

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	ROS Bag Python Controller 0.1.2 documentation

Welcome to ROS Bag Python Controller’s documentation!

Contents:

	ROS Bag Python Controller
	Features

	To do

	Credits

	Installation
	Stable release

	From sources

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.1 (2017-01-09)

	0.1.0 (2017-01-09)

	Technical Documentation
	pyrosbag package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ROS Bag Python Controller 0.1.2 documentation

ROS Bag Python Controller

 [https://pypi.python.org/pypi/pyrosbag]
 [https://travis-ci.org/masasin/pyrosbag]
 [https://codecov.io/gh/masasin/pyrosbag][image: Documentation Status]
 [https://pyrosbag.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/masasin/pyrosbag/]
 [https://github.com/masasin/pyrosbag]Programmatically control ROS Bag files with Python. Look at rosbag_pandas
on PyPI for an excellent package which allows you to work with the data
directly.

	Free software: MIT license

	Documentation: https://pyrosbag.readthedocs.io.

Features

	General Bag class

	rosbag play

To do

	check

	compress

	decompress

	filter

	fix

	help

	info

	record

	reindex

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

 Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ROS Bag Python Controller 0.1.2 documentation

Installation

Stable release

To install ROS Bag Python Controller, run this command in your terminal:

$ pip install pyrosbag

This is the preferred method to install ROS Bag Python Controller, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for ROS Bag Python Controller can be downloaded from the Github repo [https://github.com/masasin/pyrosbag].

You can either clone the public repository:

$ git clone git://github.com/masasin/pyrosbag

Or download the tarball [https://github.com/masasin/pyrosbag/tarball/master]:

$ curl -OL https://github.com/masasin/pyrosbag/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

 Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ROS Bag Python Controller 0.1.2 documentation

Usage

To use ROS Bag Python Controller in a project, just import whatever components you need:

import pyrosbag as prb

For instance, to forward user input:

with prb.BagPlayer("example.bag") as example:
 example.play()
 while example.is_running():
 inputs = input()
 kotaro.send(inputs)

Or, to play the bag file intermittently:

import time

INTERVAL = 3 # seconds

with BagPlayer("example.bag") as example:
 example.play()
 while example.is_running():
 # Run for INTERVAL seconds.
 time.sleep(INTERVAL)

 # Pause for INTERVAL seconds.
 # While paused, step through at a rate of once a second.
 example.pause()
 for _ in range(INTERVAL - 1):
 time.sleep(1)
 example.step()
 time.sleep(1)

 # Resume playing the bag file.
 example.resume()

 Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ROS Bag Python Controller 0.1.2 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/masasin/pyrosbag/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

ROS Bag Python Controller could always use more documentation, whether as part of the
official ROS Bag Python Controller docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/masasin/pyrosbag/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up pyrosbag for local development.

	Fork the pyrosbag repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/pyrosbag.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv pyrosbag
$ cd pyrosbag/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 pyrosbag tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4 and 3.5, and 3.6. Check
https://travis-ci.org/masasin/pyrosbag/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests/test_pyrosbag.py::TestClassName::test_name

 Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ROS Bag Python Controller 0.1.2 documentation

Credits

Development Lead

	Jean Nassar <jeannassar5@gmail.com>

Contributors

None yet. Why not be the first?

 Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ROS Bag Python Controller 0.1.2 documentation

History

0.1.1 (2017-01-09)

	Fix Continuous Integration.

	Fix Code Coverage metrics.

0.1.0 (2017-01-09)

	First release on PyPI.

 Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	ROS Bag Python Controller 0.1.2 documentation

Technical Documentation

	pyrosbag package
	Module contents

	pyrosbag.pyrosbag module

 Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	ROS Bag Python Controller 0.1.2 documentation

 	Technical Documentation

pyrosbag package

Module contents

Note that, in order to access the data within the bag file, the
rosbag_python package is extremely convenient. It is available on PyPI.

pyrosbag.pyrosbag module

Programmatically control a ROS bag file.

