

    
      
          
            
  



pySCENIC

[image: buildstatus] [https://travis-ci.org/aertslab/pySCENIC] [image: pypipackage] [https://pypi.org/project/pyscenic/] [image: docstatus] [http://pyscenic.readthedocs.io/en/latest/?badge=latest]

pySCENIC is a lightning-fast python implementation of the SCENIC [http://scenic.aertslab.org] pipeline (Single-Cell rEgulatory Network Inference and
Clustering) which enables biologists to infer transcription factors, gene regulatory networks and cell types from
single-cell RNA-seq data.

The pioneering work was done in R and results were published in Nature Methods 1.
A new and comprehensive description of this Python implementation of the SCENIC pipeline is available in Nature Protocols 4.

pySCENIC can be run on a single desktop machine but easily scales to multi-core clusters to analyze thousands of cells
in no time. The latter is achieved via the dask [https://dask.pydata.org/en/latest/] framework for distributed computing 2.

Full documentation for pySCENIC is available on Read the Docs [https://pyscenic.readthedocs.io/en/latest/]



pySCENIC is part of the SCENIC Suite of tools!
See the main SCENIC website [https://scenic.aertslab.org/] for additional information and a full list of tools available.




News and releases


0.12.1 | 2022-11-21


	Add support for running arboreto_with_multiprocessing.py with spawn instead of fork as multiprocessing method.Pool


	Use ravel instead of flatten to avoid unnecessary memory copy in aucell


	Update Docker image file and add separated Docker file for pySCENIC with scanpy.






0.12.0 | 2022-08-16


	Only databases in Feather v2 format are supported now (ctxcore [https://github.com/aertslab/ctxcore] >= 0.2),
which allow uses recent versions of pyarrow (>=8.0.0) instead of very old ones (<0.17).
Databases in the new format can be downloaded from https://resources.aertslab.org/cistarget/databases/
and end with *.genes_vs_motifs.rankings.feather or *.genes_vs_tracks.rankings.feather.


	Support clustered motif databases.


	Use custom multiprocessing instead of dask, by default.


	Docker image uses python 3.10 and contains only needed pySCENIC dependencies for CLI usage.


	Remove unneeded scripts and notebooks for unused/deprecated database formats.






0.11.2 | 2021-05-07


	Split some core cisTarget functions out into a separate repository, ctxcore [https://github.com/aertslab/ctxcore]. This is now a required package for pySCENIC.






0.11.1 | 2021-02-11


	Fix bug in motif url construction (#275)


	Fix for export2loom with sparse dataframe (#278)


	Fix sklearn t-SNE import (#285)


	Updates to Docker image (expose port 8787 for Dask dashboard)






0.11.0 | 2021-02-10

Major features:


	Updated arboreto [https://arboreto.readthedocs.io] release (GRN inference step) includes:


	Support for sparse matrices (using the --sparse flag in pyscenic grn, or passing a sparse matrix to grnboost2/genie3).


	Fixes to avoid dask metadata mismatch error






	Updated cisTarget:


	Fix for metadata mismatch in ctx prune2df step


	Support for databases Apache Parquet format


	Faster loading from feather databases


	Bugfix: loading genes from a database (previously missing the last gene name in the database)






	Support for Anndata input and output


	Package updates:


	Upgrade to newer pandas version


	Upgrade to newer numba version


	Upgrade to newer versions of dask, distributed






	Input checks and more descriptive error messages.


	Check that regulons loaded are not empty.






	Bugfixes:


	In the regulons output from the cisTarget step, the gene weights were incorrectly assigned to their respective target genes (PR #254).


	Motif url construction fixed when running ctx without pruning


	Compression of intermediate files in the CLI steps


	Handle loom files with non-standard gene/cell attribute names


	Reformat the genesig gmt input/output


	Fix AUCell output to loom with non-standard loom attributes










0.10.4 | 2020-11-24


	Included new CLI option to add correlation information to the GRN adjacencies file. This can be called with pyscenic add_cor.




See also the extended Release Notes [https://pyscenic.readthedocs.io/en/latest/releasenotes.html].




