

Welcome to pySBOL’s documentation!

pySBOL is a SWIG-Python wrapper around libSBOL, a module for reading, writing,
and constructing genetic designs according to the standardized specifications of the Synthetic Biology Open Language (SBOL).

	Introduction

	Installation
	Using Pip

	Using Python

	Using Installer for Windows

	For Linux Users

	Testing pySBOL

	Getting Started with SBOL
	Creating an SBOL Document

	Creating SBOL Data Objects

	Using Ontology Terms for Attribute Values

	Adding and Getting Objects from a Document

	Getting, Setting, and Editing Attributes

	Creating, Adding and Getting Child Objects

	Creating and Editing Reference Properties

	Iterating and Indexing List Properties

	Searching a Document

	Copying Documents and Objects

	Converting To and From Other Sequence Formats

	Creating Biological Designs

	Biological Parts Repositories
	Re-using Genetic Parts From Online Repositories

	Searching Part Repos

	Submitting Designs to a Repo

	Computer-aided Design for Synthetic Biology
	Design Abstraction

	Hierarchical DNA Assembly

	Editing a Primary Structure

	Sequence Assembly

	Genome Integration

	Full Example Code

	Design-Build-Test-Learn Workflows

	API

Indices and tables

	Index

	Module Index

	Search Page

[image: _images/logo.jpg]

Introduction

pySBOL provides Python interfaces and their implementation for Synthetic Biology Open Language (SBOL) [http://www.sbolstandard.org/]. The current version of pySBOL implements SBOL Core Specification 2.1.0 [http://sbolstandard.org/downloads/specifications/specification-data-model-2-1-0/]. The library provides an API to work with SBOL objects, the functionality to read GenBank, FASTA, and SBOL version 1 and 2 documents as XML/RDF files, to write GenBank, FASTA, and SBOL version 1 and 2 documents, and to validate the correctness of SBOL 2 documents. This is a Python binding for C/C++ based libSBOL [https://github.com/SynBioDex/libSBOL]. Currently, pySBOL supports Python version 2.7 and 3.6 only. pySBOL is made freely available under the Apache 2.0 license [https://www.apache.org/licenses/].

To install, go to Installation [https://pysbol2.readthedocs.io/en/latest/installation.html] Page.

	The current snapshot of pySBOL is available on GitHub [https://github.com/SynBioDex/pysbol].

	Any problems or feature requests for pySBOL should be reported on the GitHub issue tracker [https://github.com/SynBioDex/pysbol/issues].

	An overview of pySBOL can be found here [http://sbolstandard.org/wp-content/uploads/2016/08/SBOL-Tutorial.pdf].

	For further information about the pySBOL library, its implementation, or its usage, please feel free to contact the libSBOL team [http://sbolstandard.org/contact/].

pySBOL is brought to you by Bryan Bartley, Kiri Choi, and SBOL Developers.

Current support for the development of pySBOL is generously provided by the NSF through the Synthetic Biology Open Language Resource [http://www.nsf.gov/awardsearch/showAward?AWD_ID=1355909] collaborative award.

[image: _images/logo.jpg]

Installation

Currently, we support Python 2.7 and Python 3.6 for both 32 bit and 64 bit architecture.
Python by default comes with package manager. Follow the steps below to install pySBOL. If you have Windows, and would like to try our Windows binary installers, check Using Installer for Windows [https://pysbol2.readthedocs.io/en/latest/installation.html#id1] section.

Using Pip

pySBOL is available for Windows and Mac OSX via PyPI, which is the simplest method to obtain pySBOL.
To install pySBOL using pip, run following line on console:

pip install pysbol

If you encounter permission errors on Mac OSX, you may install pysbol to your user site-packages directory as follows:

pip install pysbol --user

Or alternatively, you may install as a super-user:

sudo -H pip install pysbol

To update pySBOL using pip, run:

pip install -U pysbol

Using Python

1 - Download the source code of latest release here [https://github.com/SynBioDex/pysbol/releases/latest] and extract it.
If you would like to try out our latest snapshot, use git [https://git-scm.com/] and type following command in the console or terminal which will clone the source under pysbol folder.

git clone https://github.com/SynBioDex/pysbol.git

2 - Open your console or terminal. Go to package’s root directory and Run the installer script by using the following command line. This will install pySBOL2 to the Python release associated with the console or terminal you are using.

python setup.py install

If you are having problems, make sure your console/terminal is associated with the right Python environment you wish to use.

3 - Test the pySBOL by importing it in Python.

import sbol

If you have trouble importing the module with the setup script, check to see if there are multiple Python installations on your machine and also check the output of the setup script to see which version of Python is the install target. You can also test the module locally from inside the Mac_OSX/sbol or Win_32/sbol folders.

Using Installer for Windows

We provide binary installers for Windows users only. Simply download the installers [https://sourceforge.net/projects/pysbol/files/] and execute it to install it. Installer will look for your local Python distributions.

Be sure to use the installers with the same Python version and architecture with the one installed in your local machine!

For Linux Users

Currently, Linux users should build pySBOL from source through libSBOL. Go to libSBOL installation page [https://synbiodex.github.io/libSBOL/installation.html#build_from_source] and follow the instructions for Debian/Ubuntu.

Testing pySBOL

pySBOL comes with a testing function to check the integrity of the library.
To run the tester, simply execute the following command.

import sbol
sbol.testSBOL()

The output tells you whether certain test has been passed or not.

testAddComponentDefinition (sbol.unit_tests.TestComponentDefinitions) ... ok
testCDDisplayId (sbol.unit_tests.TestComponentDefinitions) ... ok
testRemoveComponentDefinition (sbol.unit_tests.TestComponentDefinitions) ... ok
testAddSeqence (sbol.unit_tests.TestSequences) ... ok
testRemoveSequence (sbol.unit_tests.TestSequences) ... ok
testSeqDisplayId (sbol.unit_tests.TestSequences) ... ok
testSequenceElement (sbol.unit_tests.TestSequences) ... ok
testDiscard (sbol.unit_tests.TestMemory) ... ok

Getting Started with SBOL

This beginner’s guide introduces the basic principles of pySBOL for new users. Most of the examples discussed in this guide are excerpted from the example script. The objective of this documentation is to familiarize users with the basic patterns of the API. For more comprehensive documentation about the API, refer to documentation about specific classes and methods.

The class structure and data model for the API is based on the Synthetic Biology Open Language. For more detail about the SBOL standard, visit sbolstandard.org [http://sbolstandard.org] or refer to the specification document [http://sbolstandard.org/wp-content/uploads/2018/01/BBF-RFC114-SBOL2.2.0.pdf/]. This document provides diagrams and description of all the standard classes and properties that comprise SBOL.

Creating an SBOL Document

In a previous era, engineers might sit at a drafting board and draft a design by hand. The engineer’s drafting sheet in pySBOL is called a Document. The Document serves as a container, initially empty, for SBOL data objects which represent elements of a biological design. Usually the first step is to construct a Document in which to put your objects. All file I/O operations are performed on the Document. The read and write methods are used for reading and writing files in SBOL format.

>>> doc = Document()
>>> doc.read('crispr_example.xml')
>>> doc.write('crispr_example_out.xml')

Reading a Document will wipe any existing contents clean before import. However, you can import objects from multiple files into a single Document object using Document.append() [https://pysbol2.readthedocs.io/en/latest/API.html#sbol.libsbol.Document.append]. This can be advantageous when you want to integrate multiple objects from different files into a single design. This kind of data integration is an important and useful feature of SBOL.

A Document may contain different types of SBOL objects, including ComponentDefinitions, ModuleDefinitions, Sequences, and Models. These objects are collectively referred to as TopLevel objects because they can be referenced directly from a Document. The total count of objects contained in a Document is determined using the len function. To view an inventory of objects contained in the Document, simply print it.

>>> len(doc)
31
>>> print(doc)
Attachment....................0
Collection....................0
CombinatorialDerivation.......0
ComponentDefinition...........25
Implementation................0
Model.........................0
ModuleDefinition..............2
Sequence......................4
Analysis......................0
Build.........................0
Design........................0
SampleRoster..................0
Test..........................0
Activity......................0
Agent.........................0
Plan..........................0
Annotation Objects............0

Total.........................31

Each SBOL object in a Document is uniquely identified by a special string of characters called a Uniform Resource Identifier (URI). A URI is used as a key to retrieve objects from the Document. To see the identities of objects in a Document, iterate over them using a Python iterator.

>>> for obj in doc:
... print(obj)
...
http://sbols.org/CRISPR_Example/mKate_seq/1.0.0
http://sbols.org/CRISPR_Example/gRNA_b_nc/1.0.0
http://sbols.org/CRISPR_Example/mKate_cds/1.0.0
.
.

These objects are sorted into object stores based on the type of object. For example to view ComponentDefinition objects specifically, iterate through the Document.componentDefinitions store:

Similarly, you can iterate through Document.moduleDefinitions [https://pysbol2.readthedocs.io/en/latest/API.html#sbol.libsbol.Document.getModuleDefinition], Document.sequences [https://pysbol2.readthedocs.io/en/latest/API.html#sbol.libsbol.Document.getSequence], Document.models [https://pysbol2.readthedocs.io/en/latest/API.html#sbol.libsbol.Document.getModel], or any top level object. The last type of object, Annotation Objects is a special case which will be discussed later.

These URIs are said to be sbol-compliant. An sbol-compliant URI consists of a scheme, a namespace, a local identifier (also called a displayId), and a version number. In this tutorial, we use URIs of the type http://sbols.org/CRISPR_Example/my_obj/1.0.0.0, where the scheme is indicated by http://, the namespace is http://sbols.org/CRISPR_Example, the local identifier is my_object, and the version is 1.0.0. SBOL-compliant URIs enable shortcuts that make the pySBOL API easier to use and are enabled by default. However, users are not required to use sbol-compliant URIs if they don’t want to, and this option can be turned off.

Based on our inspection of objects contained in the Document above, we can see that these objects were all created in the namespace http://sbols.org/CRISPR_Example. Thus, in order to take advantage of SBOL-compliant URIs, we set an environment variable that configures this namespace as the default. In addition we set some other configuration options.

>>> setHomespace('http://sbols.org/CRISPR_Example')

Setting the Homespace has several advantages. It simplifies object creation and retrieval from Documents. In addition, it serves as a way for a user to claim ownership of new objects. Generally users will want to specify a Homespace that corresponds to their organization’s web domain.

Creating SBOL Data Objects

Biological designs can be described with SBOL data objects, including both structural and functional features. The principle classes for describing the structure and primary sequence of a design are ComponentDefinitions, Components, Sequences, and SequenceAnnotations. The principle classes for describing the function of a design are ModuleDefinitions, Modules, Interactions, and Participations. Other classes such as Design, Build, Test, Analysis, Activity, and Plan are used for managing workflows.

In the official SBOL specification document, classes and their properties are represented as box diagrams. Each box represents an SBOL class and its attributes. Following is an example of the diagram for the ComponentDefinition class which will be referred to in later sections. These class diagrams follow conventions of the Unified Modeling Language.

[image: _images/component_definition_uml.png]

As introduced in the previous section, SBOL objects are identified by a uniform resource identifier (URI). When a new object is constructed, the user must assign a unique identity. The identity is ALWAYS the first argument supplied to the constructor of an SBOL object. Depending on which configuration options for pySBOL are specified, different algorithms are applied to form the complete URI of the object. The following examples illustrate these different configuration options.

The first set of configuration options demonstrates ‘open-world’ mode, which means that URIs are explicitly specified in full by the user, and the user is free to use whatever convention or conventions they want to form URIs. Open-world configuration can be useful sometimes when integrating data objects derived from multiple files or web resources, because it makes no assumptions about the format of URIs.

>>> setHomespace('')
>>> Config.setOption('sbol_compliant_uris', False)
>>> Config.setOption('sbol_typed_uris', False)
>>> crispr_template = ModuleDefinition('http://sbols.org/CRISPR_Example/CRISPR_Template')
>>> print(crispr_template)
http://sbols.org/CRISPR_Example/CRISPR_Template

The second set of configuration options demonstrates use of a default namespace for constructing URIs. The advantage of this approach is simply that it reduces repetitive typing. Instead of typing the full namespace for a URI every time an object is created, the user simply specifies the local identifier. The local identifier is appended to the namespace. This is a handy shortcut especially when working interactively in the Python interpreter.

>>> setHomespace('http://sbols.org/CRISPR_Example/')
>>> Config.setOption('sbol_compliant_uris', False)
>>> Config.setOption('sbol_typed_uris', False)
>>> crispr_template = ModuleDefinition('CRISPR_Template')
>>> print(crispr_template)
http://sbols.org/CRISPR_Example/CRISPR_Template

The third set of configuration options demonstrates SBOL-compliant mode. In this example, a version number is appended to the end of the URI. Additionally, when operating in SBOL-compliant mode, the URIs of child objects are algorithmically constructed according to automated rules (not shown here).

>>> setHomespace('http://sbols.org/CRISPR_Example/')
>>> Config.setOption('sbol_compliant_uris', True)
>>> Config.setOption('sbol_typed_uris', False)
>>> crispr_template = ModuleDefinition('CRISPR_Template')
>>> print(crispr_template)
http://sbols.org/CRISPR_Example/CRISPR_Template/1.0.0

The final example demonstrates typed URIs. When this option is enabled, the type of SBOL object is included in the URI. Typed URIs are useful because sometimes the user may want to re-use the same local identifier for multiple objects. Without typed URIs this may lead to collisions between non-unique URIs. This option is enabled by default, but the example file CRISPR_example.py does not use typed URIs, so for all the examples in this guide this option is assumed to be disabled.

>>> setHomespace('http://sbols.org/CRISPR_Example/')
>>> Config.setOption('sbol_compliant_uris', True)
>>> Config.setOption('sbol_typed_uris', True)
>>> crispr_template_md = ModuleDefinition('CRISPR_Template')
>>> print(crispr_template)
http://sbols.org/CRISPR_Example/ModuleDefinition/CRISPR_Template/1.0.0
>>> crispr_template_cd = ComponentDefinition('CRISPR_Template')
http://sbols.org/CRISPR_Example/ComponentDefinition/CRISPR_Template/1.0.0

Constructors for SBOL objects follow a fairly predictable pattern. The first argument is ALWAYS the identity of the object. Other arguments may follow, depending on in the SBOL class has required attributes. Attributes are required if the specification says they are. In a UML diagram, required fields are indicated as properties with a cardinality of 1 or more. For example, a ComponentDefinition (see the UML diagram above) has only one required field, types, which specifies one or more molecular types for a component. Required fields SHOULD be specified when calling a constructor. If they are not, they will be assigned default values. The following creates a protein component. If the BioPAX term for protein were not specified, then the constructor would create a ComponentDefinition of type BIOPAX_DNA by default.

>>> cas9 = ComponentDefinition('Cas9', BIOPAX_PROTEIN) # Constructs a protein component
>>> target_promoter = ComponentDefinition('target_promoter') # Constructs a DNA component by default

Using Ontology Terms for Attribute Values

Notice the ComponentDefinition.types attribute is specified using a predefined constant. The ComponentDefinition.types property is one of many SBOL attributes that uses ontology terms as property values. The ComponentDefinition.types property uses the BioPax ontology <https://bioportal.bioontology.org/ontologies/BP/?p=classes&conceptid=root> to be specific. Ontologies are standardized, machine-readable vocabularies that categorize concepts within a domain of scientific study. The SBOL 2.0 standard unifies many different ontologies into a high-level, object-oriented model.

Ontology terms also take the form of Uniform Resource Identifiers. Many commonly used ontological terms are built-in to pySBOL as predefined constants. If an ontology term is not provided as a built-in constant, its URI can often be found by using an ontology browser tool online. Browse Sequence Ontology terms here <http://www.sequenceontology.org/browser/obob.cgi> ` and `Systems Biology Ontology terms here [http://www.ebi.ac.uk/sbo/main/tree]. While the SBOL specification often recommends particular ontologies and terms to be used for certain attributes, in many cases these are not rigid requirements. The advantage of using a recommended term is that it ensures your data can be interpreted or visualized by other applications that support SBOL. However in many cases an application developer may want to develop their own ontologies to support custom applications within their domain.

The following example illustrates how the URIs for ontology terms can be easily constructed, assuming they are not already part of pySBOL’s built-in ontology constants.

>>> SO_ENGINEERED_FUSION_GENE = SO + '0000288' # Sequence Ontology term
>>> SO_ENGINEERED_FUSION_GENE
'http://identifiers.org/so/SO:0000288'
>>> SBO_DNA_REPLICATION = SBO + '0000204' # Systems Biology Ontology term
>>> SBO_DNA_REPLICATION
'http://identifiers.org/biomodels.sbo/SBO:0000204'

Adding and Getting Objects from a Document

In some cases a developer may want to use SBOL objects as intermediate data structures in a computational biology workflow. In this case the user is free to manipulate objects independently of a Document. However, if the user wishes to write out a file with all the information contained in their object, they must first add it to the Document. This is done using add methods. The names of these methods follow a simple pattern, simply “add” followed by the type of object.

>>> doc.addModuleDefinition(crispr_template)
>>> doc.addComponentDefinition(cas9)

Objects can be retrieved from a Document by using get methods. These methods ALWAYS take the object’s full URI as an argument.

>>> crispr_template = doc.getModuleDefinition('http://sbols.org/CRISPR_Example/CRISPR_Template/1.0.0')
>>> cas9 = doc.getComponentDefinition('http://sbols.org/CRISPR_Example/cas9_generic/1.0.0')

When working interactively in a Python environment, typing long form URIs can be tedious. Operating in SBOL-compliant mode allows the user an alternative means to retrieve objects from a Document using local identifiers.

>>> Config.setOption('sbol_compliant_uris', True)
>>> Config.setOption('sbol_typed_uris', False)
>>> crispr_template = doc.moduleDefinitions['CRISPR_Template']
>>> cas9 = doc.componentDefinitions['cas9_generic']

Getting, Setting, and Editing Attributes

The attributes of an SBOL object can be accessed like other Python class objects, with a few special considerations. For example, to get the values of the displayId and identity properties of any object :

Note that displayId gives only the shorthand, local identifier for the object, while the identity property gives the full URI.

The attributes above return singleton values. Some attributes, like ComponentDefinition.roles and ComponentDefinition.types support multiple values. Generally these attributes have plural names. If an attribute supports multiple values, then it will return a list. If the attribute has not been assigned any values, it will return an empty list.

>>> cas9.types
['http://www.biopax.org/release/biopax-level3.owl#Protein']
>>> cas9.roles
[]

Setting an attribute follows the ordinary convention for assigning attribute values:

>>> crispr_template.description = 'This is an abstract, template module'

To set multiple values:

>>> plasmid = ComponentDefinition('pBB1', BIOPAX_DNA, '1.0.0')
>>> plasmid.roles = [SO_PLASMID, SO_CIRCULAR]

Although properties such as types and roles behave like Python lists in some ways, beware that list operations like append and extend do not work directly on these kind of attributes, due to the nature of the C++ bindings. If you need to append values to an attribute, use the following idiom:

>>> plasmid.roles = [SO_PLASMID]
>>> plasmid.roles = plasmid.roles + [SO_CIRCULAR]

To clear all values from an attribute, set to None:

>>> plasmid.roles = None

Creating, Adding and Getting Child Objects

Some SBOL objects can be composed into hierarchical parent-child relationships. In the specification diagrams, these relationships are indicated by black diamond arrows. In the UML diagram above, the black diamond indicates that ComponentDefinitions are parents of SequenceAnnotations. Properties of this type can be modified using the add method and passing the child object as the argument.

>>> point_mutation = SequenceAnnotation('PointMutation')
>>> target_promoter.sequenceAnnotations.add(point_mutation)

Alternatively, the create method captures the construction and addition of the SequenceAnnotation in a single function call. The create method ALWAYS takes one argument–the URI of the new object. All other values are initialized with default values. You can change these values after object creation, however.

>>> target_promoter.sequenceAnnotations.create('PointMutation')

Conversely, to obtain a Python reference to the SequenceAnnotation from its identity:

>>> point_mutation = target_promoter.sequenceAnnotations.get('PointMutation')

Or equivalently:

>>> point_mutation = target_promoter.sequenceAnnotations['PointMutation']

Creating and Editing Reference Properties

Some SBOL objects point to other objects by way of URI references. For example, ComponentDefinitions point to their corresponding Sequences by way of a URI reference. These kind of properties correspond to white diamond arrows in UML diagrams, as shown in the figure above. Attributes of this type contain the URI of the related object.

