
PySci Documentation
Release 0.1

Eric Pierce

Mar 22, 2017

Contents

1 Contents 3
1.1 Usage . 3
1.2 Future Plans . 5
1.3 API . 6

2 Indices and tables 7

i

ii

PySci Documentation, Release 0.1

This module attempts to provide a more Pythonic interface to the QsciScintilla editor widget. Although QsciScintilla
is a rich and full-featured editor widget that works nicely with PyQt4, its API is very C-like, and feels too low-level in
the context of a Python application. PySci was developed to bring a more idiomatic Python approach to QsciScintilla.

Until PySci is officially released, you can install it from GitHub like so:

$ git clone git://github.com/wapcaplet/pysci.git
$ cd pysci
$ pip install .

PySci uses the MIT License.

Contents 1

http://www.riverbankcomputing.co.uk/static/Docs/QScintilla2/classQsciScintilla.html
http://www.opensource.org/licenses/mit-license.php

PySci Documentation, Release 0.1

2 Contents

CHAPTER 1

Contents

Usage

Here’s a very simple PyQt4 application using the PySci editor widget:

from PyQt4 import QtGui
from pysci import PySci

if __name__ == '__main__':
app = QtGui.QApplication([])
editor = PySci()
editor.show()
app.exec_()

The PySci widget is a subclass of QsciScintilla, so you can use it in all the same ways you would normally use that
widget. For some of the additional features it provides, read on.

Configuration

QsciScintilla makes heavy use of enumerated types with individual getters and setters for configuration settings.
PySci borrows a more Pythonic approach from Tkinter, with the following features:

• Arbitrary configuration settings are accepted by the widget constructor

• Multiple settings can be configured with a single method call

• Plain strings can be used instead of enumerated types

For example, with QSciScintilla alone you might need six lines of code to create an editor widget and configure it the
way you want:

editor = QsciScintilla()
editor.setWhitespaceVisibility(QsciScintilla.WsInvisible)
editor.setBraceMatching(QsciScintilla.SloppyBraceMatch)
editor.setWrapMode(QsciScintilla.WrapWord)

3

http://www.riverbankcomputing.co.uk/static/Docs/QScintilla2/classQsciScintilla.html
http://www.pythonware.com/library/tkinter/introduction/widget-configuration.htm

PySci Documentation, Release 0.1

editor.setTabIndents(True)
editor.setTabWidth(4)

With PySci, this can be condensed into a single constructor call:

editor = PySci(
whitespaceVisibility = 'WsInvisible',
braceMatching = 'SloppyBraceMatch',
wrapMode = 'WrapWord',
tabIndents = True,
tabWidth = 4)

Additional configuration changes can be made via the configure method:

editor.configure(
indentationGuides = True,
eolVisibility = True,
edgeColumn = 72)

You can also get or set individual configurations by passing their name as a string to the get_config or
set_config methods:

eol_mode = editor.get_config('eolMode')
editor.set_config('eolMode', 'EolMac')

This can be useful if you have setting names in variables.

Settings Widget

Considering the enormous number of methods in QsciScintilla for dealing with configuration settings, it’s a little sur-
prising that a dedicated configuration widget is not provided. If you’ve worked with QsciScintilla with any seriousness,
you’ve probably built an ad-hoc configuration widget yourself (and so has everyone else). That’s a shameful duplica-
tion of programming effort. PySci provides a ready-made one called PySciSettings to save you the trouble.

Here’s an example of what it looks like:

4 Chapter 1. Contents

PySci Documentation, Release 0.1

To use it, connect an event handler to a button or menu entry, then instantiate PySciSettings, passing it your
PySci editor instance:

from pysci import PySciSettings
settings = PySciSettings(editor)

All changes to configuration settings in this widget take effect in realtime in the associated PySci widget.

Future Plans

As of this writing, PySci is a fairly minimal wrapper around the existing QsciScintilla widget. It provides a few
convenience features, but nothing earth-shattering. Here are some features that may appear in the future:

• Support for choosing syntax highlighting for any of the language lexers that QsciScintilla supports

• Direct attribute-based wrappers around the getter/setter methods

• Loading and saving of files, with auto-detection of syntax highlighting based on filename extension

• Loading and saving of PySci configuration preferences

• Built-in docstrings for the standard QsciScintilla methods

Missing methods

QsciScintilla provides several “setter” methods with no “getter” counterpart. For example, many of the methods for
specifying colors:

• setMarginsBackgroundColor

1.2. Future Plans 5

PySci Documentation, Release 0.1

• setMarginsForegroundColor

• setCaretLineBackgroundColor

• etc.

Once a color is set, there’s no way to retrieve it later. In other words, these are write-only attributes.

Another feature that is lacking from QsciScintilla is the ability to easily retrieve geometry information. For instance,
what if you need to know the Y-coordinate in screen pixels of a given line in your editor widget? Or a bounding
rectangle around the text in a given line? Many of the other PyQt4 widgets provide such methods, but QsciScintilla
doesn’t. PySci aims to remedy this, making the widget fit more closely with its Qt counterparts.

API

This is the PySci API documentation, autogenerated from the source code.

editor

enums

settings

util

6 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

7

	Contents
	Usage
	Future Plans
	API

	Indices and tables