Overview

The pipeline has three steps:


	First transcription factors (TFs) and their target genes, together defining a regulon, are derived using gene inference methods which solely rely on correlations between expression of genes across cells. The arboreto [https://arboreto.readthedocs.io] package is used for this step.


	These regulons are refined by pruning targets that do not have an enrichment for a corresponding motif of the TF effectively separating direct from indirect targets based on the presence of cis-regulatory footprints.


	Finally, the original cells are differentiated and clustered on the activity of these discovered regulons.




The most impactful speed improvement is introduced by the arboreto [https://arboreto.readthedocs.io] package in step 1. This package provides an alternative to GENIE3 3 called GRNBoost2. This package can be controlled from within pySCENIC.

All the functionality of the original R implementation is available and in addition:


	You can leverage multi-core and multi-node clusters using dask [https://dask.pydata.org/en/latest/] and its distributed [https://distributed.readthedocs.io/en/latest/] scheduler.


	We implemented a version of the recovery of input genes that takes into account weights associated with these genes.


	Regulons, i.e. the regulatory network that connects a TF with its target genes, with targets that are repressed are now also derived and used for cell enrichment analysis.






Additional resources

For more information, please visit LCB [https://aertslab.org],
the main SCENIC website [https://scenic.aertslab.org/],
or SCENIC (R version) [https://github.com/aertslab/SCENIC].
There is a tutorial to create new cisTarget databases [https://github.com/aertslab/create_cisTarget_databases].
The CLI to pySCENIC has also been streamlined into a pipeline that can be run with a single command, using the Nextflow workflow manager.
There are two Nextflow implementations available:


	SCENICprotocol [https://github.com/aertslab/SCENICprotocol]: A Nextflow DSL1 implementation of pySCENIC alongside a basic “best practices” expression analysis. Includes details on pySCENIC installation, usage, and downstream analysis, along with detailed tutorials.


	VSNPipelines [https://github.com/vib-singlecell-nf/vsn-pipelines]: A Nextflow DSL2 implementation of pySCENIC with a comprehensive and customizable pipeline for expression analysis. Includes additional pySCENIC features (multi-runs, integrated motif- and track-based regulon pruning, loom file generation).
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Installation and Usage


Installation


Stable

The latest stable release of the package itself can be installed via

pip install pyscenic





Note that pySCENIC needs some prerequisites installed before running pip install in a new conda environment.
For example:

conda create -y -n pyscenic python=3.10
conda activate pyscenic

pip install pyscenic






Caution

pySCENIC needs a python 3.7 or greater interpreter.





Development

You can also install the bleeding edge (i.e. less stable) version of the package directly from the source:

git clone https://github.com/aertslab/pySCENIC.git
cd pySCENIC/
pip install .







Containers

pySCENIC containers are also available for download and immediate use.
In this case, no compiling or installation is required, provided either Docker/Podman or Singularity/Apptainer software is installed on the user’s system.
See (Docker/Podman and Singularity/Apptainer Images).




Auxiliary datasets

To successfully use this pipeline you also need auxilliary datasets available at cistargetDBs website [https://resources.aertslab.org/cistarget/]:


	Databases ranking the whole genome [https://resources.aertslab.org/cistarget/databases/] of your species of interest based on regulatory features (i.e. transcription factors) in feather [https://arrow.apache.org/docs/python/feather.html] format.


	Motif to TF annotations [https://resources.aertslab.org/cistarget/motif2tf/] database providing the missing link between an enriched motif and the transcription factor that binds this motif. This pipeline needs a TSV text file where every line represents a particular annotation.





Caution

These ranking databases are 1.1 Gb each so downloading them might take a while. An annotations file is typically 100Mb in size.




	A list of transcription factors [https://resources.aertslab.org/cistarget/tf_lists/] is required for the network inference step (GENIE3/GRNBoost2).






Command Line Interface

A command line version of the tool is included. This tool is available after proper installation of the package via pip.

$ pyscenic -h
usage: pyscenic [-h] {grn,add_cor,ctx,aucell} ...