>>> eyfp_gene = ComponentDefinition('EYFPGene', BIOPAX_DNA)
>>> seq = Sequence('EYFPSequence', 'atgnnntaa', SBOL_ENCODING_IUPAC)
>>> eyfp_gene.sequence = seq
>>> print (eyfp_gene.sequence)
'http://sbols.org/Sequence/EYFPSequence/1.0.0'

Note that assigning the seq object to the eyfp_gene.sequence actually results in assignment of the object’s URI. An equivalent assignment is as follows:

>>> eyfp_gene.sequence = seq.identity
>>> print (eyfp_gene.sequence)
'http://sbols.org/Sequence/EYFPSequence/1.0.0'

Iterating and Indexing List Properties

Some properties can contain multiple values or objects. Additional values can be specified with the add method. In addition you may iterate over lists of objects or values.

Iterate through objects (black diamond properties in UML)
for p in cas9_complex_formation.participations:
 print(p)
 print(p.roles)

Iterate through references (white diamond properties in UML)
for role in reaction_participant.roles:
 print(role)

Numerical indexing of lists works as well:

for i_p in range(0, len(cas9_complex_formation.participations)):
 print(cas9_complex_formation.participations[i_p])

Searching a Document

To see if an object with a given URI is already contained in a Document or other parent object, use the find method. Note that find function returns the target object cast to its base type which is SBOLObject, the generic base class for all SBOL objects. The actual SBOL type of this object, however is ComponentDefinition. If necessary the base class can be downcast using the cast method.

>>> obj = doc.find('http://sbols.org/CRISPR_Example/mKate_gene/1.0.0')
>>> obj
SBOLObject
>>> parseClassName(obj.type)
'ComponentDefinition'
>>> cd = obj.cast(ComponentDefinition)
>>> cd
ComponentDefinition

The find method is probably more useful as a boolean conditional when the user wants to automatically construct URIs for objects and needs to check if the URI is unique or not. If the object is found, find returns an object reference (True), and if the object is not found, it returns None (False). The following code snippet demonstrates a function that automatically generates ComponentDefinitions.

def createNextComponentDefinition(doc, local_id):
 i_cdef = 0
 cdef_uri = getHomespace() + '/%s_%d/1.0.0' %(local_id, i_cdef)
 while doc.find(cdef_uri):
 i_cdef += 1
 cdef_uri = getHomespace() + '/%s_%d/1.0.0' %(local_id, i_cdef)
 doc.componentDefinitions.create('%s_%d' %(local_id, i_cdef))

Copying Documents and Objects

Copying a Document can result in a few different ends, depending on the user’s goal. The first option is to create a simple clone of the original Document. This is shown below in which the user is assumed to have already created a Document with a single ComponentDefinition. After copying, the object in the Document clone has the same identity as the object in the original Document.

>>> for o in doc:
... print o
...
http://examples.org/ComponentDefinition/cd/1
>>> doc2 = doc.copy()
>>> for o in doc2:
... print o
...
http://examples.org/ComponentDefinition/cd/1

More commonly a user wants to import objects from the target Document into their Homespace. In this case, the user can specify a target namespace for import. Objects in the original Document that belong to the target namespace are copied into the user’s Homespace. Contrast the example above with the following.

>>> setHomespace('http://sys-bio.org')
>>> doc2 = doc.copy('http://examples.org')
>>> for o in doc:
... print o
...
http://examples.org/ComponentDefinition/cd/1
>>> for o in doc2:
... print o
...
http://sys-bio.org/ComponentDefinition/cd/1

In the examples above, the copy method returns a new Document. However, it is possible to integrate the result of multiple copy operations into an existing Document.

>>> for o in doc1:
 print o

http://examples.org/ComponentDefinition/cd1/1
>>> for o in doc2:
 print o
...
http://examples.org/ComponentDefinition/cd2/1
>>> doc1.copy('http://examples.org', doc3)
Document
>>> doc2.copy('http://examples.org', doc3)
Document
>>> for o in doc3:
... print o
...
http://examples.org/ComponentDefinition/cd2/1
http://examples.org/ComponentDefinition/cd1/1

Converting To and From Other Sequence Formats

It is possible to convert SBOL to and from other common sequence formats. Conversion is performed by calling the online converter tool [https://validator.sbolstandard.org/] , so an internet connection is required. Currently the supported formats are SBOL2, SBOL1, FASTA, GenBank, and GFF3. The following example illustrates how to import and export to these different formats. Note that conversion can be lossy.

>>> doc.exportToFormat('GenBank', 'crispr_example_out.gb')
>>> doc.importFromFormat('GenBank', 'crispr_example_out.gb')

Creating Biological Designs

This concludes the basic methods for manipulating SBOL data structures. Now that you’re familiar with these basic methods, you are ready to learn about libSBOL’s high-level design interface for synthetic biology. See SBOL Examples [https://pysbol2.readthedocs.io/en/latest/sbol_examples.html].

Biological Parts Repositories

Re-using Genetic Parts From Online Repositories

In today’s modern technological society, a variety of interesting technologies can be assembled from
“off-the-shelf” components, including cars, computers, and airplanes. Synthetic biology is inspired by a similar idea. Synthetic biologists aim to program new biological functions into organisms by assembling genetic code from off-the-shelf DNA sequences. PySBOL puts an inventory of biological parts at your fingertips.

For example, the iGEM Registry of Standard Biological Parts [http://parts.igem.org/Main_Page] is an online resource that many synthetic biologists are familiar with. The Registry is an online database that catalogs a vast inventory of genetic parts, mostly contributed by students in the iGEM competition. These parts are now available in SBOL format in the SynBioHub [http://synbiohub.org] knowledgebase, hosted by Newcastle University. The code example below demonstrates how a programmer can access these data.

The following code example shows how to pull data about biological components from the SynBioHub repository. In order to pull a part, simply locate the web address of that part by browsing the SynBioHub repository online. Alternatively, pySBOL also supports programmatic querying of SynBioHub (see below).

The interface with the SynBioHub repository is represented by a PartShop object. The following code retrieves parts corresponding to promoter, coding sequence (CDS), ribosome binding site (RBS), and transcriptional terminator. These parts are imported into a Document object, which must be initialized first. See Getting Started with SBOL [https://pysbol2.readthedocs.io/en/latest/getting_started.html] for more about creating Documents. A Uniform Resource Identifier (URI) is used to retrieve objects from the PartShop, similar to how URIs are used to retrieve objects from a Document

>>> igem = PartShop('https://synbiohub.org')
>>> igem.pull('https://synbiohub.org/public/igem/BBa_R0010/1', doc)

Typing full URIs can be tedious. Therefore the PartShop interface provides a shortcut for retrieving objects. It will automatically construct a URI from the PartShop namespace and the part’s displayId. Constrast the above with the following.

>>> igem = PartShop('https://synbiohub.org/public/igem')
>>> igem.pull('BBa_B0032', doc)
>>> igem.pull('BBa_E0040', doc)
>>> igem.pull('BBa_B0012', doc)

The pull operation will retrieve ComponentDefinitions and their associated Sequence objects. Note that the objects are copied into the user’s Homespace:

>>> for obj in doc:
... print obj
...
http://examples.org/Sequence/BBa_R0010_sequence/1
http://examples.org/Sequence/BBa_B0012_sequence/1
http://examples.org/ComponentDefinition/BBa_E0040/1
http://examples.org/ComponentDefinition/BBa_B0012/1
http://examples.org/Sequence/BBa_E0040_sequence/1
http://examples.org/Activity/igem2sbol/1
http://examples.org/ComponentDefinition/BBa_R0010/1
http://examples.org/ComponentDefinition/BBa_B0032/1
http://examples.org/Sequence/BBa_B0032_sequence/1

Searching Part Repos

PySBOL supports three kinds of searches: a general search, an exact search, and an advanced search.

The following query conducts a general search which scans through identity, name, description, and displayId properties for a match to the search text, including partial, case-insensitive matches to substrings of the property value. Search results are returned as a SearchResponse object.

records = igem.search('plasmid')

By default, the general search looks only for ComponentDefinitions, and only returns 25 records at a time in order to prevent server overload. The search above is equivalent to the one below, which explicitly specifies which kind of SBOL object to search for, an offset of 0 (explained below), and a limit of 25 records.

records = igem.search('plasmid', SBOL_COMPONENT_DEFINITION, 0, 25)

Of course, these parameters can be changed to search for different type of SBOL objects or to return more records. For example, some searches may match a large number of objects, more than the specified limit allows. In this case, it is possible to specify an offset and to retrieve additional records in successive requests. The total number of objects in the repository matching the search criteria can be found using the searchCount method, which has the same call signature as the search method. It is a good idea to put a small delay between successive requests to prevent server overload. The following example demonstrates how to do this. The 100 millisecond delay is implemented using cross-platform C++11 headers chrono and thread. As of the writing of this documentation, this call retrieves 391 records.

import time

records = SearchResponse()
search_term = 'plasmid'
limit = 25
total_hits = igem.searchCount(search_term)
for offset in range(0, total_hits, limit):
 records.extend(igem.search(search_term, SBOL_COMPONENT_DEFINITION, offset, limit))
 time.sleep(0.1)

A SearchResponse object is returned by a query and contains multiple records. Each record contains basic data, including identity, displayId, name, and description fields. It is very important to realize however that the search does not retrieve the complete ComponentDefinition! In order to retrieve the full object, the user must call pull while specifying the target object’s identity.

Records in a SearchResponse can be accessed using iterators or numeric indices. The interface for each record behaves exactly like any other SBOL object:

for record in records:
 print(record.identity.get())

The preceding examples concern general searches, which scan through an object’s metadata for partial matches to the search term. In contrast, the exact search explicitly specifies which property of an object to search, and the value of that property must exactly match the search term. The following exact search will search for ComponentDefinitions with a role of promoter:

records = igem.search(SO_PROMOTER, SBOL_COMPONENT_DEFINITION, SBOL_ROLES, 0, 25);
.. end

Finally, the advanced search allows the user to configure a search with multiple criteria by constructing a SearchQuery object. The following query looks for promoters that have an additional annotation indicating that the promoter is regulated (as opposed to constitutive):

q = SearchQuery();
q['objectType'].set(SBOL_COMPONENT_DEFINITION);
q['limit'].set(25);
q['offset'].set(0);
q['role'].set(SO_PROMOTER);
q['role'].add('http://wiki.synbiohub.org/wiki/Terms/igem#partType/Regulatory');
total_hits = igem.searchCount(q);
records = igem.search(q);

Submitting Designs to a Repo

Users can submit their SBOL data directly to a PartShop using the pySBOL API. This is important, so that synthetic biologists may reuse the data and build off each other’s work. Submitting to a repository is also important for reproducing published scientific work. The synthetic biology journal ACS Synthetic Biology now encourages authors to submit SBOL data about their genetically engineered DNA to a repository like SynBioHub [https://synbiohub.org]. In order to submit to a PartShop remotely, the user must first vist the appropriate website and register. Once the user has established an account, they can then log in remotely using pySBOL.

>>> igem.login('johndoe@example.org', password)

Upon submission of a Document to SynBioHub, the Document will be converted to a Collection. Therefore, the Document requires that the displayId, name, and description properties are set prior to submission.

>>> doc.displayId = 'my_collection'
>>> doc.name = 'my collection'
>>> doc.description = 'a description of your collection'
>>> igem.submit(doc)

Once uploaded, a new URI for the Collection is generated. This URI follows the pattern <PART SHOP URI>/<USER NAME>/<DOCUMENT DISPLAYID>_collection. Other TopLevel objects in the Document are also mapped to new URIs. These URIs follow the pattern <PART SHOP URI>/<USER NAME>/<SBOL TYPE>_<DISPLAYID>.

After submission, it is possible to attach other types of data files to SBOL objects. This requires the new URI of the target object and a path to the local file on the user’s machine.

>>> igem.attachFile('<PART SHOP URI>/<USER NAME>/<SBOL TYPE>_<DISPLAYID>', '<PATH TO LOCAL FILE>')

Likewise, it is possible to download a file attachment.

>>> igem.downloadAttachment('<PART SHOP URI>/<USER NAME>/<SBOL TYPE>_<DISPLAYID>', '<PATH TO WRITE>')

Computer-aided Design for Synthetic Biology

See Full Example Code [https://pysbol2.readthedocs.io/en/latest/sbol_examples.html#id2] for full example code.

Design Abstraction

An advantage of the SBOL data format over GenBank is the ability to represent DNA as abstract components without specifying an exact sequence. An abstract design can be used as a template, with sequence information filled in later. In SBOL, a ComponentDefinition represents a biological component whose general function is known while its sequence is currently either unknown or unspecified. The intended function of the component is specified using a descriptive term from the Sequence Ontology (SO), a standard vocabulary for describing genetic parts. As the following example shows, some common SO terms are built in to PySBOL as pre-defined constants (see constants.h [https://github.com/SynBioDex/libSBOL/blob/master/source/constants.h]). This code example defines the new component as a gene by setting its roles property to the SO term for gene. Other terms may be found by browsing the Sequence Ontology [http://www.sequenceontology.org/browser/obob.cgi] online.

Construct an abstract design for a gene
gene = ComponentDefinition('gene_example')
gene.roles = SO_GENE

Design abstraction is an important engineering principle for synthetic biology. Abstraction enables the engineer to think at a high-level about functional characteristics of a system while hiding low-level physical details. For example, in electronics, abstract schematics are used to describe the function of a circuit, while hiding the physical details of how a printed circuit board is laid out. Computer-aided design (CAD) programs allow the engineer to easily switch back and forth between abstract and physical representations of a circuit. In the same spirit, PySBOL enables a CAD approach for designing genetic constructs and other forms of synthetic biology.

Hierarchical DNA Assembly

PySBOL also includes methods for assembling biological components (also referred to as biological parts in the synthetic biology literature) into abstraction hierarchies. Abstraction hierarchies are important from an engineering perspective because they allow engineers to assemble complicated systems from more basic components. Abstraction hierarchies are also important from a biological perspective, because DNA sequences and biological structures in general exhibit hierarchical organization, from the genome, to operons, to genes, to lower level genetic operators. The following code assembles an abstraction hierarchy that describes a gene cassette. Note that subcomponents must belong to a Document in order to be assembled, so a Document is passed as a parameter.

The gene cassette below is composed of genetic subcomponents including a promoter, ribosome binding site (RBS), coding sequence (CDS), and transcriptional terminator, expressed in SBOL Visual schematic glyphs. The next example demonstrates how an abstract design for this gene is assembled from its subcomponents.

gene.assemblePrimaryStructure([r0010, b0032, e0040, b0012], doc)

After creating an abstraction hierarchy, it is then possible to iterate through an object’s primary structure of components:

for component_definition in gene.getPrimaryStructure()):
 print (component_definition.identity)

This returns a list of ComponentDefinitions arranged in their primary sequence. Occasionally it is also helpful to get Components arranged in their primary sequence as well. Note that the example below produces the same output as the example above, and may be helpful for understanding the relationship between Components and ComponentDefinitions.

for component in gene.components:
 print (component.definition)

Editing a Primary Structure

Given an abstract representation of a primary structure as above, it is possible to modify it by inserting and deleting Components. The following example deletes the R0010 promoter and replaces it with the R0011 promoter

primary_structure = gene.getPrimaryStructureComponents()
b0032_component = primary_structure[1]
gene.deleteUpstreamComponent(b0032_component)

r0011 = ComponentDefinition('r0011')
r0011.roles = SO_CDS
gene.insertUpstreamComponent(b0032_component, r0011)

Sequence Assembly

A complete design adds explicit sequence information to the components in a template design or abstraction hierarchy. In order to complete a design, Sequence objects must first be created and associated with the promoter, CDS, RBS, terminator subcomponents. In contrast to the ComponentDefinition.assemble() [https://pysbol2.readthedocs.io/en/latest/API.html#sbol.pySBOL.ComponentDefinition.assemble] method, which assembles a template design, the ComponentDefinition.compile method recursively generates the complete sequence of a hierarchical design from the sequence of its subcomponents. Compiling a DNA sequence is analogous to a programmer compiling their code. In order to compile a ComponentDefinition, you must first assemble a template design from ComponentDefinitions, as described in the previous section.

target_sequence = gene.compile()

The compile method returns the target sequence as a string. In addition, it creates a new Sequence object and assigns the target sequence to its elements property

Genome Integration

In some cases, it may be useful to represent integration of vectors / transposons into genomes. The integrateAtBaseCoordinate method supports integration operations and produces a parsimonious representation of primary structure that is useful for manipulating large constructs. The following example demonstrates integration of the gene construct from the examples above into a wild_type_genome, thus generating the integrated_genome.

integrated_genome = ComponentDefinition('integrated_genome')
integrated_genome.sequence = Sequence('integrated_genome_sequence')
wild_type_genome = ComponentDefinition('wild_type_genome')
wild_type_genome.sequence = Sequence('wild_type_genome_sequence')
wild_type_genome.sequence.elements = 'gggggggggg'
integrated_genome.integrateAtBaseCoordinate(wild_type_genome, gene, 5)
integrated_genome.compile() # Calculate sequence of the integrated genome

Full Example Code

Full example code is provided below, which will create a file called “gene_cassette.xml”

from sbol import *

setHomespace('http://sys-bio.org')
doc = Document()

gene = ComponentDefinition('gene_example')
r0010 = ComponentDefinition('R0010')
b0032 = ComponentDefinition('B0032')
e0040 = ComponentDefinition('E0040')
b0012 = ComponentDefinition('B0012')

r0010.roles = SO_PROMOTER
b0032.roles = SO_CDS
e0040.roles = SO_RBS
b0012.roles = SO_TERMINATOR

doc.addComponentDefinition(gene)
doc.addComponentDefinition([r0010, b0032, e0040, b0012])

gene.assemblePrimaryStructure([r0010, b0032, e0040, b0012])

first = gene.getFirstComponent()
print(first.identity)
last = gene.getLastComponent()
print(last.identity)

r0010.sequence = Sequence('R0010', 'ggctgca')
b0032.sequence = Sequence('B0032', 'aattatataaa')
e0040.sequence = Sequence('E0040', "atgtaa")
b0012.sequence = Sequence('B0012', 'attcga')

target_sequence = gene.compile()
print(gene.sequence.elements)

result = doc.write('gene_cassette.xml')
print(result)

Design-Build-Test-Learn Workflows

PySBOL can be used to manage computational and experimental workflows for synthetic biology. The API is based on the design-build-test-learn (DBTL) method for engineering problem solving. These workflows involve the following types of objects:

	A Design is a conceptual representation of a biological system that a synthetic biologist intends to implement in the lab. A Design may describe both structural composition or the intended function of a biological system. In more traditional engineering terms, a Design is analogous to a draft or blueprint, but is a purely digital representation

	A Build describes an actual, physical sample in the laboratory. A DNA construct is the most common example of a Build in synthetic biology, but the definition can be extended to represent any kind of physical sample, including cells and reagents. A Build may be linked to a laboratory information management system using SBOL.

	A Test is a wrapper for experimental data files that are produced as a result of an experimental measurement on a Build. As a matter of scientific integrity, unaltered experimental data should and must be preserved. A Test object provides a link to those data.

	An Analysis is a wrapper for experimental data that has been processed or transformed. Common data transformations include subtracting background signal (“blanking”), log transformations, and model-fitting.

Note that these pySBOL classes are not part of the core SBOL standard, but are abstractions provided by the pySBOL interface for the convenience of the user. However, they map closely to the SBOL data model.

In order to organize and track data as a workflow proceeds, a user can create objects and link them together using Activity objects. An Activity uses certain types of objects as inputs and generates new objects. For example, under the DBTL formalization a Design is used to generate a Build. This implies that a digital blueprint for a biological system has been realized as a real construct the laboratory. If an experimental measurement is performed subsequently, via an experiment Activity, a Test object is generated. A Test performs measurement on Builds. Finally an Analysis may use the raw experimental data represented by a Test object. Thus, objects are created in a logical order that conforms to the DBTL formalism. This pattern is represented in the UML class diagram below.

[image: _images/dbtl.png]

An Activity is executed by an Agent which may be a person, a piece of software, or laboratory robotics. The Agent executes a Plan which may be a laboratory protocol written in natural language or a set of automated instructions. The classes Activity, Agent, and Plan are all defined according the Provenance Ontology (PROV-O). The pySBOL API provides the Design, Build, Test, and Analysis classes to simplify workflow representation. However, it is also possible to use the API to construct PROV-O workflows that conform to other patterns.

