
PyRsw Documentation
Release 0.1

PyRsw Team

November 25, 2015

Contents

1 plan 3

2 One-Layer Rotating Shallow Water Model 5
2.1 Classical Form . 5
2.2 Conservation Form . 5
2.3 Vorticity-Bernoulli Form . 6
2.4 1 1

2𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝐿𝑖𝑚𝑖𝑡 . 6
2.5 Conserved Quantities . 6

3 Examples 9
3.1 Geostrophic Adjustment: 1D and 1L . 9

4 Indices and tables 13

i

ii

PyRsw Documentation, Release 0.1

Contents:

Contents 1

PyRsw Documentation, Release 0.1

2 Contents

CHAPTER 1

plan

List or problems to solve

1. solve 1d 1-layer SW (periodic/boundaries)

2. solve 1d n-layer SW

3. solve 2d 1-layer SW

4. solve 2d n-layer SW

5. Linear Stability Calculations

Equations and latex to include:

1. derivation of SW

2. governing equations for different models (see above)

3. different numerical methods:

(a) FD Sardouney

(b) spectral

(c) WENO

(d) f2py

(e) openmp

(f) openmp + mpi

3

PyRsw Documentation, Release 0.1

4 Chapter 1. plan

CHAPTER 2

One-Layer Rotating Shallow Water Model

2.1 Classical Form

The one-layer, two-dimensional rotating shallow water model on a rotating 𝑓 -plane can be written as,

𝜕𝑢

𝜕𝑡
+ (u · ∇)𝑢− 𝑓𝑣 = −𝑔

𝜕ℎ

𝜕𝑥
,

𝜕𝑣

𝜕𝑡
+ (u · ∇) 𝑣 + 𝑓𝑢 = −𝑔

𝜕ℎ

𝜕𝑦
,

𝜕ℎ

𝜕𝑡
+∇ · (ℎu) = 0.

This describes the motion of a pancake like fluid in that it is thin in the vertical and much longer in the horizontal. It
contains pressure forces due to the free surface and a Coriolis pseudo-force because of the rotating frame of reference.

The fluid moves as columns that can be translated in the horizontal and stretched/contracted in the vertical. If the
height of a column changes then the voriticty must change, as can be reflected in the fact that, in the absence of forcing
and dissipation, Potential Vorticity is conserved following the motion,

𝐷

𝐷𝑡

(︃
𝜕𝑣
𝜕𝑥 − 𝜕𝑢

𝜕𝑦 + 𝑓

ℎ

)︃
= 0.

2.2 Conservation Form

There are a variety of forms, these equations can be written. One of them is conservation where the three fields that
have time derivatives are 𝑈 = ℎ𝑢, 𝑉 = ℎ𝑣 and ℎ.

𝜕𝑈

𝜕𝑡
+

𝜕

𝜕𝑥

(︂
𝑈2

ℎ
+

𝑔ℎ2

2

)︂
+

𝜕

𝜕𝑦

(︂
𝑈𝑉

ℎ

)︂
− 𝑓𝑉 = 0,

𝜕𝑉

𝜕𝑡
+

𝜕

𝜕𝑥

(︂
𝑈𝑉

ℎ

)︂
+

𝜕

𝜕𝑦

(︂
𝑉 2

ℎ
+

𝑔ℎ2

2

)︂
+ 𝑓𝑈 = 0,

𝜕ℎ

𝜕𝑡
+∇ · (ℎu) = 0.

Conservation form is attractive because it can help to ensure that, using a clever numerical scheme, some quantitites
are conserved. Note that if you have topography then there are source terms that appear on the right-hand side and this
causes some problems.

5

PyRsw Documentation, Release 0.1

2.3 Vorticity-Bernoulli Form

A third form arises from rewriting the nonlinear acceleration terms as a gradient and a cross product term. Using a
vector identity, it can be shown that the above system is mathematically equivalent to the following,

𝜕𝑢

𝜕𝑡
− 𝑞ℎ𝑣 = −𝜕𝐵

𝜕𝑥
,

𝜕𝑣

𝜕𝑡
+ 𝑞ℎ𝑢 = −𝜕𝐵

𝜕𝑦
,

𝜕ℎ

𝜕𝑡
+∇ (ℎu) = 0.