Single-Cell rEgulatory Network Inference and Clustering (0.12.1)

positional arguments:
  {grn,add_cor,ctx,aucell}
                        sub-command help
    grn                 Derive co-expression modules from expression matrix.
    add_cor             [Optional] Add Pearson correlations based on TF-gene
                        expression to the network adjacencies output from the
                        GRN step, and output these to a new adjacencies file.
                        This will normally be done during the "ctx" step.
    ctx                 Find enriched motifs for a gene signature and
                        optionally prune targets from this signature based on
                        cis-regulatory cues.
    aucell              Quantify activity of gene signatures across single
                        cells.

optional arguments:
  -h, --help            show this help message and exit

Arguments can be read from file using a @args.txt construct. For more
information on loom file format see http://loompy.org . For more information
on gmt file format see https://software.broadinstitute.org/cancer/software/gse
a/wiki/index.php/Data_formats .







Docker/Podman and Singularity/Apptainer Images

pySCENIC is available to use with both Docker/Podman and Singularity/Apptainer, and tool usage from a container is similar to that of the command line interface.
Note that the feather [https://arrow.apache.org/docs/python/feather.html] databases, transcription factors, and motif annotation databases need to be accessible to the container via a mounted volume.
In the below examples, a single volume mount is used for simplicity, which will contains the input, output, and databases files.

For additional usage examples, see the documentation associated with the SCENIC protocol [https://github.com/aertslab/SCENICprotocol/blob/master/docs/installation.md] Nextflow implementation.


Docker/Podman

Docker/Podman images are available at Docker Hub pySCENIC [https://hub.docker.com/r/aertslab/pyscenic] and Docker Hub pySCENIC with scanpy [https://hub.docker.com/r/aertslab/pyscenic_scanpy] , and can be obtained by running:

# pySCENIC CLI version (recommended).
docker pull aertslab/pyscenic:0.12.1
podman pull docker://aertslab/pyscenic:0.12.1

# pySCENIC CLI version + ipython kernel + scanpy.
docker pull aertslab/pyscenic_scanpy:0.12.1_1.9.1
podman pull docker://aertslab/pyscenic_scanpy:0.12.1_1.9.1





To run pySCENIC using Docker/Podman, use the following three steps.
A mount point (or more than one) needs to be specified, which contains the input data and necessary resources).

docker run -it --rm \
    -v /data:/data \
    aertslab/pyscenic:0.12.1 pyscenic grn \
        --num_workers 6 \
        -o /data/expr_mat.adjacencies.tsv \
        /data/expr_mat.tsv \
        /data/allTFs_hg38.txt

docker run -it --rm \
    -v /data:/data \
    aertslab/pyscenic:0.12.1 pyscenic ctx \
        /data/expr_mat.adjacencies.tsv \
        /data/hg19-tss-centered-5kb-7species.mc9nr.genes_vs_motifs.rankings.feather \
        /data/hg19-tss-centered-10kb-7species.mc9nr.genes_vs_motifs.rankings.feather \
        --annotations_fname /data/motifs-v9-nr.hgnc-m0.001-o0.0.tbl \
        --expression_mtx_fname /data/expr_mat.tsv \
        --mode "custom_multiprocessing" \
        --output /data/regulons.csv \
        --num_workers 6

docker run -it --rm \
    -v /data:/data \
    aertslab/pyscenic:0.12.1 pyscenic aucell \
        /data/expr_mat.tsv \
        /data/regulons.csv \
        -o /data/auc_mtx.csv \
        --num_workers 6







Singularity/Apptainer

Singularity/Apptainer images can be build from the Docker Hub image as source:

# pySCENIC CLI version.
singularity build aertslab-pyscenic-0.12.1.sif docker://aertslab/pyscenic:0.12.1
apptainer build aertslab-pyscenic-0.12.1.sif docker://aertslab/pyscenic:0.12.1

# pySCENIC CLI version + ipython kernel + scanpy.
singularity build aertslab-pyscenic-scanpy-0.12.1-1.9.1.sif docker://aertslab/pyscenic_scanpy:0.12.1_1.9.1
apptainer build aertslab-pyscenic-0.12.1-1.9.1.sif docker://aertslab/pyscenic_scanpy:0.12.1_1.9.1





To run pySCENIC with Singularity/Apptainer, the usage is very similar to that of Docker/Podman.