This module implements the base class, and the various functions.

Currently implemented are:

	rosbag play

	
class pyrosbag.pyrosbag.Bag(filenames)[source]

	Bases: object

Open and manipulate a bag file programmatically.

	Parameters:	filenames (StringTypes | List[StringTypes]) – The location of the bag files.

	
filenames

	List[StringTypes]

The location of the bag files.

	
process

	subprocess.Popen

The process containing the running bag file.

	
__enter__()[source]

	Context manager entry point.

	
__exit__(exc_type, exc_value, traceback)[source]

	Context manager exit point.

	
is_running

	Check whether the bag file is running.

	Returns:	The bag file is running.

	Return type:	bool

	
send(string)[source]

	Write something to process stdin.

	Parameters:	string (str) – The string to write.

	Raises:	BagNotRunningError –
If interaction is attempted when the bag file is not running.

	
stop()[source]

	Stop a running bag file.

	Raises:	BagNotRunningError –
If the bag file is not running.

	
wait()[source]

	Block until process is complete.

	Raises:	BagNotRunningError –
If the bag file is not running.

	
exception pyrosbag.pyrosbag.BagError[source]

	Bases: exceptions.Exception

Catch bag player exceptions.

	
exception pyrosbag.pyrosbag.BagNotRunningError(action='talk to')[source]

	Bases: pyrosbag.pyrosbag.BagError

Raised when interaction is attempted with a bag file which is not running.

	
class pyrosbag.pyrosbag.BagPlayer(filenames)[source]

	Bases: pyrosbag.pyrosbag.Bag

Play Bag files.

	
pause()[source]

	Pause the bag file.

	
play(wait=False, stdin=-1, stdout=None, stderr=None, quiet=None, immediate=None, start_paused=None, queue_size=None, publish_clock=None, clock_publish_freq=None, delay=None, publish_rate_multiplier=None, start_time=None, duration=None, loop=None, keep_alive=None)[source]

	Play the bag file.

	Parameters:	
	wait (Optional[Bool]) – Wait until completion.

	stdin (Optional[file]) – The stdin buffer. Default is subprocess.PIPE.

	stdout (Optional[file]) – The stdout buffer.

	stderr (Optional[file]) – The stderr buffer.

	quiet (Optional[Bool]) – Suppress console output.

	immediate (Optional[Bool]) – Play back all messages without waiting.

	start_paused (Optional[Bool]) – Start in paused mode.

	queue_size (Optional[int]) – Set outgoing queue size. Default is 100.

	publish_clock (Optional[Bool]) – Publish the clock time.

	clock_publish_freq (Optional[float]) – The frequency, in Hz, at which to publish the clock time. Default is
100.

	delay (Optional[float]) – The number of seconds to sleep afer every advertise call (e.g., to
allow subscribers to connect).

	publish_rate_multiplier (Optional[float]) – The factor by which to multiply the publish rate.

	start_time (Optional[float]) – The number of seconds into the bag file at which to start.

	duration (Optional[float]) – The number of seconds from the start to play.

	loop (Optional[Bool]) – Loop playback.

	keep_alive (Optional[Bool]) – Keep alive past end of bag (e.g. for publishing latched topics).

	
resume()[source]

	Resume the bag file.

	
step()[source]

	Step through a paused bag file.

	
exception pyrosbag.pyrosbag.MissingBagError[source]

	Bases: pyrosbag.pyrosbag.BagError

Bag file was not specified.

	
msg = 'No Bag files were specified.'