Note that above we have defined the vorticity and the Bernoulli function,

𝑞 =
𝜁 + 𝑓

ℎ
=

𝜕𝑣
𝜕𝑥 − 𝜕𝑢

𝜕𝑦 + 𝑓

ℎ
,

𝐵 = 𝑔ℎ+
1

2

(︀
𝑢2 + 𝑣2

)︀
.

Before we look at solving this complicated set of equations we consider the one and a half dimensional limit.

2.4 11
2 Dimensional Limit

We assume that none of the variables depend on one horizontal direction, say 𝑦. But, it is very important to realize
that the velocity in that direction is not necessarily zero. Indeed, if you have flow in the 𝑥-direction, the Coriolis force
will deflect it to the right, which will then generate a flow that is perpendicular. This will continue and often give rise
to inerital oscialltions in the horizontal. So we can have motion in either direction but the motion only changes with
respect to 𝑥.

If we simply the governing equations we get

𝜕𝑢

𝜕𝑡
− 𝑞ℎ𝑣 = −𝜕𝐵

𝜕𝑥
,

𝜕𝑣

𝜕𝑡
+ 𝑞ℎ𝑢 = 0,

𝜕ℎ

𝜕𝑡
+

𝜕

𝜕𝑥
(ℎ𝑢) = 0.

where the vorticity and the Bernoulli function simplify to,

𝑞 =
𝜁 + 𝑓

ℎ
=

𝜕𝑣
𝜕𝑥 + 𝑓

ℎ
,

𝐵 = 𝑔ℎ2 +
1

2

(︀
𝑢2 + 𝑣2

)︀
.

2.5 Conserved Quantities

In the purely conservative or nondissipative limit, there are three quantities that are exactly conserved.

1. Mass:

𝑀 =

∫︁
𝐷

ℎ 𝑑𝐴

6 Chapter 2. One-Layer Rotating Shallow Water Model

PyRsw Documentation, Release 0.1

2. Total Energy: sum of potential and kinetic energies

𝐸 =
1

2

∫︁
𝐷

(︀
𝑔ℎ2 + ℎ(𝑢2 + 𝑣2)

)︀
𝑑𝐴

3. Potenal Enstrophy:

𝑄 =
1

2

∫︁
𝐷

ℎ𝑞2 𝑑𝐴

In a numerical model we cannot expect these to be conserved but we would like them to be close to be conserved.
If they are very badly conserved than this could reflect that the numerical scheme is behaving badly. However, just
because these are conserved that does not guarantee that the solution is correct. But they are usually good indicators
as to how our method is doing in the conservative limit.

Of course when nonconservative forces are introduced things will change. One might argue that since the world is
non-dissipative then we don’t need to worry about conserving these. However, it is desirable to know that basis of
your model is well behaved and therefore why we should worry about conserved quantities.

2.5. Conserved Quantities 7

PyRsw Documentation, Release 0.1

8 Chapter 2. One-Layer Rotating Shallow Water Model

CHAPTER 3

Examples

3.1 Geostrophic Adjustment: 1D and 1L

In the directory src you will find an example entitled example_1D_1L_spectral.py

First, libraries are imported. Two standard ones are numpy, for calculations, and matplotlib.pyplot for plotting. Those
are standard to numpy. Then, there are four other things that are imported:

• Steppers This contains different time-stepping functions. At the moment we have Euler, Adams-Bashforth 2
(AB2) and Runge-Kutta 4 (RK4). PyRsw uses adaptive time stepping to try and be more efficient in how the
solution is marched forward.

• Fluxes This contains the fluxes for the RSW model. At the moment there is only the option for a pseudo-spectral
model but this will be generalized to include a Finite Volume method as well.

• PyRsw This is the main library and importing Simulation imports the core of the library.

• constants This has some useful constants, more can be added if desired.