singularity run aertslab-pyscenic-0.12.1.sif \
    pyscenic grn \
        -B /data:/data
        --num_workers 6 \
        -o /data/expr_mat.adjacencies.tsv \
        /data/expr_mat.tsv \
        /data/allTFs_hg38.txt







Using the Docker/Podman or Singularity/Apptainer images with Jupyter notebook

The pySCENIC containers with scanpy have the ipykernel package installed, and can also be used interactively in a notebook.
This can be achieved using a kernel command similar to the following (for singularity).
Note that in this case, a bind needs to be specified.

singularity exec -B /data:/data aertslab-pyscenic-scanpy-latest.sif ipython kernel -f {connection_file}





More generally, a local or remote kernel can be set up by using the following examples.
These would go in a kernel file in ~/.local/share/jupyter/kernels/pyscenic-latest/kernel.json (for example).

Remote singularity kernel:

{
  "argv": [
    "/software/jupyter/bin/python",
    "-m",
    "remote_ikernel",
    "--interface",
    "ssh",
    "--host",
    "r23i27n14",
    "--workdir",
    "~/",
    "--kernel_cmd",
    "singularity",
    "exec",
    "-B",
    "/path/to/mounts",
    "/path/to/aertslab-pyscenic-scanpy-latest.sif",
    "ipython",
    "kernel",
    "-f",
    "{connection_file}"
  ],
  "display_name": "pySCENIC singularity remote",
  "language": "Python"
}





Local singularity kernel:

{
    "argv": [
     "singularity",
     "exec",
     "-B",
     "/path/to/mounts",
     "/path/to/aertslab-pyscenic-scanpy-latest.sif",
     "ipython",
     "kernel",
     "-f",
     "{connection_file}"
    ],
    "display_name": "pySCENIC singularity local",
    "language": "python"
}








Nextflow

There are two Nextflow implementations available:


	SCENICprotocol [https://github.com/aertslab/SCENICprotocol]: A Nextflow DSL1 implementation.


	VSNPipelines [https://github.com/vib-singlecell-nf/vsn-pipelines]: A Nextflow DSL2 implementation.








          

      

      

    

  

    
      
          
            
  
Tutorial

There are a number of tutorials available to demonstrate how to use pySCENIC.
Some of these are in the form of Jupyter notebooks in the pySCENIC notebooks [https://github.com/aertslab/pySCENIC/tree/master/notebooks] directory, and contain example analyses.


Case studies

These case studies are associated with the SCENICprotocol [https://github.com/aertslab/SCENICprotocol] and the resulting loom files can be viewed in the SCope viewer here [http://scope.aertslab.org/#/Protocol_Cases/Protocol_Cases/].


PBMC 10k dataset (10x Genomics)

Full SCENIC analysis, plus filtering, clustering, visualization, and SCope-ready loom file creation:



	Jupyter notebook [https://github.com/aertslab/SCENICprotocol/tree/master/notebooks/PBMC10k_SCENIC-protocol-CLI.ipynb] | HTML render [http://htmlpreview.github.io/?https://github.com/aertslab/SCENICprotocol/blob/master/notebooks/PBMC10k_SCENIC-protocol-CLI.html]







Extended analysis post-SCENIC:



	Jupyter notebook [https://github.com/aertslab/SCENICprotocol/tree/master/notebooks/PBMC10k_downstream-analysis.ipynb] | HTML render [http://htmlpreview.github.io/?https://github.com/aertslab/SCENICprotocol/blob/master/notebooks/PBMC10k_downstream-analysis.html]









Cancer data sets



	Jupyter notebook [https://github.com/aertslab/SCENICprotocol/tree/master/notebooks/SCENIC%20Protocol%20-%20Case%20study%20-%20Cancer%20data%20sets.ipynb] | HTML render [http://htmlpreview.github.io/?https://github.com/aertslab/SCENICprotocol/blob/master/notebooks/SCENIC%20Protocol%20-%20Case%20study%20-%20Cancer%20data%20sets.html]










Zeisel et al. dataset

For this tutorial 3,005 single cell transcriptomes taken from the mouse brain (somatosensory cortex and
hippocampal regions) are used as an example 4. The analysis is done in a Jupyter [http://jupyter.org] notebook.