The usage pattern described above can be summarized as follows: An Activity may use one or more objects of type X to generate one or more objects of type Y that come next in the DBTL workflow. Additionally DBTL workflows can be cyclic. An Analysis may generate a Design. In this pattern, the Analysis represents a specification or prediction that is assumed to be true about the Design since it has been previously experimentally verified. Such a pattern is called a DBTL cycle.

The DBTL cycle is a generalized, iterative framework for engineering problem-solving—something like a scientific method for engineers. In the context of synthetic biology, the DBTL cycle may include processes such as pulling data about biological parts from online databases, assembling new genetic programs from DNA sequences, synthesizing and assembling DNA, performing quality control, measurement and model-based characterization of a DNA part’s encoded behavior, submitting characterized parts to inventories, and publishing data sheets. Ideally, each cycle generates new knowledge that feeds back into new cycles in the form of alternative approaches, reformulated problems, or forward specifications for future designs.

In addition to the logical workflow order described above, other simple workflow patterns are allowed as well. An Activity that generates an object of type X may use other objects also of type X as inputs. For example a laboratory construct may go through sequential stages of processing before the target Build is complete. Examples are enzymatic treatment, DNA purification, and transformation. At each stage, a Build uses a prior Build. Therefore Builds may use prior Builds as well as Designs.

[image: _images/sep_017_fig3.png]

Branching and intersecting workflows are other common patterns of usage. For example, an intersecting workflow occurs when a construct is assembled out of multiple physical components, such as occurs when a Gibson assembly uses multiple DNA samples. Multiple Build inputs are used to generate the new Build. Another kind of intersecting workflow occurs when an experimental Test is performed on multiple Build samples. Conversely, branching patterns may also occur. For example, a branching workflow occurs when transformation of a single Gibson reaction mixture generates multiple clones, each of which may be subjected to their own unique history of subsequent testing and analysis.

from sbol import *

doc=Document()
setHomespace('https://sys-bio.org')

doc = Document()

workflow_step_1 = Activity('build_1')
workflow_step_2 = Activity('build_2')
workflow_step_3 = Activity('build_3')
workflow_step_4 = Activity('build_4')
workflow_step_5 = Activity('build_5')
workflow_step_6 = Activity('test_1')
workflow_step_7 = Activity('analysis_1')

workflow_step_1.plan = Plan('PCR_protocol_part1')
workflow_step_2.plan = Plan('PCR_protocol_part2')
workflow_step_3.plan = Plan('PCR_protocol_part3')
workflow_step_4.plan = Plan('gibson_assembly')
workflow_step_5.plan = Plan('transformation')
workflow_step_6.plan = Plan('promoter_characterization')
workflow_step_7.plan = Plan('parameter_optimization')

setHomespace('')
Config.setOption('sbol_compliant_uris', False) # Temporarily disable auto-construction of URIs

workflow_step_1.agent = Agent('mailto:jdoe@sbols.org')
workflow_step_2.agent = workflow_step_1.agent
workflow_step_3.agent = workflow_step_1.agent
workflow_step_4.agent = workflow_step_1.agent
workflow_step_5.agent = workflow_step_1.agent
workflow_step_6.agent = Agent('http://sys-bio.org/plate_reader_1')
workflow_step_7.agent = Agent('http://tellurium.analogmachine.org')

Config.setOption('sbol_compliant_uris', True)
setHomespace('https://sys-bio.org')

doc.addActivity([workflow_step_1, workflow_step_2, workflow_step_3, workflow_step_4, workflow_step_5, workflow_step_6, workflow_step_7])

target = Design('target')
part1 = workflow_step_1.generateBuild('part1', target)
part2 = workflow_step_2.generateBuild('part2', target)
part3 = workflow_step_3.generateBuild('part3', target)
gibson_mix = workflow_step_4.generateBuild('gibson_mix', target, [part1, part2, part3])
clones = workflow_step_5.generateBuild(['clone1', 'clone2', 'clone3'], target, gibson_mix)
experiment1 = workflow_step_6.generateTest('experiment1', clones)
analysis1 = workflow_step_7.generateAnalysis('analysis1', experiment1)

response = doc.write('dbtl.xml')
print(response)

API

	
class Activity(*args)

	A generated Entity is linked through a wasGeneratedBy relationship to an
Activity, which is used to describe how different Agents and other entities were
used. An Activity is linked through a qualifiedAssociation to Associations, to
describe the role of agents, and is linked through qualifiedUsage to Usages to
describe the role of other entities used as part of the activity. Moreover, each
Activity includes optional startedAtTime and endedAtTime properties. When using
Activity to capture how an entity was derived, it is expected that any
additional information needed will be attached as annotations. This may include
software settings or textual notes. Activities can also be linked together using
the wasInformedBy relationship to provide dependency without explicitly
specifying start and end times.

	startedAtTime : DateTimeProperty

	
	endedAtTimeDateTimeProperty

	The endedAtTime property is OPTIONAL and contains a dateTime (see section
Section 12.7) value, indicating when the activity ended.

	
	wasInformedByReferencedObject

	The wasInformedBy property is OPTIONAL and contains a URI of another
activity.

	
	associationsOwnedObject< Association >

	The qualifiedAssociation property is OPTIONAL and MAY contain a set of URIs
that refers to Association.

	
	usagesOwnedObject< Usage >

	The qualifiedUsage property is OPTIONAL and MAY contain a set of URIs that
refers to Usage objects.

	
	agentOwnedObject< Agent >

	An Agent object may be specified here, and it will be synced with the
Association::agent property.

	
	planOwnedObject< Plan >

	A Plan object may be specified here, and it will be synced with the
Association::plan property.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/provo.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
generateAnalysis(uris, test_usages, analysis_usages=None)

	Generate one or more Analysis objects.

	
	uris

	One or more identifiers for the new Analysis object(s). If the
sbol_compliant_uris option configuration is enabled, then the user
should specify simple identifiers for the objects. Otherwise the user
must provide full URIs each consisting of a scheme, namespace, and identifier.

	
	test_usages

	A singleton Test object, list of Test objects, or None. Test usages represent
raw experimental data used to generate an Analysis.

	
	analysis_usages

	A singleton Analysis object, list of Analysis objects, or None. Analysis usages
represent other analyses that the user wants to integrate into
a single data set or data sheet.

A singleton Analysis or list of Analyses depending on whether the user specifies
a single URI or list of URIs.

	
generateBuild(uris, design_usages, build_usages=None)

	Generate one or more Build objects

	
	uris

	One or more identifiers for the new Build object(s). If the
sbol_compliant_uris option configuration is enabled, then the user
should specify simple identifiers for the objects. Otherwise the user
must provide full URIs each consisting of a scheme, namespace, and identifier.

	
	design_usages

	A singleton Design object, list of Design objects, or None. Design usages represent
the engineer’s intent or “blueprint” for the Build target.

	
	build_usages

	A singleton Build object, list of Build objects, or None. Build usages
represent physical components, such as laboratory samples, that are assembled
into the target Build.

A singleton Build or list of Builds depending on whether the user specifies
a single URI or list of URIs.

	
generateDesign(uris, analysis_usages, design_usages=None)

	Generate one or more Design objects

	
	uris

	One or more identifiers for the new Design object(s). If the
sbol_compliant_uris option configuration is enabled, then the user
should specify simple identifiers for the objects. Otherwise the user
must provide full URIs each consisting of a scheme, namespace, and identifier.

	
	analysis_usages

	A singleton Analysis object, list of Analysis objects, or None. Analysis usages
represent a prediction or forward-specification of the new Design’s intended
structure or function.

	
	design_usages

	A singleton Design object, list of Design objects, or None. Design usages may
represent previous Designs that are being tranformed or composed into
the new Design.

A singleton Design or list of Designs depending on whether the user specifies
a single URI or list of URIs.

	
generateTest(uris, build_usages, test_usages=None)

	Generate one or more Test objects

	
	uris

	One or more identifiers for the new Test object(s). If the
sbol_compliant_uris option configuration is enabled, then the user
should specify simple identifiers for the objects. Otherwise the user
must provide full URIs each consisting of a scheme, namespace, and identifier.

	
	build_usages

	A singleton Build object, list of Build objects, or None. Build usages represent
samples or analytes used in an experimental measurement.

	
	test_usages

	A singleton Test object, list of Test objects, or None. Test usages
represent other measurements or raw data that the user wants to integrate into
a single data set.

A singleton Test or list of Tests depending on whether the user specifies
a single URI or list of URIs.

	
class ActivityProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Agent(*args)

	Examples of agents are person, organisation or software. These agents should be
annotated with additional information, such as software version, needed to be
able to run the same software again.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/provo.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class AgentProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class AliasedOwnedFunctionalComponent(property_owner, sbol_uri, alias_uri, lower_bound, upper_bound, validation_rules)

	
	alias : rdf_type

	python_iter : std::vector< std::string >::iterator

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
create(uri)

	create(uri) -> SBOLClass &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

	
get(*args)

	get(uri=”“) -> SBOLClass &

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class Analysis(*args)

	
	
	rawDataReferencedObject

	A reference to a Test object which contains the raw data for an Analysis.

	
	dataFilesReferencedObject

	References to file Attachments which contain experimental data sets.

	
	dataSheetReferencedObject

	A reference to a datasheet file.

	
	consensusSequenceOwnedObject< Sequence >

	A sequence object that represents a consensus sequence from DNA sequencing
data.

	
	fittedModelOwnedObject< Model >

	A Model derived from fitting an experimental data set.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
reportAmbiguity()

	
	`reportAmbiguity() -> std::unordered_map< std::string, std::tuple< int, int,

	float > >`

	
reportCoverage()

	
	`reportCoverage() -> std::unordered_map< std::string, std::tuple< int, int,

	float > >`

	
reportError()

	
	`reportError() -> std::unordered_map< std::string, std::tuple< int, int, float >

	>`

	
reportIdentity()

	
	`reportIdentity() -> std::unordered_map< std::string, std::tuple< int, int,

	float > >`

	
verifyTarget(consensus_sequence)

	verifyTarget(consensus_sequence)

Compare a consensus Sequence to the target Sequence.

	
class AnalysisProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Association(*args)

	An Association is linked to an Agent through the agent relationship. The
Association includes the hadRole property to qualify the role of the Agent in
the Activity.

	
	agentReferencedObject

	The agent property is REQUIRED and MUST contain a URI that refers to an
Agent object.

	
	rolesURIProperty

	The hadRole property is REQUIRED and MUST contain a URI that refers to a
particular term describing the usage of the agent.

	
	planReferencedObject

	The hadPlan property is OPTIONAL and contains a URI that refers to a Plan.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/provo.h

	
class AssociationProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Attachment(*args)

	The Attachment class is a general container for data files, especially
experimental data files. Attachment is a TopLevel object, and any other TopLevel
object can refer to a list of attachments.

	
	sourceURIProperty

	The source is a link to the external file and is REQUIRED.

	format : URIProperty

	size : IntProperty

	hash : TextProperty

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/attachment.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class AttachmentProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Build(*args)

	A Build is a realization of a Design. For practical purposes, a Build can
represent a biological clone, a plasmid, or other laboratory sample. For a given
Design, there may be multiple Builds realized in the lab. A Build represents the
second step in libSBOL’s formalized Design-Build-Test-Analyze workflow.

	
	designReferencedObject

	A reference to a Design object which represents the intended structure and
function for this Build.

	
	structureOwnedObject< ComponentDefinition >

	The experimentally verified structure of the construct as verified by DNA
sequencing or other analysis.

	
	behaviorOwnedObject< ModuleDefinition >

	The observed behavior of the constructed system.

	sysbio_type : URIProperty

	_structure : ReferencedObject

	_behavior : ReferencedObject

	built : URIProperty

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/dbtl.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class BuildProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Collection(*args)

	The Collection class is a class that groups together a set of TopLevel objects
that have something in common.

Some examples of Collection objects: . Results of a query to find all
ComponentDefinition objects in a repository that function as promoters . A set
of ModuleDefinition objects representing a library of genetic logic gates. . A
ModuleDefinition for a complexdesign, and all of the ModuleDefinition,
ComponentDefinition, Sequence, and Model objects used to provide its full
specification.

	
	membersURIProperty

	The members property of a Collection is OPTIONAL and MAY contain a set of
URI references to zero or more TopLevel objects.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/collection.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class CollectionProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class CombinatorialDerivation(*args)

	A ComponentDeriviation specifies the composition of a combinatorial design or
variant library for common use cases in synthetic biology, such as tuning the
performance of a genetic circuit or biosynthetic pathway through combinatorial
DNA assembly and screening.

	
	strategyURIProperty

	The strategy property is OPTIONAL and has a data type of URI.

Table 1 provides a list of REQUIRED strategy URIs. If the strategy
property is not empty, then it MUST contain a URI from Table 1. This
property recommends how many ComponentDefinition objects a user SHOULD
derive from the template ComponentDefinition.
Strategy URI

Description

http://sbols.org/v2#enumerate

A user SHOULD derive all ComponentDefinition objects with a unique
substructure as specified by the Component objects contained by the
template ComponentDefinition and the VariableComponent objects
contained by the CombinatorialDerivation.

http://sbols.org/v2#sample

A user SHOULD derive a subset of all ComponentDefinition objects with a
unique substructure as specified by the Component objects contained by the
template ComponentDefinition and the VariableComponent objects
contained by the CombinatorialDerivation. The manner in which this subset
is chosen is for the user to decide.

	
	masterTemplateReferencedObject

	The master property is REQUIRED and MUST contain a URI that refers to a
ComponentDefinition. This ComponentDefinition is expected to serve as a
template for the derivation of new ComponentDefinition objects.
Consequently, its components property SHOULD contain one or more Component
objects that describe its substructure (referred to hereafter as template
Component objects), and its sequenceConstraints property MAY also contain
one or more SequenceConstraint objects that constrain this substructure.

	
	variableComponentsOwnedObject< VariableComponent >

	VariableComponent objects denote the choices available when deriving the
library of variants specified by a CombinatorialDerivation.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/combinatorialderivation.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class CombinatorialDerivationProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Component(*args)

	The Component class is used to compose ComponentDefinition objects into a
structural hierarchy. For example, the ComponentDefinition of a gene could
contain four Component objects: a promoter, RBS, CDS, and terminator. In turn,
the ComponentDefinition of the promoter Component could contain Component
objects defined as various operator sites.

	
	rolesURIProperty

	The expected purpose and function of a genetic part are described by the
roles property of ComponentDefinition.

However, the same building block might be used for a different purpose in an
actual design. In other words, purpose and function are sometimes determined
by context. The roles property comprises an OPTIONAL set of zero or more
role URIs describing the purpose or potential function of this Components
included sub-ComponentDefinition in the context of its parent
ComponentDefinition. If provided, these role URIs MUST identify terms from
appropriate ontologies. Roles are not restricted to describing biological
function; they may annotate a Components function in any domain for which
an ontology exists. It is RECOMMENDED that these role URIs identify terms
that are compatible with the type properties of both this Components parent
ComponentDefinition and its included sub-ComponentDefinition. For example, a
role of a Component which belongs to a ComponentDefinition of type DNA and
includes a sub-ComponentDefinition of type DNA might refer to terms from the
Sequence Ontology. See documentation for ComponentDefinition for a table of
recommended ontology terms for roles.

	
	roleIntegrationURIProperty

	A roleIntegration specifies the relationship between a Component instances
own set of roles and the set of roles on the included sub-
ComponentDefinition.

The roleIntegration property has a data type of URI. A Component instance
with zero roles MAY OPTIONALLY specify a roleIntegration. A Component
instance with one or more roles MUST specify a roleIntegration from the
table below If zero Component roles are given and no Component
roleIntegration is given, then http://sbols.org/v2#mergeRoles is assumed. It
is RECOMMENDED to specify a set of Component roles only if the integrated
result set of roles would differ from the set of roles belonging to this
Components included sub-ComponentDefinition.
roleIntegration URI

Description

http://sbols.org/v2#overrideRoles

In the context of this Component, ignore any roles given for the included
sub-ComponentDefinition.

Instead use only the set of zero or more roles given for this Component.

http://sbols.org/v2#mergeRoles

Use the union of the two sets: both the set of zero or more roles given for
this Component as well

as the set of zero or more roles given for the included sub-
ComponentDefinition.

	
	definitionReferencedObject

	The definition property is a REQUIRED URI that refers to the
ComponentDefinition of the ComponentInstance.

As described in the previous section, this ComponentDefinition effectively
provides information about the types and roles of the ComponentInstance. The
definition property MUST NOT refer to the same ComponentDefinition as the
one that contains the ComponentInstance. Furthermore, ComponentInstance
objects MUST NOT form a cyclical chain of references via their definition
properties and the ComponentDefinition objects that contain them. For
example, consider the ComponentInstance objects A and B and the
ComponentDefinition objects X and Y . The reference chain X contains A, A
isdefinedby Y, Y contains B, and B isdefinedby X iscyclical.

	
	accessURIProperty

	The access property is a REQUIRED URI that indicates whether the
ComponentInstance can be referred to remotely by a MapsTo.

The value of the access property MUST be one of the following URIs.
Access URI

Description

http://sbols.org/v2#public

The ComponentInstance MAY be referred to by remote MapsTo objects

http://sbols.org/v2#private

The ComponentInstance MAY be referred to by remote MapsTo objects

	
	mapsTosOwnedObject< MapsTo >

	The mapsTos property is OPTIONAL and MAY contain a set of MapsTo objects
that refer to and link together ComponentInstance objects (both Component
objects and FunctionalComponent objects) within a larger design.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/component.h

	
class ComponentDefinition(*args)

	The ComponentDefinition class represents the structural entities of a biological
design.

The primary usage of this class is to represent structural entities with
designed sequences, such as DNA, RNA, and proteins, but it can also be used to
represent any other entity that is part of a design, such as small molecules,
proteins, and complexes

	
	typesURIProperty

	The types property is a REQUIRED set of URIs that specifies the category of
biochemical or physical entity (for example DNA, protein, or small molecule)
that a ComponentDefinition object abstracts for the purpose of engineering
design.

The types property of every ComponentDefinition MUST contain one or more
URIs that MUST identify terms from appropriate ontologies, such as the
BioPAX ontology or the ontology of Chemical Entities of Biological Interest.
See the table below for examples.
Type

URI for BioPAX Term

LibSBOL symbol

DNA

http://www.biopax.org/release/biopax-level3.owl#DnaRegion

BIOPAX_DNA

RNA

http://www.biopax.org/release/biopax-level3.owl#RnaRegion

BIOPAX_RNA

Protein

http://www.biopax.org/release/biopax-level3.owl#Protein

BIOPAX_PROTEIN

Small Molecule

http://www.biopax.org/release/biopax-level3.owl#SmallMolecule

BIOPAX_SMALL_MOLECULE

Complex

http://www.biopax.org/release/biopax-level3.owl#Complex

BIOPAX_COMPLEX

	
	rolesURIProperty

	The roles property is an OPTIONAL set of URIs that clarifies the potential
function of the entity represented by a ComponentDefinition in a biochemical
or physical context.