After the libraries are imported then a simulation object is created.

sim = Simulation()

Below specifies the geometry in 𝑥 and 𝑦: [Options ’periodic’, ’walls’]

We use AB2, a spectral method: [Options: Euler, AB2, RK4]

We solve the nonlinear dynamics (can be Linear)

Use spectral sw model (no other choices). Maybe hide this.

sim.geomx = 'walls'
sim.geomy = 'periodic'
sim.stepper = Step.AB2
sim.method = 'Spectral'
sim.dynamics = 'Nonlinear'
sim.flux_method = Flux.spectral_sw

We specify a lot of parameters. There are some default values that are specified in .

sim.Lx = 4000e3 # Domain extent (m)
sim.Ly = 4000e3 # Domain extent (m)
sim.geomx = 'periodic' # Boundary Conditions
sim.geomy = 'periodic' # Boundary Conditions
sim.Nx = 128 # Grid points in x
sim.Ny = 1 # Grid points in y

9

PyRsw Documentation, Release 0.1

sim.Nz = 1 # Number of layers
sim.g = 9.81 # Gravity (m/sec^2)
sim.f0 = 1.e-4 # Coriolis (1/sec)
sim.cfl = 0.05 # CFL coefficient (m)
sim.Hs = [100.] # Vector of mean layer depths (m)
sim.rho = [1025.] # Vector of layer densities (kg/m^3)
sim.end_time = 36.*hour # End Time (sec)

We can specify the periodicity of plotting and whether we want a life animation or make a video. More on this this
later.

sim.output = False # True or False
sim.savet = 1.*hour # Time between saves

Specify periodicity of diagnostics and whether to compute them. This is not tested.

sim.diagt = 2.*minute # Time for output
sim.diagnose = False # True or False

Initialize the simulation.

sim.initialize()

Specify the initial conditions. There is an option whether we want the domain in 𝑥 or 𝑦. At the moment there is no
difference because there is no 𝛽-plane but this will be added.

for ii in range(sim.Nz): # Set mean depths
sim.soln.h[:,:,ii] = sim.Hs[ii]

Gaussian initial conditions
x0 = 1.*sim.Lx/2. # Centre
W = 200.e3 # Width
amp = 1. # Amplitude
if sim.Ny==1:

sim.soln.h[:,:,0] += amp*np.exp(-(sim.x-x0)**2/(W**2)).reshape((sim.Nx,1))
elif sim.Nx==1:

sim.soln.h[:,:,0] += amp*np.exp(-(sim.y-x0)**2/(W**2)).reshape((1,sim.Ny))

Solve the problem.

sim.run()

Plot the Hovmöller diagram in time versus space.

if sim.Ny==1:
plt.figure
t = np.arange(0,sim.end_time+sim.plott,sim.plott)/86400.

for L in range(sim.Nz):
field = sim.hov_h[:,0,:].T - np.sum(sim.Hs[L:])
plt.subplot(sim.Nz,1,L+1)
plt.pcolormesh(sim.x/1e3,t, field,

cmap=sim.cmap, vmin = 0, vmax = amp)
plt.xlim([sim.x[0]/1e3, sim.x[-1]/1e3])
plt.ylim([t[0], t[-1]])
plt.title(r"$Hovm{\"o}ller Plot\, {of} \,\, \eta$")
plt.xlabel(r"$distance \, \, (km)$")
plt.ylabel(r"$Time \, \, (days)$")
plt.colorbar()

plt.show()

10 Chapter 3. Examples

PyRsw Documentation, Release 0.1

Fig. 3.1: Final solution for the test case.

3.1. Geostrophic Adjustment: 1D and 1L 11

PyRsw Documentation, Release 0.1

Fig. 3.2: Hovmöller plot for the test case.

12 Chapter 3. Examples

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

	plan
	One-Layer Rotating Shallow Water Model
	Classical Form
	Conservation Form
	Vorticity-Bernoulli Form
	1 12 Dimensional Limit
	Conserved Quantities

	Examples
	Geostrophic Adjustment: 1D and 1L

	Indices and tables