This dataset is also included in the case studies of the SCENIC protocol, and the analysis notebook can be found therein (
Jupyter notebook [https://github.com/aertslab/SCENICprotocol/tree/master/notebooks/SCENIC%20Protocol%20-%20Case%20study%20-%20Mouse%20brain%20data%20set.ipynb] |
HTML render [http://htmlpreview.github.io/?https://github.com/aertslab/SCENICprotocol/blob/master/notebooks/SCENIC%20Protocol%20-%20Case%20study%20-%20Mouse%20brain%20data%20set.html]).


Caution

If you run this from a python script instead of a Jupyter [http://jupyter.org] notebook, please enclose the code in
a if __name__ == '__main__': construct.



First we import the necessary modules and declare some constants:

import os
import glob
import pickle
import pandas as pd
import numpy as np

from dask.diagnostics import ProgressBar

from arboreto.utils import load_tf_names
from arboreto.algo import grnboost2

from ctxcore.rnkdb import FeatherRankingDatabase as RankingDatabase
from pyscenic.utils import modules_from_adjacencies, load_motifs
from pyscenic.prune import prune2df, df2regulons
from pyscenic.aucell import aucell

import seaborn as sns

DATA_FOLDER="~/tmp"
RESOURCES_FOLDER="~/resources"
DATABASE_FOLDER = "~/databases/"
SCHEDULER="123.122.8.24:8786"
DATABASES_GLOB = os.path.join(DATABASE_FOLDER, "mm9-*.mc9nr.genes_vs_motifs.rankings.feather")
MOTIF_ANNOTATIONS_FNAME = os.path.join(RESOURCES_FOLDER, "motifs-v9-nr.mgi-m0.001-o0.0.tbl")
MM_TFS_FNAME = os.path.join(RESOURCES_FOLDER, 'mm_tfs.txt')
SC_EXP_FNAME = os.path.join(RESOURCES_FOLDER, "GSE60361_C1-3005-Expression.txt")
REGULONS_FNAME = os.path.join(DATA_FOLDER, "regulons.p")
MOTIFS_FNAME = os.path.join(DATA_FOLDER, "motifs.csv")





The scRNA-Seq data is downloaded from GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60361 and loaded into memory:

ex_matrix = pd.read_csv(SC_EXP_FNAME, sep='\t', header=0, index_col=0).T
ex_matrix.shape





(3005, 19970)





and the list of Transcription Factors (TF) for Mus musculus are read from file.
The list of known TFs for Mm was prepared from TFCat (cf. notebooks [https://github.com/aertslab/pySCENIC/tree/master/notebooks] section).

tf_names = load_tf_names(MM_TFS_FNAME)





Finally the ranking databases are loaded:

db_fnames = glob.glob(DATABASES_GLOB)
def name(fname):
    return os.path.splitext(os.path.basename(fname))[0]
dbs = [RankingDatabase(fname=fname, name=name(fname)) for fname in db_fnames]
dbs





[FeatherRankingDatabase(name="mm9-tss-centered-10kb-10species.mc9nr.genes_vs_motifs.rankings"),
 FeatherRankingDatabase(name="mm9-500bp-upstream-7species.mc9nr.genes_vs_motifs.rankings"),
 FeatherRankingDatabase(name="mm9-500bp-upstream-10species.mc9nr.genes_vs_motifs.rankings"),
 FeatherRankingDatabase(name="mm9-tss-centered-5kb-10species.mc9nr.genes_vs_motifs.rankings"),
 FeatherRankingDatabase(name="mm9-tss-centered-10kb-7species.mc9nr.genes_vs_motifs.rankings"),
 FeatherRankingDatabase(name="mm9-tss-centered-5kb-7species.mc9nr.genes_vs_motifs.rankings")]





In the initial phase of the pySCENIC pipeline the single cell expression profiles are used to infer
co-expression modules from.

The arboreto package is used for this phase of the pipeline. For this notebook only a sample of 1,000 cells is used
for the co-expression module inference is used.

adjacencies = grnboost2(ex_matrix, tf_names=tf_names, verbose=True)





Regulons are derived from adjacencies based on three methods.

The first method to create the TF-modules is to select the best targets for each transcription factor:


	Targets with importance > the 50th percentile.