The roles property of a ComponentDefinition MAY contain one or more URIs
that MUST identify terms from ontologies that are consistent with the types
property of the ComponentDefinition. For example, the roles property of a
DNA or RNA ComponentDefinition could contain URIs identifying terms from the
Sequence Ontology (SO). See the table below for common examples
Role

URI for Sequence Ontology Term

LibSBOL symbol

Miscellaneous

http://identifiers.org/so/SO:0000001

SO_MISC

Promoter

http://identifiers.org/so/SO:0000167

SO_PROMOTER

RBS

http://identifiers.org/so/SO:0000139

SO_RBS

CDS

http://identifiers.org/so/SO:0000316

SO_CDS

Terminator

http://identifiers.org/so/SO:0000141

SO_TERMINATOR

Gene

http://identifiers.org/so/SO:0000704

Operator

http://identifiers.org/so/SO:0000057

Engineered Gene

http://identifiers.org/so/SO:0000280

mRNA

http://identifiers.org/so/SO:0000234

Effector

http://identifiers.org/chebi/CHEBI:35224

	
	componentsOwnedObject< Component >

	The components property is OPTIONAL and MAY specify a set of Component
objects that are contained by the ComponentDefinition. The components
properties of ComponentDefinition objects can be used to construct a
hierarchy of Component and ComponentDefinition objects. If a
ComponentDefinition in such a hierarchy refers to one or more Sequence
objects, and there exist ComponentDefinition objects lower in the hierarchy
that refer to Sequence objects with the same encoding, then the elements
properties of these Sequence objects SHOULD be consistent with each other,
such that well-defined mappings exist from the lower level elements to the
higher level elements. This mapping is also subject to any restrictions on
the positions of the Component objects in the hierarchy that are imposed by
the SequenceAnnotation or SequenceConstraint objects contained by the
ComponentDefinition objects in the hierarchy. The set of relations between
Component and ComponentDefinition objects is strictly acyclic.

	
	sequencesReferencedObject

	The sequences property is OPTIONAL and MAY include a URI that refer to a
Sequence object. The referenced object defines the primary structure of the
ComponentDefinition.

	sequence : OwnedObject< Sequence >

	
	sequenceAnnotationsOwnedObject< SequenceAnnotation >

	The sequenceAnnotations property is OPTIONAL and MAY contain a set of
SequenceAnnotation objects. Each SequenceAnnotation specifies and describes
a potentially discontiguous region on the Sequence objects referred to by
the ComponentDefinition.

	
	sequenceConstraintsOwnedObject< SequenceConstraint >

	The sequenceConstraints property is OPTIONAL and MAY contain a set of
SequenceConstraint objects. These objects describe any restrictions on the
relative, sequence-based positions and/or orientations of the Component
objects contained by the ComponentDefinition. For example, the
ComponentDefinition of a gene might specify that the position of its
promoter Component precedes that of its CDS Component. This is particularly
useful when a ComponentDefinition lacks a Sequence and therefore cannot
specify the precise, sequence-based positions of its Component objects using
SequenceAnnotation objects.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/componentdefinition.h

	
addDownstreamFlank(target, elements)

	addDownstreamFlank(target, elements)

This may be a useful method when building up SBOL representations of natural DNA
sequences.

For example it is often necessary to specify components that are assumed to have
no meaningful role in the design, but are nevertheless important to fill in
regions of sequence. This method autoconstructs a ComponentDefinition and
Sequence object to create an arbitrary flanking sequence around design
Components. The new ComponentDefinition will have Sequence Ontology type of
flanking_sequence.

	
	target

	The new flanking sequence will be placed downstream of the target

	
	elements

	The primary sequence elements will be assigned to the autoconstructed
Sequence object. The encoding is inferred

	
addUpstreamFlank(target, elements)

	addUpstreamFlank(target, elements)

This may be a useful method when building up SBOL representations of natural DNA
sequences.

For example it is often necessary to specify components that are assumed to have
no meaningful role in the design, but are nevertheless important to fill in
regions of sequence. This method autoconstructs a ComponentDefinition and
Sequence object to create an arbitrary flanking sequence around design
Components. The new ComponentDefinition will have Sequence Ontology type of
flanking_region or SO:0000239

	
	target

	The new flanking sequence will be placed upstream of the target

	
	elements

	The primary sequence elements will be assigned to the autoconstructed
Sequence object. The encoding is inferred

	
assemble(*args)

	assemble(list_of_uris, assembly_standard=”“)

Assembles ComponentDefinitions into an abstraction hierarchy.

The resulting data structure is a partial design, still lacking a primary
structure or explicit sequence. To form a primary structure out of the
ComponentDefinitions, call linearize after calling assemble. To fully realize
the target sequence, use Sequence::assemble().

	
	list_of_uris

	A list of URIs for the constituent ComponentDefinitions, or displayIds if
using SBOL-compliant URIs

	
	assembly_standard

	An optional argument such as IGEM_STANDARD_ASSEMBLY that affects how
components are composed and the final target sequence

	
assemblePrimaryStructure(*args)

	assemblePrimaryStructure(primary_structure, doc, assembly_standard=”“)

Assembles ComponentDefinition into a linear primary structure.

The resulting data structure is a partial design, still lacking an explicit
sequence. To fully realize the target sequence, use Sequence::assemble().

	
	list_of_components

	A list of subcomponents that will compose this ComponentDefinition

	
	doc

	The Document to which the assembled ComponentDefinitions will be added

	
	assembly_standard

	An optional argument such as IGEM_STANDARD_ASSEMBLY that affects how
components are composed and the final target sequence

	
build()

	build() -> ComponentDefinition &

	
compile()

	compile() -> std::string

Compiles an abstraction hierarchy of ComponentDefinitions into a nucleotide
sequence. If no Sequence object is associated with this ComponentDefinition, one
will be automatically instantiated.

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
disassemble(range_start=1)

	disassemble(range_start=1)

Instantiates a Component for every SequenceAnnotation. When converting from a
flat GenBank file to a flat SBOL file, the result is a ComponentDefinition with
SequenceAnnotations. This method will convert the flat SBOL file into
hierarchical SBOL.

	
getDownstreamComponent(current_component)

	getDownstreamComponent(current_component) -> Component &

Get the downstream Component.

The downstream component

	
getFirstComponent()

	getFirstComponent() -> Component &

Gets the first Component in a linear sequence.

The first component in sequential order

	
getInSequentialOrder()

	getInSequentialOrder() -> std::vector< Component * >

Orders this ComponentDefinition’s member Components into a linear arrangement
based on Sequence Constraints.

Primary sequence structure

	
getLastComponent()

	getLastComponent() -> Component &

Gets the last Component in a linear sequence.

The last component in sequential order

	
getPrimaryStructure()

	getPrimaryStructure() -> std::vector< ComponentDefinition * >

Get the primary sequence of a design in terms of its sequentially ordered
Components.

	
getUpstreamComponent(current_component)

	getUpstreamComponent(current_component) -> Component &

Get the upstream Component.

The upstream component

	
hasDownstreamComponent(current_component)

	hasDownstreamComponent(current_component) -> int

Checks if the specified Component has a Component downstream in linear
arrangement on the DNA strand.

Checks that the appropriate SequenceConstraint exists.

	
	current_component

	A Component in this ComponentDefinition

1 if found, 0 if not

	
hasUpstreamComponent(current_component)

	hasUpstreamComponent(current_component) -> int

Checks if the specified Component has a Component upstream in linear arrangement
on the DNA strand.

Checks that the appropriate SequenceConstraint exists.

	
	current_component

	A Component in this ComponentDefinition

1 if found, 0 if not

	
insertDownstream(target, insert)

	insertDownstream(target, insert)

Insert a Component downstream of another in a primary sequence, shifting any
adjacent Components dowstream as well.

	
	target

	The target Component will be upstream of the insert Component after this
operation.

	
	insert

	The insert Component is inserted downstream of the target Component.

	
insertUpstream(target, insert)

	insertUpstream(target, insert)

Insert a Component upstream of another in a primary sequence, shifting any
adjacent Components upstream as well.

	
	target

	The target Component will be downstream of the insert Component after this
operation.

	
	insert

	The insert Component is inserted upstream of the target Component.

	
isComplete(*args)

	isComplete() -> bool

Recursively verifies that the parent Document contains a ComponentDefinition and
Sequence for each and every ComponentDefinition in the abstraction hierarchy.

If a ComponentDefinition is not complete, some objects are missing from the
Document or externally linked. Diagnose with isComplete(std::string &msg)

true if the abstraction hierarchy is complete, false otherwise.

	
isRegular(*args)

	isRegular() -> bool

Recursively checks if this ComponentDefinition defines a SequenceAnnotation and
Range for every Sequence.

Regularity is more stringent than completeness. A design must be complete to be
regular. If the Component is irregular, diagnose with isRegular(std::string
&msg)

true if the abstraction hierarchy is regular, false otherwise.

	
linearize(*args)

	linearize(list_of_uris)

	
participate(species)

	participate(species)

A convenience method that assigns a component to participate in a biochemical
reaction.

Behind the scenes, it auto-constructs a FunctionalComponent for this
ComponentDefinition and assigns it to a Participation

	
	species

	A Participation object (ie, participant species in a biochemical
Interaction).

	
updateSequence(*args)

	updateSequence(composite_sequence=”“) -> std::string

Assemble a parent ComponentDefinition’s Sequence from its subcomponent
Sequences.

	
	composite_sequence

	A recursive parameter, use default value

The assembled parent sequence

	
class ComponentDefinitionProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class ComponentInstance(*args, **kwargs)

	
	
	definitionReferencedObject

	The definition property is a REQUIRED URI that refers to the
ComponentDefinition of the ComponentInstance.

As described in the previous section, this ComponentDefinition effectively
provides information about the types and roles of the ComponentInstance. The
definition property MUST NOT refer to the same ComponentDefinition as the
one that contains the ComponentInstance. Furthermore, ComponentInstance
objects MUST NOT form a cyclical chain of references via their definition
properties and the ComponentDefinition objects that contain them. For
example, consider the ComponentInstance objects A and B and the
ComponentDefinition objects X and Y . The reference chain X contains A, A
isdefinedby Y, Y contains B, and B isdefinedby X iscyclical.

	
	accessURIProperty

	The access property is a REQUIRED URI that indicates whether the
ComponentInstance can be referred to remotely by a MapsTo.

The value of the access property MUST be one of the following URIs.
Access URI

Description

http://sbols.org/v2#public

The ComponentInstance MAY be referred to by remote MapsTo objects

http://sbols.org/v2#private

The ComponentInstance MAY be referred to by remote MapsTo objects

	
	mapsTosOwnedObject< MapsTo >

	The mapsTos property is OPTIONAL and MAY contain a set of MapsTo objects
that refer to and link together ComponentInstance objects (both Component
objects and FunctionalComponent objects) within a larger design.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

	
class ComponentProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Config

	A class which contains global configuration variables for the libSBOL
environment. Intended to be used like a static class, configuration variables
are accessed through the Config::setOptions and Config::getOptions methods.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/config.h

	
static getOption(option)

	getOption(option) -> std::string

Get current option value for online validation and conversion.

	
	option

	The option key

	
static setOption(*args)

	setOption(option, value)

	
Config_getOption(option)

	getOption(option) -> std::string

Get current option value for online validation and conversion.

	
	option

	The option key

	
Config_setOption(*args)

	setOption(option, value)

	
class Cut(*args)

	The Cut class specifies a location between two coordinates of a Sequence’s
elements. class Cut : public Location.

	
	atIntProperty

	This property specifies the location between this nucleotide coordinate (or
other sequence element) and the nucleotide coordinate immediately following
it. When equal to zero, the specified region is immediately before the first
nucleotide or character in the elements.

	
	orientationURIProperty

	The orientation indicates how a region of double-stranded DNA represented by
the parent SequenceAnnotation and its associated Component are oriented.

The orientation may be one of the following values. By default it is set to
SBOL_ORIENTATION_INLINE.
Orientation URI

libSBOL Symbol

http://sbols.org/v2#inline

SBOL_ORIENTATION_INLINE

http://sbols.org/v2#reverseComplement

SBOL_ORIENTATION_REVERSE_COMPLEMENT

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/location.h

	
class DateTimeProperty(*args)

	Contains a DateTime string following XML Schema.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/properties.h

	
stampTime()

	stampTime() -> std::string

Set this property with the current time.

	
class Design(*args)

	This class represents a biological Design. A Design is a conceptual
representation of a biological system that a synthetic biologist intends to
build. A Design is the first object created in libSBOL’s formalized Design-
Build-Test-Analysis workflow.

	
	structureOwnedObject< ComponentDefinition >

	The target biological structure for synthesis or other molecular assembly.

	
	functionOwnedObject< ModuleDefinition >

	The intended function and predicted behavior of the Design object.

	
	characterizationReferencedObject

	A reference to an Analysis or multiple Analysis objects that contain
characterization data, previously verified experimental knowledge, or
explanatory models that inform a Design.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/dbtl.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class DesignProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Document(*args)

	Read and write SBOL using a Document class. The Document is a container for
Components, Modules, and all other SBOLObjects.

	designs : OwnedObject< Design >

	builds : OwnedObject< Build >

	tests : OwnedObject< Test >

	analyses : OwnedObject< Analysis >

	componentDefinitions : OwnedObject< ComponentDefinition >

	moduleDefinitions : OwnedObject< ModuleDefinition >

	models : OwnedObject< Model >

	sequences : OwnedObject< Sequence >

	collections : OwnedObject< Collection >

	activities : OwnedObject< Activity >

	plans : OwnedObject< Plan >

	agents : OwnedObject< Agent >

	attachments : OwnedObject< Attachment >

	combinatorialderivations : OwnedObject< CombinatorialDerivation >

	implementations : OwnedObject< Implementation >

	sampleRosters : OwnedObject< SampleRoster >

	citations : URIProperty

	keywords : URIProperty

	python_iter : iterator

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/document.h

	
addComponentDefinition(*args)

	addComponentDefinition(sbol_obj)

	
addModel(*args)

	addModel(sbol_obj)

	
addModuleDefinition(*args)

	addModuleDefinition(sbol_obj)

	
addNamespace(*args)

	addNamespace(ns, prefix)

Add a new namespace to this Document.

	
	ns

	The namespace, eg. http://sbols.org/v2#

	
	prefix

	The namespace prefix, eg. sbol

	
addSequence(*args)

	addSequence(sbol_obj)

	
append(filename)

	append(filename)

Read an RDF/XML file and attach the SBOL objects to this Document.

New objects will be added to the existing contents of the Document

	
	filename

	The full name of the file you want to read (including file extension)

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
countTriples()

	countTriples() -> int

	
end()

	end() -> iterator

	
find(uri)

	find(uri) -> SBOLObject *

Search recursively for an SBOLObject in this Document that matches the uri.

	
	uri

	The identity of the object to search for

A pointer to the SBOLObject, or NULL if an object with this identity doesn’t
exist

	
find_property(uri)

	find_property(uri) -> SBOLObject *

Search this object recursively to see if it contains a member property with the
given RDF type.

	
	uri

	The RDF type of the property to search for.

A pointer to the object that contains a member property with the specified RDF
type, NULL otherwise

	
find_reference(uri)

	find_reference(uri) -> std::vector< SBOLObject * >

Search this object recursively to see if it contains a member property with the
given RDF type and indicated property value.

	
	uri

	A URI, either an ontology term or an object reference, to search for

A vector containing all objects found that contain the URI in a property value

	
generate(world, sbol_serializer, sbol_buffer, sbol_buffer_len, ios, base_uri)

	generate() -> SBOLClass &

	
getActivity(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getAgent(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getAnalysis(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getAttachment(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getBuild(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getCollection(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getCombinatorialDerivation(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getComponentDefinition(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getDesign(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getExperiment(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getExperimentalData(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getImplementation(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getModel(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getModuleDefinition(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getNamespaces()

	getNamespaces() -> std::vector< std::string >

A vector of namespaces Get namespaces contained in this Document

	
getPlan(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getSampleRoster(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getSequence(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
getTest(uri)

	get(uri) -> SBOLClass &

Retrieve an object from the Document.

	
	uri

	The identity of the SBOL object you want to retrieve

	
	SBOLClass

	The type of SBOL object

	
query_repository(command)

	query_repository(command) -> std::string

	
read(filename)

	read(filename)

Read an RDF/XML file and attach the SBOL objects to this Document.

Existing contents of the Document will be wiped.

	
	filename

	The full name of the file you want to read (including file extension)

	
readString(*args)

	readString(sbol)

Convert text in SBOL into data objects.

	
	sbol

	A string formatted in SBOL

	
request_comparison(diff_file)

	request_comparison(diff_file) -> std::string

Perform comparison on Documents using the online validation tool.

This is for cross-validation of SBOL documents with libSBOLj. Document
comparison can also be performed using the built-in compare method.

The comparison results

	
request_validation(sbol)

	request_validation(sbol) -> std::string

	
search_metadata(role, type, name, collection)

	search_metadata(role, type, name, collection) -> std::string

	
summary()

	summary() -> std::string

Get a summary of objects in the Document, including SBOL core object and custom
annotation objects.

	
validate()

	validate() -> std::string

Run validation on this Document via the online validation tool.

A string containing a message with the validation results

author: KC

	
write(filename)

	write(filename) -> std::string

Serialize all objects in this Document to an RDF/XML file.

	
	filename

	The full name of the file you want to write (including file extension)

A string with the validation results, or empty string if validation is disabled

	
writeString()

	writeString() -> std::string

Convert data objects in this Document into textual SBOL.

	
class EnzymeCatalysisInteraction(*args)

	
	enzyme : AliasedProperty< FunctionalComponent >

	substrates : AliasedProperty< FunctionalComponent >

	products : AliasedProperty< FunctionalComponent >

	cofactors : AliasedProperty< FunctionalComponent >

	sideproducts : AliasedProperty< FunctionalComponent >

	
	typesURIProperty

	The types property is a REQUIRED set of URIs that describes the behavior
represented by an Interaction.

The types property MUST contain one or more URIs that MUST identify terms
from appropriate ontologies. It is RECOMMENDED that at least one of the URIs
contained by the types property refer to a term from the occurring entity
branch of the Systems Biology Ontology (SBO). (See
http://www.ebi.ac.uk/sbo/main/) The following table provides a list of
possible SBO terms for the types property and their corresponding URIs.
Type

URI for SBO Term

LibSBOL symbol

Biochemical Reaction

http://identifiers.org/biomodels.sbo/SBO:0000176

SBO_BIOCHEMICAL_REACTION

Inhibition

http://identifiers.org/biomodels.sbo/SBO:0000169

SBO_INHIBITION

Stimulation

http://identifiers.org/biomodels.sbo/SBO:0000170

SBO_STIMULATION

Genetic Production

http://identifiers.org/biomodels.sbo/SBO:0000589

SBO_GENETIC_PRODUCTION

Non-Covalent Binding

http://identifiers.org/biomodels.sbo/SBO:0000177

SBO_NONCOVALENT_BINDING

Degradation

http://identifiers.org/biomodels.sbo/SBO:0000179

SBO_DEGRADATION

Control

http://identifiers.org/biomodels.sbo/SBO:0000168

SBO_CONTROL

	
	participationsOwnedObject< Participation >

	The participations property is an OPTIONAL and MAY contain a set of
Participation objects, each of which identifies the roles that its
referenced FunctionalComponent plays in the Interaction. Even though an
Interaction generally contains at least one Participation, the case of zero
Participation objects is allowed because it is plausible that a designer
might want to specify that an Interaction will exist, even if its
participants have not yet been determined.

	functionalComponents : OwnedObject< FunctionalComponent >

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

	
class Experiment(*args)

	
	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class ExperimentProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class ExperimentalData(*args)

	
	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class ExperimentalDataProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class FloatProperty(*args)

	FloatProperty objects are used to contain floats.

They can be used as member objects inside custom SBOL Extension classes.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/properties.h

	
get()

	get() -> double

Get the float value.

An integer

	
getAll()

	getAll() -> std::vector< double >

	
class FunctionalComponent(*args)

	The FunctionalComponent class is used to specify the functional usage of a
ComponentDefinition inside a ModuleDefinition. The ModuleDefinition describes
how the that describes how the FunctionalComponent interacts with others and
summarizes their aggregate function.

	
	directionURIProperty

	Each FunctionalComponent MUST specify via the direction property whether it
serves as an input, output, both, or neither for its parent ModuleDefinition
object.

The value for this property MUST be one of the URIs given in the table
below.
Direction URI

Description

LibSBOL Symbol

http://sbols.org/v2#in

Indicates that the FunctionalComponent is an input.

SBOL_DIRECTION_IN

http://sbols.org/v2#out

Indicates that the FunctionalComponent is an output.

SBOL_DIRECTION_OUT

http://sbols.org/v2#inout

Indicates that the FunctionalComponent is both an input and output

SBOL_DIRECTION_IN_OUT

http://sbols.org/v2#none

Indicates that the FunctionalComponent is neither an input or output.

SBOL_DIRECTION_NONE

	
	definitionReferencedObject

	The definition property is a REQUIRED URI that refers to the
ComponentDefinition of the ComponentInstance.

As described in the previous section, this ComponentDefinition effectively
provides information about the types and roles of the ComponentInstance. The
definition property MUST NOT refer to the same ComponentDefinition as the
one that contains the ComponentInstance. Furthermore, ComponentInstance
objects MUST NOT form a cyclical chain of references via their definition
properties and the ComponentDefinition objects that contain them. For
example, consider the ComponentInstance objects A and B and the
ComponentDefinition objects X and Y . The reference chain X contains A, A
isdefinedby Y, Y contains B, and B isdefinedby X iscyclical.

	
	accessURIProperty

	The access property is a REQUIRED URI that indicates whether the
ComponentInstance can be referred to remotely by a MapsTo.

