib

1.3. Examples and Tutorials 7
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1.3.2 Linear approximation of a high-dimensional technique

In unsupervised_approximation_multiple.py we demonstrate how to recreate the 50-d PCA using just 10 dimensions.
The proposed method (abbreviated as S-PCA) is compared to the 10-d PCA method. To run the example, simply
download the aforementioned file and execute it:

python unsupervised_approximation_multiple.py

The following results should be obtained:

Dataset PCA S-PCA
15-scene 61.94% 67.20%
Corel 36.18% 38.55%
MNIST 82.88% 84.71%
Yale 56.69% 65.16%
KTH 76.82% 86.56%
20NG 39.73% 45.79%

1.3.3 Supervised dimensionality reduction

In supervised_reduction_multiple.py we demonstrate how to perform supervised dimensionality reduction using the
SEF. Two different setups are used: a) S-LDA-1, where the same dimensionality as the LDA method is used, and b)
S-LDA-2, where the number of dimensions is doubled. To run the example, simply download the aforementioned file
and execute it:

python supervised_reduction_multiple.py

The following results should be obtained:

Dataset LDA S-LDA-1 S-LDA-2
15-scene 66.76% 75.58% 76.98%
Corel 37.28% 42.58% 42.33%
MNIST 85.66% 89.03% 89.27%
Yale 93.95% 92.50% 92.74%
KTH 90.38% 90.73% 91.66%
20NG 63.57% 70.35% 70.25%

1.3.4 Providing out-of-sample-extensions

In linear_outofsample_mutiple.py we demonstrate how to provide out-of-sample extensions for the ISOMAP tech-
nique. Two different setups are used: a) cS-ISOMAP-1, where the dimensionality of the projection is set to 10, and b)
cS-ISOMAP-2, where the dimensionality of the projection is set to 20. The proposed method is compared to perform-
ing linear regression (LR). To run the example, simply download the aforementioned file and execute it:

python linear_outofsample_mutiple.py

The following results should be obtained:

8 Chapter 1. What is the Similarity Embedding Framework?
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Dataset LR cS-ISOMAP-1 cS-ISOMAP-2
15-scene 58.29% 67.26% 69.04%
Corel 34.93% 38.70% 40.45%
MNIST 85.11% 85.93% 93.37%
Yale 35.97% 62.09% 82.58%
KTH 67.20% 86.56% 89.80%
20NG 33.14% 41.52% 47.97%

Kernel extensions can be also used (kernel_outofsample_mutiple.py). The following results should be obtained:

Dataset KR cKS-ISOMAP-1 cKS-ISOMAP-2
15-scene 60.10% 63.89% 68.14%
Corel 36.22% 37.85% 42.27%
MNIST 89.48% 88.30% 91.35%
Yale 46.94% 29.84% 62.25%
KTH 72.31% 78.22% 83.31%
20NG 44.50% 41.57% 48.81%

1.3.5 SVM-based analysis

PySEF can be used to mimic the similarity induced by the hyperplanes of the 1-vs-1 SVMs and perform DR
(svm_approximation_multiple.py). The proposed technique is combined with a lightweight Nearest Centroid Clas-
sifier. Two different setups are used: a) S-SVM-A-1, where the dimensionality of the projection is set to the number of
classes, and b) S-SVM-A-1, where the dimensionality of the projection is set to twice the number of classes. To run the
example, simply download the aforementioned file and execute it:

python svm_approximation_multiple.py

The following results should be obtained:

Dataset Original S-SVM-A-1 S-SVM-A-1
15-scene 59.67% 74.47% 74.10%
Corel 37.40% 42.15% 41.77%
MNIST 80.84% 86.71% 86.80%
Yale 13.95% 84.44% 88.63%
KTH 79.72% 92.24% 94.09%
20NG 60.79% 65.37% 65.78%

1.3.6 PySEF tutorials

To run the tutorials you have to install the Jupyter Notebook (also refer to Installing Jupyter):

pip install jupyter

Then, download the notebook tutorial you are interested in. Currently two tutorial are available: a) Supervised dimen-
sionality reduction, and b) Defining new dimensionality reduction methods. Then, navigate to the folder that contains
the notebook and start the Jupyter Notebook:

jupyter notebook

1.3. Examples and Tutorials 9

https://github.com/passalis/sef/blob/master/examples/kernel_outofsample_mutiple.py
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https://github.com/passalis/sef/blob/master/tutorials/Supervised%20DR.ipynb
https://github.com/passalis/sef/blob/master/tutorials/Defining%20new%20methods.ipynb
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Finally, navigate to the default URL of Jupyter web app (http://localhost:8888) and select the notebook. Please make
sure that you appropriately update the folder that contains the MNIST dataset when running the tutorials (refer to Data
loading for more details, or just create an empty folder named data in the same root folder as the notebook and the
dataset will be automatically downloaded).

1.4 Extending PySEF

1.4.1 Deriving new DR methods

The SEF allows for easily deriving novel DR techniques by simply defining the target similarity matrix. For the current
implementation this can be done by defining a function that adheres to the following signature:

def custom_similarity_function(target_data, target_labels, sigma, idx, target_params):
Gt = np.zeros((len(idx), len(idx)))
Gt_mask = np.zeros((len(idx), len(idx)))
# Calculate the similarity target here
return np.float32(Gt), np.float32(Gt_mask)

The target_data, target_labels, sigma, and target_params are passed to the .fit() function. During the training this
function is called with a different set of indices idx and it is expected to return the target similarity matrix for the data
that correspond to the indices defined by idx.

For example, let’s define a function that sets a target similarity of 0.8 for the samples that belong to the same class,
and 0.1 for the samples that belong to different classes:

def sim_target_supervised(target_data, target_labels, sigma, idx, target_params):

cur_labels = target_labels[idx]
N = cur_labels.shape[0]

N_labels = len(np.unique(cur_labels))

Gt, mask = np.zeros((N, N)), np.zeros((N, N))

for i in range(N):
for j in range(N):

if cur_labels[i] == cur_labels[j]:
Gt[i, j] = 0.8
mask[i, j] = 1

else:
Gt[i, j] = 0.1
mask[i, j] = 0.8 / (N_labels - 1)

return np.float32(Gt), np.float32(mask)

Note that we also appropriately set the weighting mask to account for the imbalance between the intra-class and
inter-class samples. It is important to remember to work only with the current batch (using the idx) and not use the
whole training set (that is always passed to target_data/target_labels). You can find more target function examples in
sef_dr/targets.py.

The target that we just defined tries to place the samples of the same class close together (but not to collapse them into
the same point), as well as to repel samples of different classes (but still maintain as small similarity between them).
Of course this problem is ill-posed in the 2-D space (when more than 3 points per class are used), but let’s see what
happens!

Let’s overfit the projection:

10 Chapter 1. What is the Similarity Embedding Framework?
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proj = KernelSEF(train_data, train_data.shape[0], 2, sigma=1, learning_rate=0.0001,
→˓regularizer_weight=0)
proj.fit(train_data, target_labels=train_labels, target=sim_target_supervised,
→˓iters=500, verbose=True)
train_data = proj.transform(train_data)

and visualize the results:

Close enough! The samples of the same class have been arranged in circles, while the circles of different classes are
almost equidistant to each other!

1.4. Extending PySEF 11
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