	Targets with importance > the 75th percentile


	Targets with importance > the 90th percentile.




The second method is to select the top targets for a given TF:


	Top 50 targets (targets with highest weight)




The alternative way to create the TF-modules is to select the best regulators for each gene (this is actually how GENIE3 internally works). Then, these targets can be assigned back to each TF to form the TF-modules. In this way we will create three more gene-sets:


	Targets for which the TF is within its top 5 regulators


	Targets for which the TF is within its top 10 regulators


	Targets for which the TF is within its top 50 regulators




A distinction is made between modules which contain targets that are being activated and genes that are being repressed. Relationship between TF and its target, i.e. activator or repressor, is derived using the original expression profiles. The Pearson product-moment correlation coefficient is used to derive this information.

In addition, the transcription factor is added to the module and modules that have less than 20 genes are removed.

modules = list(modules_from_adjacencies(adjacencies, ex_matrix))





# Calculate a list of enriched motifs and the corresponding target genes for all modules.
with ProgressBar():
    df = prune2df(dbs, modules, MOTIF_ANNOTATIONS_FNAME)

# Create regulons from this table of enriched motifs.
regulons = df2regulons(df)

# Save the enriched motifs and the discovered regulons to disk.
df.to_csv(MOTIFS_FNAME)
with open(REGULONS_FNAME, "wb") as f:
    pickle.dump(regulons, f)





Clusters can be leveraged in the following way:

# The clusters can be leveraged via the dask framework:
df = prune2df(dbs, modules, MOTIF_ANNOTATIONS_FNAME, client_or_address=SCHEDULER)






Caution

The nodes of the clusters need to have access to a shared network drive on which the ranking databases are stored.



Reloading the enriched motifs and regulons from file should be done as follows:

df = load_motifs(MOTIFS_FNAME)
with open(REGULONS_FNAME, "rb") as f:
    regulons = pickle.load(f)





We characterize the different cells in a single-cell transcriptomics experiment via the enrichment of the previously discovered
regulons. Enrichment of a regulon is measured as the Area Under the recovery Curve (AUC) of the genes that define this regulon.

auc_mtx = aucell(ex_matrix, regulons, num_workers=4)
sns.clustermap(auc_mtx, figsize=(8,8))
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Frequently Asked Questions


I am having problems with Dask

An alternative is to use the multiprocessing implementation of Arboreto included in pySCENIC (arboreto_with_multiprocessing.py [https://github.com/aertslab/pySCENIC/blob/master/src/pyscenic/cli/arboreto_with_multiprocessing.py]).
This scrips is also available on the path once pySCENIC is installed.
This script uses the Arboreto and pySCENIC codebase to run GRNBoost2 (or GENIE3) without Dask.
The eliminates the possibility of running the GRN step across multiple nodes, but brings provides additional stability.
The run time is generally equivalent to the Dask implementation using the same number of workers.

The basic usage is:

arboreto_with_multiprocessing.py \
    expr_mat.loom \
    allTFs_hg38.txt \
    --method grnboost2 \
    --output adj.tsv \
    --num_workers 20 \
    --seed 777





The algorithm can be selected using the --method option (genie3 or grnboost2).
Possible input formats for the expression data are the same as for the pySCENIC CLI: loom, and csv.



How can I prioritize the target genes within a particular regulon?

It can be useful to have a better idea of which particular target genes within a regulon are more important, especially in the cases of regulons with many genes.
There are multiple possibilities to address this.


	iRegulon analysis. One possibility is to take the pre-refinement modules for the regulon of interest, and export them for analysis in iRegulon [http://iregulon.aertslab.org/].
There are six unrefined modules created from the GRN output for each TF of interest, which are generated using multiple approaches.
The use of iRegulon for the pruning/refinement allows for more control over the pruning of these modules and possibly a better idea of which genes are more important.
See the last section, Further exploration of modules directly from the network inference output, in
this notebook [http://htmlpreview.github.io/?https://github.com/aertslab/SCENICprotocol/blob/master/notebooks/PBMC10k_downstream-analysis.html]
for an example of how to get started.
A full tutorial on module refinement with iRegulon can be found here [http://iregulon.aertslab.org/tutorial.html].