The value of the access property MUST be one of the following URIs.
Access URI

Description

http://sbols.org/v2#public

The ComponentInstance MAY be referred to by remote MapsTo objects

http://sbols.org/v2#private

The ComponentInstance MAY be referred to by remote MapsTo objects

	
	mapsTosOwnedObject< MapsTo >

	The mapsTos property is OPTIONAL and MAY contain a set of MapsTo objects
that refer to and link together ComponentInstance objects (both Component
objects and FunctionalComponent objects) within a larger design.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/component.h

	
connect(interface_component)

	connect(interface_component)

This method connects module inputs and outputs.

This convenience method auto-constructs a MapsTo object. See Biosystem Design
for an example

	
	interface_component

	An input or output component from another ModuleDefinition that corresponds
with this component.

	
isMasked()

	isMasked() -> int

Used to tell if a FunctionalComponent is linked to an equivalent
FunctionalComponent in another ModuleDefinition.

1 if the FunctionalComponent has been over-rided by another FunctionalComponent,
0 if it hasn’t.

	
mask(masked_component)

	mask(masked_component)

This method is used to state that FunctionalComponents in separate
ModuleDefinitions are functionally equivalent.

Using this method will override the FunctionalComponent in the argument with the
FunctionalComponent calling the method. This is useful for overriding a generic,
template component with an explicitly defined component. This convenience method
auto-constructs a MapsTo object. See Biosystem Design for an example

	
	masked_component

	The FunctionalComponent that is being masked (over-ridden)

	
override(masked_component)

	override(masked_component)

This method is used to state that FunctionalComponents in separate
ModuleDefinitions are functionally equivalent.

Using this method will override the FunctionalComponent in the argument with the
FunctionalComponent calling the method. This is useful for overriding a generic,
template component with an explicitly defined component. This convenience method
auto-constructs a MapsTo object. See Biosystem Design for an example

	
	masked_component

	The FunctionalComponent that is being masked (over-ridden)

	
class FunctionalComponentProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class GeneProductionInteraction(uri, gene, product)

	
	gene : AliasedProperty< FunctionalComponent >

	product : AliasedProperty< FunctionalComponent >

	
	typesURIProperty

	The types property is a REQUIRED set of URIs that describes the behavior
represented by an Interaction.

The types property MUST contain one or more URIs that MUST identify terms
from appropriate ontologies. It is RECOMMENDED that at least one of the URIs
contained by the types property refer to a term from the occurring entity
branch of the Systems Biology Ontology (SBO). (See
http://www.ebi.ac.uk/sbo/main/) The following table provides a list of
possible SBO terms for the types property and their corresponding URIs.
Type

URI for SBO Term

LibSBOL symbol

Biochemical Reaction

http://identifiers.org/biomodels.sbo/SBO:0000176

SBO_BIOCHEMICAL_REACTION

Inhibition

http://identifiers.org/biomodels.sbo/SBO:0000169

SBO_INHIBITION

Stimulation

http://identifiers.org/biomodels.sbo/SBO:0000170

SBO_STIMULATION

Genetic Production

http://identifiers.org/biomodels.sbo/SBO:0000589

SBO_GENETIC_PRODUCTION

Non-Covalent Binding

http://identifiers.org/biomodels.sbo/SBO:0000177

SBO_NONCOVALENT_BINDING

Degradation

http://identifiers.org/biomodels.sbo/SBO:0000179

SBO_DEGRADATION

Control

http://identifiers.org/biomodels.sbo/SBO:0000168

SBO_CONTROL

	
	participationsOwnedObject< Participation >

	The participations property is an OPTIONAL and MAY contain a set of
Participation objects, each of which identifies the roles that its
referenced FunctionalComponent plays in the Interaction. Even though an
Interaction generally contains at least one Participation, the case of zero
Participation objects is allowed because it is plausible that a designer
might want to specify that an Interaction will exist, even if its
participants have not yet been determined.

	functionalComponents : OwnedObject< FunctionalComponent >

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

	
class GenericLocation(*args)

	the GenericLocation class is included as a starting point for specifying regions
on Sequence objects with encoding properties other than IUPAC and potentially
nonlinear structure. This class can also be used to set the orientation of a
SequenceAnnotation and any associated Component when their parent
ComponentDefinition is a partial design that lacks a Sequence.

	
	orientationURIProperty

	The orientation indicates how a region of double-stranded DNA represented by
the parent SequenceAnnotation and its associated Component are oriented.

The orientation may be one of the following values. By default it is set to
SBOL_ORIENTATION_INLINE.
Orientation URI

libSBOL Symbol

http://sbols.org/v2#inline

SBOL_ORIENTATION_INLINE

http://sbols.org/v2#reverseComplement

SBOL_ORIENTATION_REVERSE_COMPLEMENT

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/location.h

	
class Identified(*args)

	All SBOL-defined classes are directly or indirectly derived from the Identified
abstract class.

An Identified object is identified using a Uniform Resource Identifier (URI), a
unique string that identifies and refers to a specific object in an SBOL
document or in an online resource such as a DNA repository.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/identified.h

	
class Implementation(*args)

	An Implementation represents a real, physical instance of a synthetic biological
construct which may be associated with a laboratory sample. An Implementation
may be linked back to its original design (either a ModuleDefinition or
ComponentDefinition) using the wasDerivedFrom property inherited from the
Identified superclass.

	built : URIProperty

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/implementation.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class ImplementationProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class IntProperty(*args)

	IntProperty objects are used to contain integers.

They can be used as member objects inside custom SBOL Extension classes.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/properties.h

	
get()

	get() -> int

Get the integer value.

An integer

	
getAll()

	getAll() -> std::vector< int >

	
class Interaction(*args)

	The Interaction class provides more detailed descriptionof how the
FunctionalComponents are intended to work together. For example, this class can
be used to represent different forms of genetic regulation (e.g.,
transcriptional activation or repression), processes from the central dogma of
biology (e.g. transcription and translation), and other basic molecular
interactions (e.g., non-covalent binding or enzymatic phosphorylation).

	
	typesURIProperty

	The types property is a REQUIRED set of URIs that describes the behavior
represented by an Interaction.

The types property MUST contain one or more URIs that MUST identify terms
from appropriate ontologies. It is RECOMMENDED that at least one of the URIs
contained by the types property refer to a term from the occurring entity
branch of the Systems Biology Ontology (SBO). (See
http://www.ebi.ac.uk/sbo/main/) The following table provides a list of
possible SBO terms for the types property and their corresponding URIs.
Type

URI for SBO Term

LibSBOL symbol

Biochemical Reaction

http://identifiers.org/biomodels.sbo/SBO:0000176

SBO_BIOCHEMICAL_REACTION

Inhibition

http://identifiers.org/biomodels.sbo/SBO:0000169

SBO_INHIBITION

Stimulation

http://identifiers.org/biomodels.sbo/SBO:0000170

SBO_STIMULATION

Genetic Production

http://identifiers.org/biomodels.sbo/SBO:0000589

SBO_GENETIC_PRODUCTION

Non-Covalent Binding

http://identifiers.org/biomodels.sbo/SBO:0000177

SBO_NONCOVALENT_BINDING

Degradation

http://identifiers.org/biomodels.sbo/SBO:0000179

SBO_DEGRADATION

Control

http://identifiers.org/biomodels.sbo/SBO:0000168

SBO_CONTROL

	
	participationsOwnedObject< Participation >

	The participations property is an OPTIONAL and MAY contain a set of
Participation objects, each of which identifies the roles that its
referenced FunctionalComponent plays in the Interaction. Even though an
Interaction generally contains at least one Participation, the case of zero
Participation objects is allowed because it is plausible that a designer
might want to specify that an Interaction will exist, even if its
participants have not yet been determined.

	functionalComponents : OwnedObject< FunctionalComponent >

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/interaction.h

	
class InteractionProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Location(*args)

	The Location class specifies the strand orientation of a Component and can be
further extended by the Range, Cut, and GenericLocation classes.

	
	orientationURIProperty

	The orientation indicates how a region of double-stranded DNA represented by
the parent SequenceAnnotation and its associated Component are oriented.

The orientation may be one of the following values. By default it is set to
SBOL_ORIENTATION_INLINE.
Orientation URI

libSBOL Symbol

http://sbols.org/v2#inline

SBOL_ORIENTATION_INLINE

http://sbols.org/v2#reverseComplement

SBOL_ORIENTATION_REVERSE_COMPLEMENT

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/location.h

	
class LocationProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class MapsTo(*args)

	The purpose of the MapsTo class is to make identity relationships between
different ComponentInstances in functional and structural hierarchies more
clear. For example, a MapsTo object may be used to connect outputs and inputs
between different low-level ModuleDefinitions contained in a higher level Module
Definition. A MapsTo object may also be used to override a generic Component in
a low-level ModuleDefinition with an explicit Component in a high-level
ModuleDefinition, for example mapping a generic gene to an explicit component
with a name and sequence.

	
	refinementURIProperty

	Each MapsTo object MUST specify the relationship between its local and
remote ComponentInstance objects using one of the REQUIRED refinement URIs
provided in the table below.

Refinement URI

libSBOL Symbol

Description

http://sbols.org/v2#useRemote

SBOL_REFINEMENT_USE_REMOTE

All references to the local ComponentInstance MUST dereference to the
remote ComponentInstance instead.

http://sbols.org/v2#useLocal

SBOL_REFINEMENT_USE_LOCAL

In the context of the ComponentDefinition or ModuleDefinition that contains
the owner of the MapsTo, all references to the remote ComponentInstance
MUST dereference to the local ComponentInstance instead.

http://sbols.org/v2#verifyIdentical

SBOL_REFINEMENT_VERIFY_IDENTICAL

The definition properties of the local and remoteComponentInstance objects
MUST refer to the same ComponentDefinition.

http://sbols.org/v2#merge

SBOL_REFINEMENT_MERGE_DESCRIPTION

In the context of the ComponentDefinition or ModuleDefinition that
contains the owner of the MapsTo, all references to the local
ComponentInstance or the remote ComponentInstance MUST dereference
to both objects.

	
	localReferencedObject

	The identity of the lower level ComponentInstance.

	
	remoteReferencedObject

	The identity of the higher level ComponentInstance.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/mapsto.h

	
class MapsToProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Measurement(*args)

	

	
class MeasurementProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Model(*args)

	The purpose of the Model class is to serve as a placeholder for an external
computational model and provide additional meta-data to enable better reasoning
about the contents of this model.

In this way, there is minimal duplication of standardization efforts and users
of SBOL can formalize the function of a ModuleDefinition in the language of
their choice.

	
	sourceURIProperty

	The source property is REQUIRED and MUST contain a URI reference to the
source file for a model.

	
	languageURIProperty

	The language property is REQUIRED and MUST contain a URI that specifies the
language in which the model is implemented.

It is RECOMMENDED that this URI refer to a term from the EMBRACE Data and
Methods (EDAM) ontology. The Table below provides a list of terms from this
ontology and their URIs. If the language property of a Model is well-
described by one these terms, then it MUST contain the URI for this term as
its value.
Model Language

URI for EDAM Term

libSBOL Symbol

SBML

http://identifiers.org/edam/format_2585

EDAM_SBML

CellML

http://identifiers.org/edam/format_3240

EDAM_CELLML

BioPAX

http://identifiers.org/edam/format_3156

EDAM_BIOPAX

	
	frameworkURIProperty

	Model Language

URI for SBO Term

libSBOL Symbol

Continuous

http://identifiers.org/biomodels.sbo/SBO:0000062

SBO_CONTINUOUS

Discrete

http://identifiers.org/biomodels.sbo/SBO:0000063

SBO_DISCRETE

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/model.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class ModelProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Module(*args)

	The Module class represents a submodule of a ModuleDefinition within a
hierarchical design.

	
	definitionReferencedObject

	The definition property is a REQUIRED URI that refers to the
ModuleDefinition for the Module.

	
	mapsTosOwnedObject< MapsTo >

	The mapsTos property is an OPTIONAL set of MapsTo objects that refer to and
link ComponentInstance objects together within the heterarchy of Module,
ModuleDefinition, ComponentInstance, and ComponentDefinition objects.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/module.h

	
class ModuleDefinition(*args)

	The ModuleDefinition class represents a grouping of structural and functional
entities in a biological design. The primary usage of this class is to assert
the molecular interactions and abstract function of its child entities.

	
	rolesURIProperty

	The roles property is an OPTIONAL set of URIs that clarifies the intended
function of a ModuleDefinition. These URIs might identify descriptive
biological roles, such as metabolic pathway and signaling cascade, but
they can also identify identify logical roles, such as inverter or AND
gate, or other abstract roles for describing the function of design.
Interpretation of the meaning of such roles currently depends on the
software tools that read and write them.

	
	modulesOwnedObject< Module >

	The modules property is OPTIONAL and MAY specify a set of Module objects
contained by the ModuleDefinition. While the ModuleDefinition class is
analogous to a specification sheet for a system of interacting biological
elements, the Module class represents the occurrence of a particular
subsystem within the system. Hence, this class allows a system design to
include multiple instances of a subsystem, all defined by reference to the
same ModuleDefinition. For example, consider the ModuleDefinition for a
network of two-input repressor devices in which the particular repressors
have not been chosen yet. This ModuleDefinition could contain multiple
Module objects that refer to the same ModuleDefinition of an abstract two-
input repressor device. Note that the set of relations between Module and
ModuleDefinition objects is strictly acyclic.

	
	interactionsOwnedObject< Interaction >

	The interactions property is OPTIONAL and MAY specify a set of Interaction
objects within the ModuleDefinition. The Interaction class provides an
abstract, machine-readable representation of entity behavior within a
ModuleDefinition. Each Interaction contains Participation objects that
indicate the roles of the FunctionalComponent objects involved in the
Interaction.

	
	functionalComponentsOwnedObject< FunctionalComponent >

	The functionalComponents property is OPTIONAL and MAY specify a set of
FunctionalComponent objects contained by the ModuleDefinition. Just as a
Module represents an instance of a subsystem in the overall system
represented by a ModuleDefinition, a FunctionalComponent represents an
instance of a structural entity (represented by a ComponentDefinition) in
the system. This concept allows a ModuleDefinition to assert different
interactions for separate copies of the same structural entity if needed.
For example, a ModuleDefinition might contain multiple FunctionalComponent
objects that refer to the same promoter ComponentDefinition, but assert
different interactions for these promoter copies based on their separate
positions in another ComponentDefinition that represents the structure of
the entire system.

	
	modelsReferencedObject

	The models property is OPTIONAL and MAY specify a set of URI references to
Model objects. Model objects are placeholders that link ModuleDefinition
objects to computational models of any format. A ModuleDefinition object can
link to more than one Model since each might encode system behavior in a
different way or at a different level of detail.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/moduledefinition.h

	
assemble(*args)

	assemble(list_of_modules)

Assemble a high-level ModuleDefinition from lower-level submodules.

Autoconstructs Module objects in the process.

	
	list_of_modules

	A list of pointers to the submodule ModuleDefinitions

	
connect(output, input)

	connect(output, input)

Connects the output of a sub-Module with the input of another sub-Module.

Auto-constructs MapsTo objects.

	
	output

	A FunctionalComponent configured as a Module output (see setOutput)

	
	input

	A FunctionalComponent configured as a Module input (see setInput)

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
override(highlevel, lowlevel)

	override(highlevel, lowlevel)

Overrides a low-level component in an abstract sub-Module with a high-level
component in a parent ModuleDefinition, for example when overriding an abstract
template Module with explicit components.

	
	highlevel

	A high-level FunctionalComponent

	
	lowlevel

	A low-level FunctionalComponent in a nested sub-Module

	
setInput(*args)

	setInput(input)

Configures a FunctionalComponent as an input for a Module.

Useful for bottom-up assembly of Modules and sub-Modules

	
	input

	The FunctionalComponent that will be configured

	
setOutput(*args)

	setOutput(output)

Configures a FunctionalComponent as an output for a Module.

Useful for bottom-up assembly of Modules and sub-Modules.

	
	output

	The FunctionalComponent that will be configured

	
class ModuleDefinitionProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class ModuleProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class OwnedActivity(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedAgent(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedAnalysis(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedAssociation(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedAttachment(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedBuild(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedCollection(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedCombinatorialDerivation(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedComponent(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedComponentDefinition(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedDesign(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedExperiment(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedExperimentalData(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedFunctionalComponent(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedImplementation(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedInteraction(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedLocation(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedMapsTo(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedMeasurement(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedModel(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedModule(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedModuleDefinition(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedParticipation(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedPlan(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedSampleRoster(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedSequence(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedSequenceAnnotation(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedSequenceConstraint(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedTest(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedUsage(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class OwnedVariableComponent(*args)

	A container property that contains child objects.

Creates a composition out of two or more classes. In the SBOL specification,
compositional relationships are indicated in class diagrams by arrows with black
diamonds. A compositional relationship means that deleting the parent object
will delete the child objects, and adding the parent object to a Document will
also add the child object. Owned objects are stored in arbitrary order.

	
	SBOLClass

	The type of child SBOL object contained by this Property

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(sbol_obj)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
clear()

	clear()

Remove all children objects from the parent and destroy them.

	
create(uri)

	create(uri) -> Test &

	
createCut(uri)

	create(uri) -> Test &

	
createGenericLocation(uri)

	create(uri) -> Test &

	
createRange(uri)

	create(uri) -> Test &

	
define(definition_object)

	define(definition_object) -> SBOLClass &

Autoconstructs a child object and attaches it to the parent object.

Additionally, it sets the definition property of the child object, for example,
in the case of creating Components, FunctionalComponents, and Modules. The new
object will be constructed with default values specified in the constructor for
this type of object. If SBOLCompliance is enabled, the child object’s identity
will be constructed using the supplied displayId argument. Otherwise, the user
should supply a full URI.

	
	SBOLClass

	The type of SBOL object that will be created

	
	definition_object

	The returned object will reference the definition_object in its definition
property.

A reference to the child object check uniqueness of URI in Document

	
find(uri)

	find(uri) -> bool

	
	uri

	The full uniform resource identifier of the object to search for in this
property

A boolean indicating whether found or not

	
get(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getAll()

	getAll() -> std::vector< SBOLClass * >

Get all the objects contained in the property.

A vector of pointers to the objects

	
getCut(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getGenericLocation(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
getRange(*args)

	get(uri=”“) -> SBOLSubClass &

Get the child object.

	
	SBOLClass

	The type of the child object

	
	SBOLSubClass

	A derived class of SBOLClass. Use this type specialization when adding
multiple types of SBOLObjects to a container.

	
	uri

	The specific URI for a child object if this OwnedObject property contains
multiple objects,

A reference to the child object Returns a child object from the OwnedObject
property. If no URI is specified, the first object in this OwnedObject property
is returned.

	
remove(*args)

	remove(index=0)

Remove an object from the list of objects and destroy it.

	
	index

	A numerical index for the object.

	
set(sbol_obj)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
class PartShop(*args)

	A class which provides an API front-end for online bioparts repositories.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/partshop.h

	
addSynBioHubAnnotations(doc)

	addSynBioHubAnnotations(doc)

	
attachFile(topleveluri, filename)

	attachFile(topleveluri, filename)

Upload and attach a file to a TopLevel object in a PartShop.

	
	top_level_uri

	The identity of the object to which the file will be attached

	
	file_name

	A path to the file attachment

	
countCollection()

	count() -> int

Return the count of objects contained in a PartShop.

	
	SBOLClass

	The type of SBOL object, usually a ComponentDefinition

	
countComponentDefinition()

	count() -> int

Return the count of objects contained in a PartShop.

	
	SBOLClass

	The type of SBOL object, usually a ComponentDefinition

	
downloadAttachment(*args)

	downloadAttachment(attachment_uri, path=”.”)

Download a file attached to a TopLevel object in an online repository.

	
	attachment_uri

	The full URI of the attached object

	
	path

	The target path to which the file will be downloaded

	
getURL()

	getURL() -> std::string

Returns the network address of the PartShop.

The URL of the online repository

	
login(*args)

	login(email, password=”“)

In order to submit to a PartShop, you must login first.

Register on SynBioHub to obtain account credentials.

	
	email

	The email associated with the user’s SynBioHub account

	
	password

	The user’s password

	
pull(*args)

	pull(uri, doc, recursive)

	
pullCollection(uri, doc, recursive=True)

	pull(uri, doc, recursive)

	
pullComponentDefinition(uri, doc, recursive=True)

	pull(uri, doc, recursive)

	
pullSequence(uri, doc, recursive=True)

	pull(uri, doc, recursive)

	
search(*args)

	search(q) -> SearchResponse &

Perform an ADVANCED search using a SearchQuery object.

	
	search_query

	A map of string key-value pairs. Keys are objectType, sbolTag, collection,
dcterms:tag, namespace/tag, offset, limit.