	

 Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	ROS Bag Python Controller 0.1.2 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyrosbag	

 	
 	
 pyrosbag.pyrosbag	

 Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	ROS Bag Python Controller 0.1.2 documentation

Index

 _
 | B
 | F
 | I
 | M
 | P
 | R
 | S
 | W

_

 	

 	__enter__() (pyrosbag.pyrosbag.Bag method)

 	

 	__exit__() (pyrosbag.pyrosbag.Bag method)

B

 	

 	Bag (class in pyrosbag.pyrosbag)

 	BagError

 	

 	BagNotRunningError

 	BagPlayer (class in pyrosbag.pyrosbag)

F

 	

 	filenames (pyrosbag.pyrosbag.Bag attribute)

I

 	

 	is_running (pyrosbag.pyrosbag.Bag attribute)

M

 	

 	MissingBagError

 	

 	msg (pyrosbag.pyrosbag.MissingBagError attribute)

P

 	

 	pause() (pyrosbag.pyrosbag.BagPlayer method)

 	play() (pyrosbag.pyrosbag.BagPlayer method)

 	process (pyrosbag.pyrosbag.Bag attribute)

 	

 	pyrosbag (module)

 	pyrosbag.pyrosbag (module)

R

 	

 	resume() (pyrosbag.pyrosbag.BagPlayer method)

S

 	

 	send() (pyrosbag.pyrosbag.Bag method)

 	step() (pyrosbag.pyrosbag.BagPlayer method)

 	

 	stop() (pyrosbag.pyrosbag.Bag method)

W

 	

 	wait() (pyrosbag.pyrosbag.Bag method)

 Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		ROS Bag Python Controller 0.1.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/down-pressed.png

_modules/pyrosbag/pyrosbag.html

 Navigation

 		
 index

 		
 modules |

 		ROS Bag Python Controller 0.1.2 documentation »

 		Module code »

 Source code for pyrosbag.pyrosbag

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""
Programmatically control a ROS bag file.

This module implements the base class, and the various functions.

Currently implemented are:

 * ``rosbag play``

"""
import logging
import subprocess as sp
import time
try:
 from types import StringTypes
except ImportError:
 StringTypes = str

try:
 input = raw_input
except NameError:
 pass

logger = logging.getLogger("bag_player")

[docs]class BagError(Exception):
 """
 Catch bag player exceptions.

 """

[docs]class MissingBagError(BagError):
 """
 Bag file was not specified.

 """
 msg = "No Bag files were specified."

[docs]class BagNotRunningError(BagError):
 """
 Raised when interaction is attempted with a bag file which is not running.

 """
 def __init__(self, action="talk to"):
 message = u"Cannot {} process while bag is not running.".format(action)
 super(BagNotRunningError, self).__init__(message)

[docs]class Bag(object):
 """
 Open and manipulate a bag file programmatically.

 Parameters

 filenames : StringTypes | List[StringTypes]
 The location of the bag files.

 Attributes

 filenames : List[StringTypes]
 The location of the bag files.
 process : subprocess.Popen
 The process containing the running bag file.

 """
 def __init__(self, filenames):
 if filenames in ("", u"", []):
 raise MissingBagError
 if isinstance(filenames, StringTypes):
 filenames = [filenames]
 self.filenames = filenames
 self.process = None

[docs] def send(self, string):
 """
 Write something to process stdin.

 Parameters

 string : str
 The string to write.

 Raises

 BagNotRunningError
 If interaction is attempted when the bag file is not running.

 """
 try:
 self.process.stdin.write(string)
 except AttributeError:
 raise BagNotRunningError()

[docs] def stop(self):
 """
 Stop a running bag file.

 Raises

 BagNotRunningError
 If the bag file is not running.

 """
 try:
 self.process.terminate()
 self.process.kill()
 except AttributeError:
 raise BagNotRunningError("stop")

[docs] def wait(self):
 """
 Block until process is complete.

 Raises

 BagNotRunningError
 If the bag file is not running.

 """
 try:
 self.process.wait()
 except AttributeError:
 raise BagNotRunningError("wait for")

 @property
 def is_running(self):
 """
 Check whether the bag file is running.

 Returns

 bool
 The bag file is running.

 """
 try:
 return self.process.poll() is None
 except AttributeError:
 return False

[docs] def __enter__(self):
 """
 Context manager entry point.