	pySCENIC multi-runs. Another approach is to run the whole pySCENIC procedure multiple times (~10-100x).
Because of the stochastic nature of the GRN step in particular, a slightly varying result is produced for each run, both in terms of the overall regulons found, as well as the target genes for a particular regulon.
The target genes (and regulons themselves) can then be scored by the number of times it occurs across all runs, and considered as ‘high confidence’ if they occur in >80% of runs, for example.
This has the potential to be very computationally intensive for a whole dataset, but if only a few regulons are of interest, pySCENIC can be run using only these (by limiting the TFs included in the TFs file that goes into the GRN step).
The multi-runs capability is implemented in the SCENIC section of our single cell Nextflow pipeline [https://github.com/vib-singlecell-nf/vsn-pipelines].
The entrypoint scenic_multiruns [https://vsn-pipelines.readthedocs.io/en/latest/pipelines.html#scenic-multiruns-scenic-multiruns-single-sample-scenic-multiruns] provides an automated way to run this procedure.






How can I create a SCope-compatible loom file?

pySCENIC is capable of reading and writing loom files.
However, the loom file created in the AUCell step has the pySCENIC results embedded, but no dimensionality reductions are included.
In order to create a loom file that is ready to be uploaded to the SCope viewer [http://scope.aertslab.org/], we can use a helper script from VSN Pipelines [https://github.com/vib-singlecell-nf/vsn-pipelines].
These need to be downloaded:

wget https://raw.githubusercontent.com/vib-singlecell-nf/vsn-pipelines/master/src/scenic/bin/add_visualization.py
wget https://raw.githubusercontent.com/vib-singlecell-nf/vsn-pipelines/master/src/scenic/bin/export_to_loom.py





The add_visualization.py script will take as input the loom file created by pyscenic aucell and add a basic UMAP and t-SNE based on the SCENIC AUCell matrix.
Some additional packages are required for this, in particular MulticoreTSNE and umap.
The usage is as follows:

python add_visualization.py \
    --loom_input auc_mtx.loom \
    --loom_output scenic_visualize.loom \
    --num_workers 8





The output loom file is then ready for use in SCope.

This can also be easily run using the Docker image, which already contains all of the necessary packages (it’s still necessary to download the above python files, however):

docker run -it --rm -v $PWD:$PWD -w $PWD aertslab/pyscenic:0.12.1 \
    python add_visualization.py \
        --loom_input auc_mtx.loom \
        --loom_output scenic_visualize.loom \
        --num_workers 8







Can I create my own ranking databases?

Yes you can. See
create_cisTarget_databases [https://github.com/aertslab/create_cisTarget_databases]
for more detailed instructions to create custom cisTarget databases.



Can I draw the distribution of AUC values for a regulon across cells?

import pandas as pd
import matplotlib.pyplot as plt


def plot_binarization(auc_mtx: pd.DataFrame, regulon_name: str, threshold: float, bins: int=200, ax=None) -> None:
    """
    Plot the "binarization" process for the given regulon.

    :param auc_mtx: The dataframe with the AUC values for all cells and regulons (n_cells x n_regulons).
    :param regulon_name: The name of the regulon.
    :param bins: The number of bins to use in the AUC histogram.
    :param threshold: The threshold to use for binarization.
    """
    if ax is None:
        ax=plt.gca()
    auc_mtx[regulon_name].hist(bins=bins,ax=ax)

    ylim = ax.get_ylim()
    ax.plot([threshold]*2, ylim, 'r:')
    ax.set_ylim(ylim)
    ax.set_xlabel('AUC')
    ax.set_ylabel('#')
    ax.set_title(regulon_name)









          

      

      

    

  

    
      
          
            
  
Release Notes


0.12.1 | 2022-11-21


	Add support for running arboreto_with_multiprocessing.py with spawn instead of fork as multiprocessing method.Pool


	Use ravel instead of flatten to avoid unnecessary memory copy in aucell


	Update Docker image file and add separated Docker file for pySCENIC with scanpy.