Search metadata A vector of maps with key-value pairs.

	
searchCount(*args)

	searchCount(q) -> int

Returns the number of search records matching the given criteria for an ADVANCED
search.

	
	search_query

	A map of string key-value pairs. See SearchQuery for required and optional
criteria.

An integer count.

	
searchRootCollections()

	searchRootCollections() -> std::string

Returns all Collections that are not members of any other Collections.

	
	doc

	A Document to add the Collections to

	
searchSubCollections(uri)

	searchSubCollections(uri) -> std::string

Returns all Collections that are members of the Collection specified by its URI.

	
	uri

	The URI of a Collection of Collections

	
	doc

	A Document to add the subcollections to

	
submit(*args)

	submit(doc, collection=”“, overwrite=0) -> std::string

Submit an SBOL Document to SynBioHub.

	
	doc

	The Document to submit

	
	collection

	The URI of an SBOL Collection to which the Document contents will be
uploaded

	
	overwrite

	An integer code: 0(default) - do not overwrite, 1 - overwrite, 2 - merge

	
class Participation(*args)

	Each Participation represents how a particular FunctionalComponent behaves in
its parent Interaction.

	
	rolesURIProperty

	The roles property is an OPTIONAL set of URIs that describes the behavior of
a Participation (and by extension its referenced FunctionalComponent) in the
context of its parent Interaction.

The roles property MAY contain one or more URIs that MUST identify terms
from appropriate ontologies. It is RECOMMENDED that at least one of the URIs
contained by the types property refer to a term from the participant role
branch of the SBO. The table below provides a list of possible SBO terms for
the roles property and their corresponding URIs.
Role

Systems Biology Ontology Term

LibSBOL Symbol

Inhibitor

http://identifiers.org/biomodels.sbo/SBO:0000020

SBO_INHIBITOR

Stimulator

http://identifiers.org/biomodels.sbo/SBO:0000459

SBO_STIMULATOR

Reactant

http://identifiers.org/biomodels.sbo/SBO:0000010

SBO_REACTANT

Product

http://identifiers.org/biomodels.sbo/SBO:0000011

SBO_PRODUCT

Ligand

http://identifiers.org/biomodels.sbo/SBO:0000280

SBO_LIGAND

Non-covalent Complex

http://identifiers.org/biomodels.sbo/SBO:0000253

SBO_NONCOVALENT_COMPLEX

If a Participation is well described by one of the terms from this table
then its roles property MUST contain the URI that identifies this term.
Lastly, if the roles property of a Participation contains multiple URIs,
then they MUST identify non-conflicting terms. For example, the SBO terms
stimulator and inhibitor would conflict.

	
	participantReferencedObject

	The participant property MUST specify precisely one FunctionalComponent
object that plays the designated role in its parent Interaction object.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/participation.h

	
define(*args)

	define(species, role=”“)

	
class ParticipationProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Plan(*args)

	Examples of agents are person, organisation or software. These agents should be
annotated with additional information, such as software version, needed to be
able to run the same software again.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/provo.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class PlanProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class Range(*args)

	A Range object specifies a region via discrete, inclusive start and end
positions that correspond to indices for characters in the elements String of a
Sequence. Note that the index of the first location is 1, as is typical practice
in biology, rather than 0, as is typical practice in computer science.

	
	startIntProperty

	Specifies the inclusive starting position of a sequence region. It must be 1
or greater.

	
	endIntProperty

	Specifies the inclusive end position of a sequence region. It must be equal
to or greater than the start.

	
	orientationURIProperty

	The orientation indicates how a region of double-stranded DNA represented by
the parent SequenceAnnotation and its associated Component are oriented.

The orientation may be one of the following values. By default it is set to
SBOL_ORIENTATION_INLINE.
Orientation URI

libSBOL Symbol

http://sbols.org/v2#inline

SBOL_ORIENTATION_INLINE

http://sbols.org/v2#reverseComplement

SBOL_ORIENTATION_REVERSE_COMPLEMENT

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/location.h

	
adjoins(comparand)

	adjoins(comparand) -> int

Indicate if these Ranges represent adjacent intervals.

Another Range object

1 if these Ranges adjoin or border each other, 0 if they are separated by an
intervening Range

	
contains(comparand)

	contains(comparand) -> int

Calculates how many bases of the comparand are contained by this Range.

Another Range object

The number of bases which are contained (equivalent to the length of the
comparand), or 0 if it is not contained.

	
follows(comparand)

	follows(comparand) -> int

Calculates how many bases separate these Ranges Another Range object.

The number of bases by which this Range follows the comparand, or 0 if it does
not follow

	
length()

	length() -> int

Returns the length of a Range.

	
overlaps(comparand)

	overlaps(comparand) -> int

Calculates how many bases separate this Range from the comparand.

Another Range object

The number of bases by which the Ranges overlap. If they overlap, this is always
a positive number regardless of direction. If they do not overlap, returns zero

	
precedes(comparand)

	precedes(comparand) -> int

Calculates how many bases separate these Ranges Another Range object.

The number of bases by which this Range precedes the comparand, or 0 if it does
not precede

	
class ReferencedObject(*args)

	A reference to another SBOL object Contains a Uniform Resource Identifier (URI)
that refers to an an associated object.

The object it points to may be another resource in this Document or an external
reference, for example to an object in an external repository or database. In
the SBOL specification, association by reference is indicated in class diagrams
by arrows with open (white) diamonds.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
add(*args)

	add(obj)

Append a URI reference of an object to the property store.

	
	The

	referenced object

	
addReference(uri)

	addReference(uri)

	
create(uri)

	create(uri) -> std::string

Creates a new SBOL object corresponding to the RDF type specified in the
Property definition.

Creates another SBOL object derived from TopLevel and adds it to the Document.

	
	uri

	A Uniform Resource Identifier (URI) for the new object, or a displayId if
operating in SBOL-compliant mode (library default)

The full URI of the created object

	
	uri

	In “open world” mode, this is a full URI and the same as the returned URI.
If the default namespace for libSBOL has been configured, then this argument
should simply be a local identifier. If SBOL-compliance is enabled, this
argument should be the intended displayId of the new object. A full URI is
automatically generated and returned.

The full URI of the created object.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
setReference(uri)

	setReference(uri)

	
class SBOLObject(*args)

	An SBOLObject converts a C++ class data structure into an RDF triple store and
contains methods for serializing and parsing RDF triples.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/object.h

	
addPropertyValue(property_uri, val)

	addPropertyValue(property_uri, val)

Append a value to a user-defined annotation property.

Either a literal or URI value

	
apply(callback_fn, user_data)

	apply(callback_fn, user_data)

	
cast(python_class)

	cast() -> SBOLClass &

	
compare(comparand)

	compare(comparand) -> int

Compare two SBOL objects or Documents.

The behavior is currently undefined for objects with custom annotations or
extension classes.

	
	comparand

	A pointer to the object being compared to this one.

1 if the objects are identical, 0 if they are different

	
find(uri)

	find(uri) -> SBOLObject *

Search this object recursively to see if an object or any child object with URI
already exists.

	
	uri

	The URI to search for.

A pointer to theobject with this URI if it exists, NULL otherwise

	
find_property(uri)

	find_property(uri) -> SBOLObject *

Search this object recursively to see if it contains a member property with the
given RDF type.

	
	uri

	The RDF type of the property to search for.

A pointer to the object that contains a member property with the specified RDF
type, NULL otherwise

	
find_property_value(*args)

	find_property_value(uri, value, matches={}) -> std::vector< SBOLObject * >

Search this object recursively to see if it contains a member property with the
given RDF type and indicated property value.

	
	uri

	The RDF type of the property to search for.

	
	value

	The property value to match

A vector containing all objects found that contain a member property with the
specified RDF type

	
find_reference(uri)

	find_reference(uri) -> std::vector< SBOLObject * >

Search this object recursively to see if it contains a member property with the
given RDF type and indicated property value.

	
	uri

	A URI, either an ontology term or an object reference, to search for

A vector containing all objects found that contain the URI in a property value

	
getAnnotation(property_uri)

	getAnnotation(property_uri) -> std::string

Get the value of a custom annotation property by its URI.

Synonymous with getPropertyValue

	
	property_uri

	The URI for the property

The value of the property or SBOL_ERROR_NOT_FOUND

	
getClassName(type)

	getClassName(type) -> std::string

Parses a local class name from the RDF-type of this SBOL Object

	
getProperties()

	getProperties() -> std::vector< std::string >

Gets URIs for all properties contained by this object.

This includes SBOL core properties as well as custom annotations. Use this to
find custom extension data in an SBOL file.

A vector of URIs that identify the properties contained in this object

	
getPropertyValue(property_uri)

	getPropertyValue(property_uri) -> std::string

Get the value of a custom annotation property by its URI.

	
	property_uri

	The URI for the property

The value of the property or SBOL_ERROR_NOT_FOUND

	
getPropertyValues(property_uri)

	getPropertyValues(property_uri) -> std::vector< std::string >

Get all values of a custom annotation property by its URI.

	
	property_uri

	The URI for the property

A vector of property values or SBOL_ERROR_NOT_FOUND

	
getTypeURI()

	getTypeURI() -> rdf_type

The uniform resource identifier that describes the RDF-type of this SBOL Object

	
setAnnotation(property_uri, val)

	setAnnotation(property_uri, val)

Set the value for a user-defined annotation property.

Synonymous with setPropertyValue If the value is a URI, it should be surrounded
by angle brackets, else it will be interpreted as a literal value

	
setPropertyValue(property_uri, val)

	setPropertyValue(property_uri, val)

Set and overwrite the value for a user-defined annotation property.

Either a literal or URI value

	
update_uri()

	update_uri()

	
class SampleRoster(*args)

	A SampleRoster is a container used to group Builds that are included in an
experiment together. A SampleRoster can be used to generate a Test in a Design-
Build-Test-Learn workflow.

	
	samplesReferencedObject

	References to Builds which were tested in an experiment.

	
	membersURIProperty

	The members property of a Collection is OPTIONAL and MAY contain a set of
URI references to zero or more TopLevel objects.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/dbtl.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class SampleRosterProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class SearchQuery(*args)

	A SearchQuery object is used to configure advanced searches for bioparts in a
PartShop. Advanced searches are useful for matching values across multiple
fields, or to specify multiple values in a single field.

	
	objectTypeURIProperty

	Set this property to indicate the type of SBOL object to search for. Set to
SBOL_COMPONENT_DEFINITION by default.

	
	limitIntProperty

	Set this property to specify the total number of records to retrieve from a
search request. By default 25 records are retrieved.

	
	offsetIntProperty

	When the number of search hits exceeds the limit, the offset property can be
used to retrieve more records.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/partshop.h

	
class SearchResponse

	A SearchResponse is a container of search records returned by a search request.

	records : std::vector< sbol::Identified *>

	python_iter : std::vector< Identified * >::iterator

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/partshop.h

	
end()

	end() -> iterator

	
extend(response)

	extend(response)

Adds more search records to an existing SearchResponse.

	
	response

	A SearchResponse object

	
class Sequence(*args)

	The primary structure (eg, nucleotide or amino acid sequence) of a
ComponentDefinition object.

	
	elementsTextProperty

	The elements property is a REQUIRED String of characters that represents the
constituents of a biological or chemical molecule. For example, these
characters could represent the nucleotide bases of a molecule of DNA, the
amino acid residues of a protein, or the atoms and chemical bonds of a small
molecule.

	
	encodingURIProperty

	The encoding property is REQUIRED and has a data type of URI.

This property MUST indicate how the elements property of a Sequence MUST be
formed and interpreted. For example, the elements property of a Sequence
with an IUPAC DNA encoding property MUST contain characters that represent
nucleotide bases, such as a, t, c, and g. The elements property of a
Sequence with a Simplified Molecular-Input Line-Entry System (SMILES)
encoding, on the other hand, MUST contain characters that represent atoms
and chemical bonds, such as C, N, O, and =. It is RECOMMENDED that the
encoding property contains a URI from the table below. The terms in the
table are organized by the type of ComponentDefinition that typically refer
to a Sequence with such an encoding. When the encoding of a Sequence is well
described by one of the URIs in the table, it MUST contain that URI.
ComponentDefinition type

Encoding

libSBOL Symbol

URI

DNA, RNA

IUPAC DNA, RNA

SBOL_ENCODING_IUPAC

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html

Protein

IUPAC Protein

SBOL_ENCODING_IUPAC_PROTEIN

http://www.chem.qmul.ac.uk/iupac/AminoAcid/

Small Molecule

SMILES

SBOL_ENCODING_SMILES

http://www.opensmiles.org/opensmiles.html

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/sequence.h

	
assemble(*args)

	assemble(composite_sequence=”“) -> std::string

Calculates the complete sequence of a high-level Component from the sequence of
its subcomponents.

Pior to assembling the the complete sequence, you must assemble a template
design by calling ComponentDefinition::assemble for the ComponentDefinition that
references this Sequence.

	
	composite_sequence

	Typically no value for the composite sequence should be specified by the
user. This parameter is used to hold the composite sequence as it is passed
to function calls at a higher-level of the recursion stack.

	
compile()

	compile() -> std::string

Synonomous with Sequence::assemble. Calculates the complete sequence of a high-
level Component from the sequence of its subcomponents. Prior to assembling the
the complete sequence, you must assemble a template design by calling
ComponentDefinition::assemble for the ComponentDefinition that references this
Sequence.

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
length()

	length() -> int

The length of the primary sequence in the elements property

	
synthesize(clone_id)

	synthesize(clone_id) -> ComponentDefinition &

	
	clone_id

	A URI for the build, or displayId if working in SBOLCompliant mode.

	
class SequenceAnnotation(*args)

	The SequenceAnnotation class describes one or more regions of interest on the
Sequence objects referred to by its parent ComponentDefinition. In addition,
SequenceAnnotation objects can describe the substructure of their parent
ComponentDefinition through association with the Component objects contained by
this ComponentDefinition.

	
	componentReferencedObject

	The component property is OPTIONAL and has a data type of URI. This URI MUST
refer to a Component that is contained by the same parent
ComponentDefinition that contains the SequenceAnnotation. In this way, the
properties of the SequenceAnnotation, such as its description and locations,
are associated with part of the substructure of its parent
ComponentDefinition.

	
	locationsOwnedObject< Location >

	The locations property is a REQUIRED set of one or more Location objects
that indicate which elements of a Sequence are described by the
SequenceAnnotation.

Allowing multiple Location objects on a single SequenceAnnotation is
intended to enable representation of discontinuous regions (for example, a
Component encoded across a set of exons with interspersed introns). As such,
the Location objects of a single SequenceAnnotation SHOULD NOT specify
overlapping regions, since it is not clear what this would mean. There is no
such concern with different SequenceAnnotation objects, however, which can
freely overlap in Location (for example, specifying overlapping linkers for
sequence assembly).

	
	rolesURIProperty

	Alternatively to describing substructure, a SequenceAnnotation can be
utilized to identify a feature, such as a GenBank feature, of a specified
Sequence.

In this use case, the SequenceAnnotation MUST NOT have a component property,
but instead it would have a roles property. The roles property comprises an
OPTIONAL set of zero or more URIs describing the specified sequence feature
being annotated. If provided, these role URIs MUST identify terms from
appropriate ontologies. Roles are not restricted to describing biological
function; they may annotate Sequences function in any domain for which an
ontology exists. It is RECOMMENDED that these role URIs identify terms that
are compatible with the type properties of this SequenceAnnotations parent
ComponentDefinition. For example, a role of a SequenceAnnotation which
belongs to a ComponentDefinition of type DNA might refer to terms from the
Sequence Ontology. See documentation for ComponentDefinition for a table of
recommended ontology terms.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/sequenceannotation.h

	
contains(*args)

	contains(comparand_list) -> std::vector< SequenceAnnotation * >

	
extract(start_reference=1)

	extract(start_reference=1) -> ComponentDefinition &

Convert a SequenceAnnotation to a subcomponent.

A ComponentDefinition representing the subcomponent

	
follows(*args)

	follows(comparand_list) -> std::vector< SequenceAnnotation * >

	
length()

	length() -> int

The length of a SequenceAnnotation in base coordinates.

	
overlaps(*args)

	overlaps(comparand_list) -> std::vector< SequenceAnnotation * >

	
precedes(*args)

	precedes(comparand_list) -> std::vector< SequenceAnnotation * >

	
class SequenceAnnotationProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class SequenceConstraint(*args)

	The SequenceConstraint class can be used to assert restrictions on the relative,
sequence-based positions of pairs of Component objects contained by the same
parent ComponentDefinition. The primary purpose of this class is to enable the
specification of partially designed ComponentDefinition objects, for which the
precise positions or orientations of their contained Component objects are not
yet fully determined.

	
	subjectReferencedObject

	The subject property is REQUIRED and MUST contain a URI that refers to a
Component contained by the same parent ComponentDefinition that contains the
SequenceConstraint.

	
	objectReferencedObject

	The object property is REQUIRED and MUST contain a URI that refers to a
Component contained by the same parent ComponentDefinition that contains the
SequenceConstraint. This Component MUST NOT be the same Component that the
SequenceConstraint refers to via its subject property.

	
	restrictionURIProperty

	The restriction property is REQUIRED and has a data type of URI.

This property MUST indicate the type of structural restriction on the
relative, sequence-based positions or orientations of the subject and object
Component objects. The URI value of this property SHOULD come from the
RECOMMENDED URIs in the following table.
libSBOL Symbol

Description

SBOL_RESTRICTION_PRECEDES

The position of the subject Component MUST precede that of the object
Component.

If each one is associated with a SequenceAnnotation, then the

SequenceAnnotation
associated with the subject Component MUST specify a region that starts
before
the region specified by the SequenceAnnotation associated with the object
Component.

SBOL_RESTRICTION_SAME_ORIENTATION_AS

The subject and object Component objects MUST have the same orientation. If
each
one is associated with a SequenceAnnotation, then the orientation URIs of
the Location objects of the first SequenceAnnotation MUST be among those of
the
second SequenceAnnotation, and vice versa.

SBOL_RESTRICTION_OPPOSITE_ORIENTATION_AS

The subject and object Component objects MUST have opposite orientations. If
each one is associated with a SequenceAnnotation, then the orientation URIs
of
the Location objects of one SequenceAnnotation MUST NOT be among those of
the
other SequenceAnnotation.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/sequenceconstraint.h

	
class SequenceConstraintProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class SequenceProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class SmallMoleculeActivationInteraction(uri, ligand, transcription_factor)

	
	ligand : AliasedProperty< FunctionalComponent >

	transcriptionFactor : AliasedProperty< FunctionalComponent >

	
	typesURIProperty

	The types property is a REQUIRED set of URIs that describes the behavior
represented by an Interaction.

The types property MUST contain one or more URIs that MUST identify terms
from appropriate ontologies. It is RECOMMENDED that at least one of the URIs
contained by the types property refer to a term from the occurring entity
branch of the Systems Biology Ontology (SBO). (See
http://www.ebi.ac.uk/sbo/main/) The following table provides a list of
possible SBO terms for the types property and their corresponding URIs.
Type

URI for SBO Term

LibSBOL symbol

Biochemical Reaction

http://identifiers.org/biomodels.sbo/SBO:0000176

SBO_BIOCHEMICAL_REACTION

Inhibition

http://identifiers.org/biomodels.sbo/SBO:0000169

SBO_INHIBITION

Stimulation

http://identifiers.org/biomodels.sbo/SBO:0000170

SBO_STIMULATION

Genetic Production

http://identifiers.org/biomodels.sbo/SBO:0000589

SBO_GENETIC_PRODUCTION

Non-Covalent Binding

http://identifiers.org/biomodels.sbo/SBO:0000177

SBO_NONCOVALENT_BINDING

Degradation

http://identifiers.org/biomodels.sbo/SBO:0000179

SBO_DEGRADATION

Control

http://identifiers.org/biomodels.sbo/SBO:0000168

SBO_CONTROL

	
	participationsOwnedObject< Participation >

	The participations property is an OPTIONAL and MAY contain a set of
Participation objects, each of which identifies the roles that its
referenced FunctionalComponent plays in the Interaction. Even though an
Interaction generally contains at least one Participation, the case of zero
Participation objects is allowed because it is plausible that a designer
might want to specify that an Interaction will exist, even if its
participants have not yet been determined.

	functionalComponents : OwnedObject< FunctionalComponent >

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

	
class SmallMoleculeInhibitionInteraction(uri, ligand, transcription_factor)

	
	ligand : AliasedProperty< FunctionalComponent >

	transcriptionFactor : AliasedProperty< FunctionalComponent >

	
	typesURIProperty

	The types property is a REQUIRED set of URIs that describes the behavior
represented by an Interaction.