 """
 return self

 # noinspection PyUnusedLocal
[docs] def __exit__(self, exc_type, exc_value, traceback):
 """
 Context manager exit point.

 """
 time.sleep(1) # For pretty output.
 if self.is_running:
 if exc_type is None:
 logger.warning("Exited while process is still running.")
 logger.info("Hint: Use Bag.wait() or Bag.play(wait=True) "
 "to wait until completion.")
 else:
 self.stop()

 if exc_type == KeyboardInterrupt:
 logger.info("User exit.")
 return True
 elif exc_type is not None:
 logger.critical("An error occurred. Exiting.")
 else:
 logger.info("Goodbye!")

 def __repr__(self):
 return "<Bag({})>".format(self.filenames)

[docs]class BagPlayer(Bag):
 """
 Play Bag files.

 """
[docs] def play(self, wait=False, stdin=sp.PIPE, stdout=None, stderr=None,
 quiet=None, immediate=None, start_paused=None, queue_size=None,
 publish_clock=None, clock_publish_freq=None, delay=None,
 publish_rate_multiplier=None, start_time=None, duration=None,
 loop=None, keep_alive=None):
 """
 Play the bag file.

 Parameters

 wait : Optional[Bool]
 Wait until completion.
 stdin : Optional[file]
 The stdin buffer. Default is subprocess.PIPE.
 stdout : Optional[file]
 The stdout buffer.
 stderr : Optional[file]
 The stderr buffer.
 quiet : Optional[Bool]
 Suppress console output.
 immediate : Optional[Bool]
 Play back all messages without waiting.
 start_paused : Optional[Bool]
 Start in paused mode.
 queue_size : Optional[int]
 Set outgoing queue size. Default is 100.
 publish_clock : Optional[Bool]
 Publish the clock time.
 clock_publish_freq : Optional[float]
 The frequency, in Hz, at which to publish the clock time. Default is
 100.
 delay : Optional[float]
 The number of seconds to sleep afer every advertise call (e.g., to
 allow subscribers to connect).
 publish_rate_multiplier : Optional[float]
 The factor by which to multiply the publish rate.
 start_time : Optional[float]
 The number of seconds into the bag file at which to start.
 duration : Optional[float]
 The number of seconds from the start to play.
 loop : Optional[Bool]
 Loop playback.
 keep_alive : Optional[Bool]
 Keep alive past end of bag (e.g. for publishing latched topics).

 """
 arguments = ["rosbag", "play"]
 arguments.extend(self.filenames)

 if quiet:
 arguments.append("-q")
 if immediate:
 arguments.append("-i")
 if start_paused:
 arguments.append("--pause")
 if queue_size is not None:
 arguments.append("--queue={}".format(queue_size))
 if publish_clock:
 arguments.append("--clock")
 if clock_publish_freq is not None:
 arguments.append("--hz={}".format(clock_publish_freq))
 if delay is not None:
 arguments.append("--delay={}".format(delay))
 if publish_rate_multiplier is not None:
 arguments.append("--rate={}".format(publish_rate_multiplier))
 if start_time is not None:
 arguments.append("--start={}".format(start_time))
 if duration is not None:
 arguments.append("--duration={}".format(duration))
 if loop:
 arguments.append("-l")
 if keep_alive:
 arguments.append("-k")

 self.process = sp.Popen(arguments,
 stdin=stdin, stdout=stdout, stderr=stderr)
 if wait:
 self.wait()

[docs] def pause(self):
 """
 Pause the bag file.

 """
 self.send(" ")

[docs] def resume(self):
 """
 Resume the bag file.

 """
 self.send(" ")

[docs] def step(self):
 """
 Step through a paused bag file.

 """
 self.send("s")

 © Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		ROS Bag Python Controller 0.1.2 documentation »

 All modules for which code is available

		pyrosbag.pyrosbag

 © Copyright 2017, Jean Nassar.
 Created using Sphinx 1.3.5.