0.12.0 | 2022-08-16


	Only databases in Feather v2 format are supported now (ctxcore [https://github.com/aertslab/ctxcore] >= 0.2),
which allow uses recent versions of pyarrow (>=8.0.0) instead of very old ones (<0.17).
Databases in the new format can be downloaded from https://resources.aertslab.org/cistarget/databases/
and end with *.genes_vs_motifs.rankings.feather or *.genes_vs_tracks.rankings.feather.


	Support clustered motif databases.


	Use custom multiprocessing instead of dask, by default.


	Docker image uses python 3.10 and contains only needed pySCENIC dependencies for CLI usage.


	Remove unneeded scripts and notebooks for unused/deprecated database formats.






0.11.2 | 2021-05-07


	Split some core cisTarget functions out into a separate repository, ctxcore [https://github.com/aertslab/ctxcore]. This is now a required package for pySCENIC.






0.11.1 | 2021-02-11


	Fix bug in motif url construction (#275)


	Fix for export2loom with sparse dataframe (#278)


	Fix sklearn t-SNE import (#285)


	Updates to Docker image (expose port 8787 for Dask dashboard)






0.11.0 | 2021-02-10

Major features:


	Updated arboreto_ release (GRN inference step) includes:


	Support for sparse matrices (using the --sparse flag in pyscenic grn, or passing a sparse matrix to grnboost2/genie3).


	Fixes to avoid dask metadata mismatch error






	Updated cisTarget:


	Fix for metadata mismatch in ctx prune2df step


	Support for databases Apache Parquet format


	Faster loading from feather databases


	Bugfix: loading genes from a database (previously missing the last gene name in the database)






	Support for Anndata input and output


	Package updates:


	Upgrade to newer pandas version


	Upgrade to newer numba version


	Upgrade to newer versions of dask, distributed






	Input checks and more descriptive error messages.


	Check that regulons loaded are not empty.






	Bugfixes:


	In the regulons output from the cisTarget step, the gene weights were incorrectly assigned to their respective target genes (PR #254).


	Motif url construction fixed when running ctx without pruning


	Compression of intermediate files in the CLI steps


	Handle loom files with non-standard gene/cell attribute names


	Reformat the genesig gmt input/output


	Fix AUCell output to loom with non-standard loom attributes










0.10.4 | 2020-11-24


	Included new CLI option to add correlation information to the GRN adjacencies file. This can be called with pyscenic add_cor.






0.10.3 | 2020-07-15


	Integrate arboreto multiprocessing script into pySCENIC CLI


	Skip modules with zero db overlap in cisTarget step


	Additional error message if regulons file is empty


	Additional error if there is a mismatch between the genes present in the GRN and the expression matrix


	Fixed bug in motif url construction when running without pruning






0.10.2 | 2020-06-05


	Bugfix for CLI grn step






0.10.1 | 2020-05-17


	CLI: file compression (optionally) enabled for intermediate files for the major steps: grn (adjacencies matrix), ctx (regulons), and aucell (auc matrix). Compression is used when the file name argument has a .gz ending.






0.10.3 | 2020-07-15


	Integrate arboreto multiprocessing script into pySCENIC CLI


	Skip modules with zero db overlap in cisTarget step


	Additional error message if regulons file is empty


	Additional error if there is a mismatch between the genes present in the GRN and the expression matrix


	Fixed bug in motif url construciton when running without pruning






0.10.2 | 2020-06-05


	Bugfix for CLI grn step






0.10.1 | 2020-05-17


	CLI: file compression (optionally) enabled for intermediate files for the major steps: grn (adjacencies matrix), ctx (regulons), and aucell (auc matrix). Compression is used when the file name argument has a .gz ending.






0.10.0 | 2020-02-27


	Added a helper script arboreto_with_multiprocessing.py [https://github.com/aertslab/pySCENIC/blob/master/scripts/arboreto_with_multiprocessing.py] that runs the Arboreto GRN algorithms (GRNBoost2, GENIE3) without Dask for compatibility.


	Ability to set a fixed seed in both the AUCell step and in the calculation of regulon thresholds (CLI parameter --seed; aucell function parameter seed).


	(since 0.9.18) In the modules_from_adjacencies function, the default value of rho_mask_dropouts is changed to False. This now matches the behavior of the R version of SCENIC. The cli version has an additional option to turn dropout masking back on (--mask_dropouts).
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