The types property MUST contain one or more URIs that MUST identify terms
from appropriate ontologies. It is RECOMMENDED that at least one of the URIs
contained by the types property refer to a term from the occurring entity
branch of the Systems Biology Ontology (SBO). (See
http://www.ebi.ac.uk/sbo/main/) The following table provides a list of
possible SBO terms for the types property and their corresponding URIs.
Type

URI for SBO Term

LibSBOL symbol

Biochemical Reaction

http://identifiers.org/biomodels.sbo/SBO:0000176

SBO_BIOCHEMICAL_REACTION

Inhibition

http://identifiers.org/biomodels.sbo/SBO:0000169

SBO_INHIBITION

Stimulation

http://identifiers.org/biomodels.sbo/SBO:0000170

SBO_STIMULATION

Genetic Production

http://identifiers.org/biomodels.sbo/SBO:0000589

SBO_GENETIC_PRODUCTION

Non-Covalent Binding

http://identifiers.org/biomodels.sbo/SBO:0000177

SBO_NONCOVALENT_BINDING

Degradation

http://identifiers.org/biomodels.sbo/SBO:0000179

SBO_DEGRADATION

Control

http://identifiers.org/biomodels.sbo/SBO:0000168

SBO_CONTROL

	
	participationsOwnedObject< Participation >

	The participations property is an OPTIONAL and MAY contain a set of
Participation objects, each of which identifies the roles that its
referenced FunctionalComponent plays in the Interaction. Even though an
Interaction generally contains at least one Participation, the case of zero
Participation objects is allowed because it is plausible that a designer
might want to specify that an Interaction will exist, even if its
participants have not yet been determined.

	functionalComponents : OwnedObject< FunctionalComponent >

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

	
class Test(*args)

	A Test is a container for experimental data. A Test is the product of the third
step of libSBOL’s formalized Design-Build-Test-Analyze workflow.

	
	samplesReferencedObject

	References to Builds which were tested in the experiment.

	
	dataFilesReferencedObject

	References to file Attachments which contain experimental data sets.

	
	membersURIProperty

	The members property of a Collection is OPTIONAL and MAY contain a set of
URI references to zero or more TopLevel objects.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/dbtl.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
class TestProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class TextProperty(*args)

	TextProperty objects are used to contain string literals.

They can be used as member objects inside custom SBOL Extension classes.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/properties.h

	
get()

	get() -> std::string

Basic getter for all SBOL literal properties.

A string literal

	
getAll()

	getAll() -> std::vector< std::string >

	
class TopLevel(*args)

	All SBOL classes derived from TopLevel appear as top level nodes in the RDF/XML
document tree and SBOL files. An abstract class.

	attachments : ReferencedObject

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/toplevel.h

	
copy(*args)

	copy(ns=”“, version=”“) -> SBOLClass &

	
initialize(uri)

	initialize(uri)

	
class TranscriptionalActivationInteraction(uri, activator, target_promoter)

	
	activator : AliasedProperty< FunctionalComponent >

	targetPromoter : AliasedProperty< FunctionalComponent >

	
	typesURIProperty

	The types property is a REQUIRED set of URIs that describes the behavior
represented by an Interaction.

The types property MUST contain one or more URIs that MUST identify terms
from appropriate ontologies. It is RECOMMENDED that at least one of the URIs
contained by the types property refer to a term from the occurring entity
branch of the Systems Biology Ontology (SBO). (See
http://www.ebi.ac.uk/sbo/main/) The following table provides a list of
possible SBO terms for the types property and their corresponding URIs.
Type

URI for SBO Term

LibSBOL symbol

Biochemical Reaction

http://identifiers.org/biomodels.sbo/SBO:0000176

SBO_BIOCHEMICAL_REACTION

Inhibition

http://identifiers.org/biomodels.sbo/SBO:0000169

SBO_INHIBITION

Stimulation

http://identifiers.org/biomodels.sbo/SBO:0000170

SBO_STIMULATION

Genetic Production

http://identifiers.org/biomodels.sbo/SBO:0000589

SBO_GENETIC_PRODUCTION

Non-Covalent Binding

http://identifiers.org/biomodels.sbo/SBO:0000177

SBO_NONCOVALENT_BINDING

Degradation

http://identifiers.org/biomodels.sbo/SBO:0000179

SBO_DEGRADATION

Control

http://identifiers.org/biomodels.sbo/SBO:0000168

SBO_CONTROL

	
	participationsOwnedObject< Participation >

	The participations property is an OPTIONAL and MAY contain a set of
Participation objects, each of which identifies the roles that its
referenced FunctionalComponent plays in the Interaction. Even though an
Interaction generally contains at least one Participation, the case of zero
Participation objects is allowed because it is plausible that a designer
might want to specify that an Interaction will exist, even if its
participants have not yet been determined.

	functionalComponents : OwnedObject< FunctionalComponent >

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

	
class TranscriptionalRepressionInteraction(uri, repressor, target_promoter)

	
	repressor : AliasedProperty< FunctionalComponent >

	targetPromoter : AliasedProperty< FunctionalComponent >

	
	typesURIProperty

	The types property is a REQUIRED set of URIs that describes the behavior
represented by an Interaction.

The types property MUST contain one or more URIs that MUST identify terms
from appropriate ontologies. It is RECOMMENDED that at least one of the URIs
contained by the types property refer to a term from the occurring entity
branch of the Systems Biology Ontology (SBO). (See
http://www.ebi.ac.uk/sbo/main/) The following table provides a list of
possible SBO terms for the types property and their corresponding URIs.
Type

URI for SBO Term

LibSBOL symbol

Biochemical Reaction

http://identifiers.org/biomodels.sbo/SBO:0000176

SBO_BIOCHEMICAL_REACTION

Inhibition

http://identifiers.org/biomodels.sbo/SBO:0000169

SBO_INHIBITION

Stimulation

http://identifiers.org/biomodels.sbo/SBO:0000170

SBO_STIMULATION

Genetic Production

http://identifiers.org/biomodels.sbo/SBO:0000589

SBO_GENETIC_PRODUCTION

Non-Covalent Binding

http://identifiers.org/biomodels.sbo/SBO:0000177

SBO_NONCOVALENT_BINDING

Degradation

http://identifiers.org/biomodels.sbo/SBO:0000179

SBO_DEGRADATION

Control

http://identifiers.org/biomodels.sbo/SBO:0000168

SBO_CONTROL

	
	participationsOwnedObject< Participation >

	The participations property is an OPTIONAL and MAY contain a set of
Participation objects, each of which identifies the roles that its
referenced FunctionalComponent plays in the Interaction. Even though an
Interaction generally contains at least one Participation, the case of zero
Participation objects is allowed because it is plausible that a designer
might want to specify that an Interaction will exist, even if its
participants have not yet been determined.

	functionalComponents : OwnedObject< FunctionalComponent >

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

	
class URIProperty(*args)

	A URIProperty may contain a restricted type of string that conforms to the
specification for a Uniform Resource Identifier (URI), typically consisting of a
namespace authority followed by an identifier.

A URIProperty often contains a reference to an SBOL object or may contain an
ontology term.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/properties.h

	
get()

	get() -> std::string

Get first URI.

A string of characters used to identify a resource

	
getAll()

	getAll() -> std::vector< std::string >

	
class Usage(*args)

	How different entities are used in an Activity is specified with the Usage
class, which is linked from an Activity through the qualifiedUsage relationship.
A Usage is then linked to an Entity through the Entitys URI and the role of
this entity is qualified with the hadRole property. When the wasDerivedFrom
property is used together with the full provenance described here, the entity
pointed at by the wasDerivedFrom property MUST be included in a Usage.

	
	entityURIProperty

	The entity property is REQUIRED and MUST contain a URI which MAY refer to an
SBOL Identified object.

	
	rolesURIProperty

	The hadRole property is REQUIRED and MAY contain a URI that refers to a
particular term describing the usage of an entity referenced by the entity
property.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/provo.h

	
class UsageProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class VariableComponent(*args)

	The VariableComponent class can be used to specify a choice of
ComponentDefinition objects for any new Component derived from a template
Component in the template ComponentDefinition. This specification is made using
the class properties variable, variants, variantCollections, and
variantDerivations. While the variants, variantCollections, and
variantDerivations properties are OPTIONAL, at least one of them MUST NOT be
empty.

	
	variableReferencedObject

	The variable property is REQUIRED and MUST contain a URI that refers to a
template Component in the template ComponentDefinition. If the
wasDerivedFrom property of a Component refers to this template Component,
then the definition property of the derived Component MUST refer to one of
the ComponentDefinition objects referred to by the variants property of the
VariableComponent. If not, then this definition property MUST either (1)
refer to one of the ComponentDefinition objects from a Collection referred
to by the variantCollections property of the VariableComponent, or (2) refer
to a ComponentDefinition derived from a CombinatorialDerivation referred to
by the variantDerivations property of the VariableComponent.

	
	repeatURIProperty

	The repeat property is REQUIRED and has a data type of URI.

This property specifies how many Component objects can be derived from the
template Component during the derivation of a new ComponentDefinition.
The URI value of this property MUST come from the REQUIRED operator URIs
provided in the table below
Operator URI

Description

http://sbols.org/v2#zeroOrOne

No more than one Component in the derived ComponentDefinition SHOULD
have a wasDerivedFrom property that refers to the template Component.

http://sbols.org/v2#one

Exactly one Component in the derived ComponentDefinition SHOULD have a
wasDerivedFrom property that refers to the template Component.

http://sbols.org/v2#zeroOrMore

Any number of Component objects in the derived ComponentDefinition MAY
have wasDerivedFrom properties that refer to the template Component.

http://sbols.org/v2#oneOrMore

At least one Component in the derived ComponentDefinition SHOULD have a
wasDerivedFrom property that refers to the template Component.

	
	variantsReferencedObject

	The variants property is OPTIONAL and MAY contain zero or more URIs that
each refer to a ComponentDefinition. This property specifies individual
ComponentDefinition objects to serve as options when deriving a new
Component from the template Component.

	
	variantCollectionsReferencedObject

	The variantCollections property is OPTIONAL and MAY contain zero or more
URIs that each refer to a Collection. The members property of each
Collection referred to in this way MUST NOT be empty and MUST refer only to
ComponentDefinition objects. This property enables the convenient
specification of existing groups of ComponentDefinition objects to serve as
options when deriving a new Component from the template Component.

	
	variantDerivationsReferencedObject

	The variantDerivations property is OPTIONAL and MAY contain zero or more
URIs that each refer to a CombinatorialDerivation. This property enables the
convenient specification of ComponentDefinition objects derived in
accordance with another CombinatorialDerivation to serve as options when
deriving a new Component from the template Component. The variantDerivations
property of a VariableComponent MUST NOT refer to the
CombinatorialDerivation that contains this VariableComponent (no cyclic
derivations are allowed.

	
	persistentIdentityURIProperty

	The persistentIdentity property is OPTIONAL and has a data type of URI. This
URI serves to uniquely refer to a set of SBOL objects that are different
versions of each other. An Identified object MUST be referred to using
either its identity URI or its persistentIdentity URI.

	
	displayIdTextProperty

	The displayId property is an OPTIONAL identifier with a data type of String.
This property is intended to be an intermediate between name and identity
that is machine-readable, but more human-readable than the full URI of an
identity. If the displayId property is used, then its String value SHOULD be
locally unique (global uniqueness is not necessary) and MUST be composed of
only alphanumeric or underscore characters and MUST NOT begin with a digit.

	
	versionVersionProperty

	If the version property is used, then it is RECOMMENDED that version
numbering follow the conventions of semantic versioning, particularly as
implemented by Maven. This convention represents versions as sequences of
numbers and qualifiers that are separated by the characters . and - and
are compared in lexicographical order (for example, 1 < 1.3.1 < 2.0-beta).
For a full explanation, see the linked resources.

	
	wasDerivedFromURIProperty

	The wasDerivedFrom property is OPTIONAL and has a data type of URI. An SBOL
object with this property refers to another SBOL object or non-SBOL resource
from which this object was derived. If the wasDerivedFrom property of an
SBOL object A that refers to an SBOL object B has an identical
persistentIdentity, and both A and B have a version, then the version of B
MUST precede that of A. In addition, an SBOL object MUST NOT refer to itself
via its own wasDerivedFrom property or form a cyclical chain of references
via its wasDerivedFrom property and those of other SBOL objects. For
example, the reference chain A was derived from B and B was derived from
A is cyclical.

	
	wasGeneratedByReferencedObject

	An Activity which generated this ComponentDefinition, eg., a design process
like codon-optimization or a construction process like Gibson Assembly.

	
	nameTextProperty

	The name property is OPTIONAL and has a data type of String. This property
is intended to be displayed to a human when visualizing an Identified
object. If an Identified object lacks a name, then software tools SHOULD
instead display the objects displayId or identity. It is RECOMMENDED that
software tools give users the ability to switch perspectives between name
properties that are human-readable and displayId properties that are less
human-readable, but are more likely to be unique.

	
	descriptionTextProperty

	The description property is OPTIONAL and has a data type of String. This
property is intended to contain a more thorough text description of an
Identified object.

	
	identityURIProperty

	The identity property is REQUIRED by all Identified objects and has a data
type of URI. A given Identified objects identity URI MUST be globally
unique among all other identity URIs. The identity of a compliant SBOL
object MUST begin with a URI prefix that maps to a domain over which the
user has control. Namely, the user can guarantee uniqueness of identities
within this domain. For other best practices regarding URIs see Section 11.2
of the SBOL specification doucment.

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/combinatorialderivation.h

	
class VariableComponentProperty(*args)

	Member properties of all SBOL objects are defined using a Property object.

The Property class provides a generic interface for accessing SBOL objects. At a
low level, the Property class converts SBOL data structures into RDF triples.

	
	The

	SBOL specification currently supports string, URI, and integer literal
values.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/property.h

	
add(new_value)

	add(new_value)

Appends the new value to a list of values, for properties that allow it.

	
	new_value

	A new string which will be added to a list of values.

	
addValidationRule(*args)

	addValidationRule(rule)

	
clear()

	clear()

Clear all property values.

	
copy(target_property)

	copy(target_property)

Copy property values to a target object’s property fields.

	
find(query)

	find(query) -> bool

Check if a value in this property matches the query.

	
getLowerBound()

	getLowerBound() -> char

	
getOwner()

	getOwner() -> SBOLObject &

	
getTypeURI()

	getTypeURI() -> rdf_type

	
getUpperBound()

	getUpperBound() -> char

	
remove(index=0)

	remove(index=0)

Remove a property value.

	
set(*args)

	set(new_value)

Basic setter for SBOL IntProperty, but can be used with TextProperty as well.

	
	new_value

	A new integer value for the property, which is converted to a raw string
during serialization.

	
validate(arg=None)

	validate(arg=NULL)

	
write()

	write()

	
class VersionProperty(property_owner, type_uri, lower_bound, upper_bound, initial_value)

	Contains a version number for an SBOL object.

The VersionProperty follows Maven versioning semantics and includes a major,
minor, and patch version number.

	python_iter : std::vector< std::string >::iterator

C++ includes: /Users/bbartley/Dev/git/libSBOL/source/properties.h

	
decrementMajor()

	decrementMajor()

Decrement major version.

	
decrementMinor()

	decrementMinor()

Decrement major version.

	
decrementPatch()

	decrementPatch()

Decrement major version.

	
incrementMajor()

	incrementMajor()

Increment major version.

	
incrementMinor()

	incrementMinor()

Increment minor version.

	
incrementPatch()

	incrementPatch()

Increment patch version.

	
major()

	major() -> int

Get major version.

The major version as an integer Splits the version string by a delimiter and
returns the major version number

	
minor()

	minor() -> int

Get minor version.

The minor version as an integer Splits the version string by a delimiter and
returns the minor version number

	
patch()

	patch() -> int

Get patch version.

The patch version as an integer Splits the version string by a delimiter and
returns the patch version

	
getFileFormat()

	getFileFormat() -> std::string SBOL_DECLSPEC

Returns currently accepted file format.

	
getHomespace()

	getHomespace() -> SBOL_DECLSPEC std::string

Get the current default namespace for autocreation of URIs when a new SBOL
object is created.

	
hasHomespace()

	hasHomespace() -> SBOL_DECLSPEC int

Checks if a valid default namespace has been defined.

	
is_alphanumeric_or_underscore(c)

	is_alphanumeric_or_underscore(c) -> bool

	
is_not_alphanumeric_or_underscore(c)

	is_not_alphanumeric_or_underscore(c) -> bool

	
libsbol_rule_1(sbol_obj, arg)

	libsbol_rule_1(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_10(sbol_obj, arg)

	libsbol_rule_10(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_11(sbol_obj, arg)

	libsbol_rule_11(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_12(sbol_obj, arg)

	libsbol_rule_12(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_13(sbol_obj, arg)

	libsbol_rule_13(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_14(sbol_obj, arg)

	libsbol_rule_14(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_15(sbol_obj, arg)

	libsbol_rule_15(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_16(sbol_obj, arg)

	libsbol_rule_16(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_17(sbol_obj, arg)

	libsbol_rule_17(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_18(sbol_obj, arg)

	libsbol_rule_18(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_19(sbol_obj, arg)

	libsbol_rule_19(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_2(sbol_obj, arg)

	libsbol_rule_2(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_20(sbol_obj, arg)

	libsbol_rule_20(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_21(sbol_obj, arg)

	libsbol_rule_21(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_22(sbol_obj, arg)

	libsbol_rule_22(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_24(sbol_obj, arg)

	libsbol_rule_24(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_3(sbol_obj, arg)

	libsbol_rule_3(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_4(sbol_obj, arg)

	libsbol_rule_4(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_5(sbol_obj, arg)

	libsbol_rule_5(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_6(sbol_obj, arg)

	libsbol_rule_6(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_7(sbol_obj, arg)

	libsbol_rule_7(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_8(sbol_obj, arg)

	libsbol_rule_8(sbol_obj, arg) -> SBOL_DECLSPEC void

	
libsbol_rule_9(sbol_obj, arg)

	libsbol_rule_9(sbol_obj, arg) -> SBOL_DECLSPEC void

	
sbolRule10101(sbol_obj, arg)

	sbolRule10101(sbol_obj, arg) -> SBOL_DECLSPEC void

	
sbolRule10102(sbol_obj, arg)

	sbolRule10102(sbol_obj, arg) -> SBOL_DECLSPEC void

	
sbol_rule_10202(sbol_obj, arg)

	sbol_rule_10202(sbol_obj, arg) -> SBOL_DECLSPEC void

	
sbol_rule_10204(sbol_obj, arg)

	sbol_rule_10204(sbol_obj, arg) -> SBOL_DECLSPEC void

	
setFileFormat(file_format)

	setFileFormat(file_format) -> SBOL_DECLSPEC void

Sets file format to use.

	
setHomespace(ns)

	setHomespace(ns) -> SBOL_DECLSPEC void

Global methods.

Set the default namespace for autocreation of URIs when a new SBOL object is
created

	
testRoundTrip()

	Function to run test suite for pySBOL

	
testSBOL()

	Function to test pySBOL API

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sbol	

 	
 	
 sbol.libsbol	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	Activity (class in sbol.libsbol)

 	ActivityProperty (class in sbol.libsbol)

 	add() (ActivityProperty method)

 	(AgentProperty method)

 	(AliasedOwnedFunctionalComponent method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(ReferencedObject method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	
 	addComponentDefinition() (Document method)

 	addDownstreamFlank() (ComponentDefinition method)

 	addModel() (Document method)

 	addModuleDefinition() (Document method)

 	addNamespace() (Document method)

 	addPropertyValue() (SBOLObject method)

 	addReference() (ReferencedObject method)

 	addSequence() (Document method)

 	addSynBioHubAnnotations() (PartShop method)

 	addUpstreamFlank() (ComponentDefinition method)

 	addValidationRule() (ActivityProperty method)

 	(AgentProperty method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	adjoins() (Range method)

 	Agent (class in sbol.libsbol)

 	AgentProperty (class in sbol.libsbol)

 	AliasedOwnedFunctionalComponent (class in sbol.libsbol)

 	Analysis (class in sbol.libsbol)

 	AnalysisProperty (class in sbol.libsbol)

 	append() (Document method)

 	apply() (SBOLObject method)

 	assemble() (ComponentDefinition method)

 	(ModuleDefinition method)

 	(Sequence method)

 	assemblePrimaryStructure() (ComponentDefinition method)

 	Association (class in sbol.libsbol)

 	AssociationProperty (class in sbol.libsbol)

 	attachFile() (PartShop method)

 	Attachment (class in sbol.libsbol)

 	AttachmentProperty (class in sbol.libsbol)

B

 	
 	Build (class in sbol.libsbol)

 	
 	build() (ComponentDefinition method)

 	BuildProperty (class in sbol.libsbol)

C

 	
 	cast() (SBOLObject method)

 	clear() (ActivityProperty method)

 	(AgentProperty method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	Collection (class in sbol.libsbol)

 	CollectionProperty (class in sbol.libsbol)

 	CombinatorialDerivation (class in sbol.libsbol)

 	CombinatorialDerivationProperty (class in sbol.libsbol)

 	compare() (SBOLObject method)

 	compile() (ComponentDefinition method)

 	(Sequence method)

 	Component (class in sbol.libsbol)

 	ComponentDefinition (class in sbol.libsbol)

 	ComponentDefinitionProperty (class in sbol.libsbol)

 	ComponentInstance (class in sbol.libsbol)

 	ComponentProperty (class in sbol.libsbol)

 	Config (class in sbol.libsbol)

 	Config_getOption() (in module sbol.libsbol)

 	Config_setOption() (in module sbol.libsbol)

 	connect() (FunctionalComponent method)

 	(ModuleDefinition method)

 	contains() (Range method)

 	(SequenceAnnotation method)

 	copy() (Activity method)

 	(ActivityProperty method)

 	(Agent method)

 	(AgentProperty method)

 	(Analysis method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(Attachment method)

 	(AttachmentProperty method)

 	(Build method)

 	(BuildProperty method)

 	(Collection method)

 	(CollectionProperty method)

 	(CombinatorialDerivation method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinition method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(Design method)

 	(DesignProperty method)

 	(Document method)

 	(Experiment method)

 	(ExperimentProperty method)

 	(ExperimentalData method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(Implementation method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(Model method)

 	(ModelProperty method)

 	(ModuleDefinition method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(ParticipationProperty method)

 	(Plan method)

 	(PlanProperty method)

 	(SampleRoster method)

 	(SampleRosterProperty method)

 	(Sequence method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(Test method)

 	(TestProperty method)

 	(TopLevel method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	
 	countCollection() (PartShop method)

 	countComponentDefinition() (PartShop method)

 	countTriples() (Document method)

 	create() (AliasedOwnedFunctionalComponent method)

 	(OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	(ReferencedObject method)

 	createCut() (OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	createGenericLocation() (OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	createRange() (OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	Cut (class in sbol.libsbol)

D

 	
 	DateTimeProperty (class in sbol.libsbol)

 	decrementMajor() (VersionProperty method)

 	decrementMinor() (VersionProperty method)

 	decrementPatch() (VersionProperty method)

 	define() (AliasedOwnedFunctionalComponent method)

 	(OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	(Participation method)

 	
 	Design (class in sbol.libsbol)

 	DesignProperty (class in sbol.libsbol)

 	disassemble() (ComponentDefinition method)

 	Document (class in sbol.libsbol)

 	downloadAttachment() (PartShop method)

E

 	
 	end() (Document method)

 	(SearchResponse method)

 	EnzymeCatalysisInteraction (class in sbol.libsbol)

 	Experiment (class in sbol.libsbol)

 	
 	ExperimentalData (class in sbol.libsbol)

 	ExperimentalDataProperty (class in sbol.libsbol)

 	ExperimentProperty (class in sbol.libsbol)

 	extend() (SearchResponse method)

 	extract() (SequenceAnnotation method)

F

 	
 	find() (ActivityProperty method)

 	(AgentProperty method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(Document method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(SBOLObject method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	
 	find_property() (Document method)

 	(SBOLObject method)

 	find_property_value() (SBOLObject method)

 	find_reference() (Document method)

 	(SBOLObject method)

 	FloatProperty (class in sbol.libsbol)

 	follows() (Range method)

 	(SequenceAnnotation method)

 	FunctionalComponent (class in sbol.libsbol)

 	FunctionalComponentProperty (class in sbol.libsbol)

G

 	
 	GeneProductionInteraction (class in sbol.libsbol)

 	generate() (Document method)

 	generateAnalysis() (Activity method)

 	generateBuild() (Activity method)

 	generateDesign() (Activity method)

 	generateTest() (Activity method)

 	GenericLocation (class in sbol.libsbol)

 	get() (AliasedOwnedFunctionalComponent method)

 	(FloatProperty method)

 	(IntProperty method)

 	(OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	(TextProperty method)

 	(URIProperty method)

 	getActivity() (Document method)

 	getAgent() (Document method)

 	getAll() (FloatProperty method)

 	(IntProperty method)

 	(OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	(TextProperty method)

 	(URIProperty method)

 	getAnalysis() (Document method)

 	getAnnotation() (SBOLObject method)

 	getAttachment() (Document method)

 	getBuild() (Document method)

 	getClassName() (SBOLObject method)

 	getCollection() (Document method)

 	getCombinatorialDerivation() (Document method)

 	getComponentDefinition() (Document method)

 	getCut() (OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	getDesign() (Document method)

 	getDownstreamComponent() (ComponentDefinition method)

 	getExperiment() (Document method)

 	getExperimentalData() (Document method)

 	getFileFormat() (in module sbol.libsbol)

 	getFirstComponent() (ComponentDefinition method)

 	getGenericLocation() (OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	getHomespace() (in module sbol.libsbol)

 	getImplementation() (Document method)

 	getInSequentialOrder() (ComponentDefinition method)

 	getLastComponent() (ComponentDefinition method)

 	getLowerBound() (ActivityProperty method)

 	(AgentProperty method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	
 	getModel() (Document method)

 	getModuleDefinition() (Document method)

 	getNamespaces() (Document method)

 	getOption() (Config static method)

 	getOwner() (ActivityProperty method)

 	(AgentProperty method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	getPlan() (Document method)

 	getPrimaryStructure() (ComponentDefinition method)

 	getProperties() (SBOLObject method)

 	getPropertyValue() (SBOLObject method)

 	getPropertyValues() (SBOLObject method)

 	getRange() (OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	getSampleRoster() (Document method)

 	getSequence() (Document method)

 	getTest() (Document method)

 	getTypeURI() (ActivityProperty method)

 	(AgentProperty method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(SBOLObject method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	getUpperBound() (ActivityProperty method)

 	(AgentProperty method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	getUpstreamComponent() (ComponentDefinition method)

 	getURL() (PartShop method)

H

 	
 	hasDownstreamComponent() (ComponentDefinition method)

 	
 	hasHomespace() (in module sbol.libsbol)

 	hasUpstreamComponent() (ComponentDefinition method)

I

 	
 	Identified (class in sbol.libsbol)

 	Implementation (class in sbol.libsbol)

 	ImplementationProperty (class in sbol.libsbol)

 	incrementMajor() (VersionProperty method)

 	incrementMinor() (VersionProperty method)

 	incrementPatch() (VersionProperty method)

 	initialize() (TopLevel method)

 	insertDownstream() (ComponentDefinition method)

 	
 	insertUpstream() (ComponentDefinition method)

 	Interaction (class in sbol.libsbol)

 	InteractionProperty (class in sbol.libsbol)

 	IntProperty (class in sbol.libsbol)

 	is_alphanumeric_or_underscore() (in module sbol.libsbol)

 	is_not_alphanumeric_or_underscore() (in module sbol.libsbol)

 	isComplete() (ComponentDefinition method)

 	isMasked() (FunctionalComponent method)

 	isRegular() (ComponentDefinition method)

L

 	
 	length() (Range method)

 	(Sequence method)

 	(SequenceAnnotation method)

 	libsbol_rule_1() (in module sbol.libsbol)

 	libsbol_rule_10() (in module sbol.libsbol)

 	libsbol_rule_11() (in module sbol.libsbol)

 	libsbol_rule_12() (in module sbol.libsbol)

 	libsbol_rule_13() (in module sbol.libsbol)

 	libsbol_rule_14() (in module sbol.libsbol)

 	libsbol_rule_15() (in module sbol.libsbol)

 	libsbol_rule_16() (in module sbol.libsbol)

 	libsbol_rule_17() (in module sbol.libsbol)

 	libsbol_rule_18() (in module sbol.libsbol)

 	libsbol_rule_19() (in module sbol.libsbol)

 	libsbol_rule_2() (in module sbol.libsbol)

 	
 	libsbol_rule_20() (in module sbol.libsbol)

 	libsbol_rule_21() (in module sbol.libsbol)

 	libsbol_rule_22() (in module sbol.libsbol)

 	libsbol_rule_24() (in module sbol.libsbol)

 	libsbol_rule_3() (in module sbol.libsbol)

 	libsbol_rule_4() (in module sbol.libsbol)

 	libsbol_rule_5() (in module sbol.libsbol)

 	libsbol_rule_6() (in module sbol.libsbol)

 	libsbol_rule_7() (in module sbol.libsbol)

 	libsbol_rule_8() (in module sbol.libsbol)

 	libsbol_rule_9() (in module sbol.libsbol)

 	linearize() (ComponentDefinition method)

 	Location (class in sbol.libsbol)

 	LocationProperty (class in sbol.libsbol)

 	login() (PartShop method)

M

 	
 	major() (VersionProperty method)

 	MapsTo (class in sbol.libsbol)

 	MapsToProperty (class in sbol.libsbol)

 	mask() (FunctionalComponent method)

 	Measurement (class in sbol.libsbol)

 	MeasurementProperty (class in sbol.libsbol)

 	
 	minor() (VersionProperty method)

 	Model (class in sbol.libsbol)

 	ModelProperty (class in sbol.libsbol)

 	Module (class in sbol.libsbol)

 	ModuleDefinition (class in sbol.libsbol)

 	ModuleDefinitionProperty (class in sbol.libsbol)

 	ModuleProperty (class in sbol.libsbol)

O

 	
 	overlaps() (Range method)

 	(SequenceAnnotation method)

 	override() (FunctionalComponent method)

 	(ModuleDefinition method)

 	OwnedActivity (class in sbol.libsbol)

 	OwnedAgent (class in sbol.libsbol)

 	OwnedAnalysis (class in sbol.libsbol)

 	OwnedAssociation (class in sbol.libsbol)

 	OwnedAttachment (class in sbol.libsbol)

 	OwnedBuild (class in sbol.libsbol)

 	OwnedCollection (class in sbol.libsbol)

 	OwnedCombinatorialDerivation (class in sbol.libsbol)

 	OwnedComponent (class in sbol.libsbol)

 	OwnedComponentDefinition (class in sbol.libsbol)

 	OwnedDesign (class in sbol.libsbol)

 	OwnedExperiment (class in sbol.libsbol)

 	OwnedExperimentalData (class in sbol.libsbol)

 	
 	OwnedFunctionalComponent (class in sbol.libsbol)

 	OwnedImplementation (class in sbol.libsbol)

 	OwnedInteraction (class in sbol.libsbol)

 	OwnedLocation (class in sbol.libsbol)

 	OwnedMapsTo (class in sbol.libsbol)

 	OwnedMeasurement (class in sbol.libsbol)

 	OwnedModel (class in sbol.libsbol)

 	OwnedModule (class in sbol.libsbol)

 	OwnedModuleDefinition (class in sbol.libsbol)

 	OwnedParticipation (class in sbol.libsbol)

 	OwnedPlan (class in sbol.libsbol)

 	OwnedSampleRoster (class in sbol.libsbol)

 	OwnedSequence (class in sbol.libsbol)

 	OwnedSequenceAnnotation (class in sbol.libsbol)

 	OwnedSequenceConstraint (class in sbol.libsbol)

 	OwnedTest (class in sbol.libsbol)

 	OwnedUsage (class in sbol.libsbol)

 	OwnedVariableComponent (class in sbol.libsbol)

P

 	
 	participate() (ComponentDefinition method)

 	Participation (class in sbol.libsbol)

 	ParticipationProperty (class in sbol.libsbol)

 	PartShop (class in sbol.libsbol)

 	patch() (VersionProperty method)

 	Plan (class in sbol.libsbol)

 	
 	PlanProperty (class in sbol.libsbol)

 	precedes() (Range method)

 	(SequenceAnnotation method)

 	pull() (PartShop method)

 	pullCollection() (PartShop method)

 	pullComponentDefinition() (PartShop method)

 	pullSequence() (PartShop method)

Q

 	
 	query_repository() (Document method)

R

 	
 	Range (class in sbol.libsbol)

 	read() (Document method)

 	readString() (Document method)

 	ReferencedObject (class in sbol.libsbol)

 	remove() (ActivityProperty method)

 	(AgentProperty method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	
 	reportAmbiguity() (Analysis method)

 	reportCoverage() (Analysis method)

 	reportError() (Analysis method)

 	reportIdentity() (Analysis method)

 	request_comparison() (Document method)

 	request_validation() (Document method)

S

 	
 	SampleRoster (class in sbol.libsbol)

 	SampleRosterProperty (class in sbol.libsbol)

 	sbol.libsbol (module)

 	sbol_rule_10202() (in module sbol.libsbol)

 	sbol_rule_10204() (in module sbol.libsbol)

 	SBOLObject (class in sbol.libsbol)

 	sbolRule10101() (in module sbol.libsbol)

 	sbolRule10102() (in module sbol.libsbol)

 	search() (PartShop method)

 	search_metadata() (Document method)

 	searchCount() (PartShop method)

 	SearchQuery (class in sbol.libsbol)

 	SearchResponse (class in sbol.libsbol)

 	searchRootCollections() (PartShop method)

 	searchSubCollections() (PartShop method)

 	Sequence (class in sbol.libsbol)

 	SequenceAnnotation (class in sbol.libsbol)

 	SequenceAnnotationProperty (class in sbol.libsbol)

 	SequenceConstraint (class in sbol.libsbol)

 	SequenceConstraintProperty (class in sbol.libsbol)

 	SequenceProperty (class in sbol.libsbol)

 	set() (ActivityProperty method)

 	(AgentProperty method)

 	(AliasedOwnedFunctionalComponent method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(OwnedActivity method)

 	(OwnedAgent method)

 	(OwnedAnalysis method)

 	(OwnedAssociation method)

 	(OwnedAttachment method)

 	(OwnedBuild method)

 	(OwnedCollection method)

 	(OwnedCombinatorialDerivation method)

 	(OwnedComponent method)

 	(OwnedComponentDefinition method)

 	(OwnedDesign method)

 	(OwnedExperiment method)

 	(OwnedExperimentalData method)

 	(OwnedFunctionalComponent method)

 	(OwnedImplementation method)

 	(OwnedInteraction method)

 	(OwnedLocation method)

 	(OwnedMapsTo method)

 	(OwnedMeasurement method)

 	(OwnedModel method)

 	(OwnedModule method)

 	(OwnedModuleDefinition method)

 	(OwnedParticipation method)

 	(OwnedPlan method)

 	(OwnedSampleRoster method)

 	(OwnedSequence method)

 	(OwnedSequenceAnnotation method)

 	(OwnedSequenceConstraint method)

 	(OwnedTest method)

 	(OwnedUsage method)

 	(OwnedVariableComponent method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(ReferencedObject method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	
 	setAnnotation() (SBOLObject method)

 	setFileFormat() (in module sbol.libsbol)

 	setHomespace() (in module sbol.libsbol)

 	setInput() (ModuleDefinition method)

 	setOption() (Config static method)

 	setOutput() (ModuleDefinition method)

 	setPropertyValue() (SBOLObject method)

 	setReference() (ReferencedObject method)

 	SmallMoleculeActivationInteraction (class in sbol.libsbol)

 	SmallMoleculeInhibitionInteraction (class in sbol.libsbol)

 	stampTime() (DateTimeProperty method)

 	submit() (PartShop method)

 	summary() (Document method)

 	synthesize() (Sequence method)

T

 	
 	Test (class in sbol.libsbol)

 	TestProperty (class in sbol.libsbol)

 	testRoundTrip() (in module sbol.libsbol)

 	testSBOL() (in module sbol.libsbol)

 	
 	TextProperty (class in sbol.libsbol)

 	TopLevel (class in sbol.libsbol)

 	TranscriptionalActivationInteraction (class in sbol.libsbol)

 	TranscriptionalRepressionInteraction (class in sbol.libsbol)

U

 	
 	update_uri() (SBOLObject method)

 	updateSequence() (ComponentDefinition method)

 	
 	URIProperty (class in sbol.libsbol)

 	Usage (class in sbol.libsbol)

 	UsageProperty (class in sbol.libsbol)

V

 	
 	validate() (ActivityProperty method)

 	(AgentProperty method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(Document method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	
 	VariableComponent (class in sbol.libsbol)

 	VariableComponentProperty (class in sbol.libsbol)

 	verifyTarget() (Analysis method)

 	VersionProperty (class in sbol.libsbol)

W

 	
 	write() (ActivityProperty method)

 	(AgentProperty method)

 	(AnalysisProperty method)

 	(AssociationProperty method)

 	(AttachmentProperty method)

 	(BuildProperty method)

 	(CollectionProperty method)

 	(CombinatorialDerivationProperty method)

 	(ComponentDefinitionProperty method)

 	(ComponentProperty method)

 	(DesignProperty method)

 	(Document method)

 	(ExperimentProperty method)

 	(ExperimentalDataProperty method)

 	(FunctionalComponentProperty method)

 	(ImplementationProperty method)

 	(InteractionProperty method)

 	(LocationProperty method)

 	(MapsToProperty method)

 	(MeasurementProperty method)

 	(ModelProperty method)

 	(ModuleDefinitionProperty method)

 	(ModuleProperty method)

 	(ParticipationProperty method)

 	(PlanProperty method)

 	(SampleRosterProperty method)

 	(SequenceAnnotationProperty method)

 	(SequenceConstraintProperty method)

 	(SequenceProperty method)

 	(TestProperty method)

 	(UsageProperty method)

 	(VariableComponentProperty method)

 	
 	writeString() (Document method)

 _images/dbtl.png
Design

stucture
function

design

Build

structure
behavior

characterization samples

Test
GataFles

rawData

Analysis
GataFles
consensusSequence
fittedMode!
datasheet

_images/logo.jpg

_images/component_definition_uml.png
TapLev:I

ComponentDefinition

components
0.*

Component

sequences
o

Sequence

sequence n
Constraints SequenceConstraint

0:*

sequenceAnnotations
0.

SequenceAnnotation

_static/comment-bright.png

_images/sep_017_fig3.png
Legend

[C] Design
[Build
[] Test
Bl Model

— Linkage via prov:Usage

Use case 3: Aplatereader experimentis
run on the Builds simultaneously.

Use case 5: Different Modelsare

generated from Test data, eg.
deterministic and stochastic

Use case 7: A new Model-based
Designis created

Use case 1: Many biologicalinstances of a
Designin the lab represented by Builds

Use case 2: Some Builds are subjectedto
more than one processing stepin thelab

Use case4: Eachof the Builds are
sequence verified independently.

Use case 6: Abatchsequence analysis is
run using previously processed data sets

MOTIIHOM

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to pySBOL’s documentation!

 		
 Introduction

 		
 Installation

 		
 Using Pip

 		
 Using Python

 		
 Using Installer for Windows

 		
 For Linux Users

 		
 Testing pySBOL

 		
 Getting Started with SBOL

 		
 Creating an SBOL Document

 		
 Creating SBOL Data Objects

 		
 Using Ontology Terms for Attribute Values

 		
 Adding and Getting Objects from a Document

 		
 Getting, Setting, and Editing Attributes

 		
 Creating, Adding and Getting Child Objects

 		
 Creating and Editing Reference Properties

 		
 Iterating and Indexing List Properties

 		
 Searching a Document

 		
 Copying Documents and Objects

 		
 Converting To and From Other Sequence Formats

 		
 Creating Biological Designs

 		
 Biological Parts Repositories

 		
 Re-using Genetic Parts From Online Repositories

 		
 Searching Part Repos

 		
 Submitting Designs to a Repo

 		
 Computer-aided Design for Synthetic Biology

 		
 Design Abstraction

 		
 Hierarchical DNA Assembly

 		
 Editing a Primary Structure

 		
 Sequence Assembly

 		
 Genome Integration

 		
 Full Example Code

 		
 Design-Build-Test-Learn Workflows

 		
 API

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

