
pyrogi Documentation
Release 0.1.3

Ben Weedon

Nov 05, 2017





Contents:

1 Pyrogi Core 1

2 Indices and tables 5

Python Module Index 7

i



ii



CHAPTER 1

Pyrogi Core

The top level package for the pyrogi engine. This package defines the components of the engine which will be included
in every game, such as events, and the classes Backend and Screen.

pyrogi.get_window_dimensions()

Returns The dimensions in tiles of the game window.

Return type Vec2

pyrogi.get_tile_dimensions()

Returns The dimensions in pixels of each game tile.

Return type Vec2

pyrogi.get_caption()

Returns The title caption of the game window.

Return type str

pyrogi.get_mouse_position()

Returns The current position in tiles of the mouse.

Return type Vec2

class pyrogi.Backend(window_dimensions, tile_dimensions, caption)
The Backend class is intended to be extended (for example, by PyGameBackend). Backend forwards
events such as key events and ticks on to the current Screen. Its implementations are expected to implement
the run() method, however, which should start up the main loop for the backend.

The __init__ method of a Backend is as follows:

Parameters

• window_dimensions (Vec2) – The dimensions, in terms of of tiles, for the game win-
dow to be.

• tile_dimensions (Vec2) – The dimensions, in terms of pixels, for each tile to be.

1

https://docs.python.org/3/library/stdtypes.html#str


pyrogi Documentation, Release 0.1.3

• caption (str) – The title text of the game window.

get_current_screen()

Returns The screen currently set in the engine.

Return type Screen

go_back_n_screens(n)
Return to the nth screen in the stack, popping off screens as you go. Because screens are removed from
the stack to reach the nth most recent screen, they cannot be returned to without constructing new ones.

Parameters n (int) – The number of screens to go back.

handle_key_down(event)
Called by the Backend implementation when a key down event has occured. This should never be
overriden, but can be extended if the Backend implementation wishes to do something every time the
event is triggered. The event is passed on to the backend’s current screen.

Parameters event (KeyDownEvent) – The event triggered.

handle_key_up(event)
Called by the Backend implementation when a key up event has occured. This should never be overriden,
but can be extended if the Backend implementation wishes to do something every time the event is
triggered. The event is passed on to the backend’s current screen.

Parameters event (KeyUpEvent) – The event triggered.

handle_mouse_button_down(event)
Called by the Backend implementation when a mouse button down event has occured. This should never
be overriden, but can be extended if the Backend implementation wishes to do something every time the
event is triggered. The event is passed on to the backend’s current screen.

Parameters event (MouseButtonDownEvent) – The event triggered.

handle_mouse_button_up(event)
Called by the Backend implementation when a mouse button up event has occured. This should never
be overriden, but can be extended if the Backend implementation wishes to do something every time the
event is triggered. The event is passed on to the backend’s current screen.

Parameters event (MouseButtonUpEvent) – The event triggered.

handle_mouse_moved(event)
Called by the Backend implementation when a mouse moved event has occured. This should never be
overriden, but can be extended if the Backend implementation wishes to do something every time the
event is triggered. The event is passed on to the backend’s current screen.

Parameters event (MouseMovedEvent) – The event triggered.

handle_mouse_wheel_scrolled(event)
Called by the Backend implementation when a mouse wheel scrolled has occured. This should never be
overriden, but can be extended if the Backend implementation wishes to do something every time the
event is triggered. The event is passed on to the backend’s current screen.

Parameters event (MouseWheelScrolledEvent) – The event triggered.

on_draw(g)
Called by the Backend implementation when a draw should occur in the game loop. This should never
be overriden, but can be extended if the Backend implementation wishes to do something every draw.
The draw is passed on to the backend’s current screen.

Parameters g (Graphics) – The Graphics object to be used to perform the drawing.

2 Chapter 1. Pyrogi Core

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


pyrogi Documentation, Release 0.1.3

on_tick(millis)
Called by the Backend implementation when a tick should occur in the game loop. This should never be
overriden, but can be extended if the Backend implementation wishes to do something every tick. The
tick is passed on to the backend’s current screen.

Parameters millis (int) – The number of milliseconds since the last tick.

run()
Run the main loop for pyrogi.

This must be implemented by subclasses of Backend.

set_screen(screen)
Sets the current screen in the engine. It is added to a stack of other screens, which maintains history and
allows the engine to return to previous screens.

Parameters screen (Screen) – The screen to be added to the stack.

class pyrogi.Event
An event, such as a key event or mouse event, handled by the Backend.

class pyrogi.KeyDownEvent(character, key, modifier)
An event triggered when a key is pressed down.

The __init__ method is as follows:

Parameters

• character (str) – The character representing the key pressed.

• key (int) – The key pressed.

• modifier (int) – The modifier key pressed.

class pyrogi.KeyUpEvent(key, modifier)
An event triggered when a key is released.

The __init__ method is as follows:

Parameters

• key (int) – The key released.

• modifier (int) – The modifier key released.

class pyrogi.MouseButtonDownEvent(position, button)
An event triggered when a mouse button is pressed down.

The __init__ method is as follows:

Parameters

• position (tuple) – The current position of the mouse.

• button (button) – The button pressed.

class pyrogi.MouseButtonUpEvent(position, button)
An event triggered when a mouse button is released.

The __init__ method is as follows:

Parameters

• position (tuple) – The current position of the mouse.

• button (button) – The button released.

3

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple


pyrogi Documentation, Release 0.1.3

class pyrogi.MouseMovedEvent(position, relative_position, buttons)
An event triggered when the mouse is moved.

The __init__ method is as follows:

Parameters

• position (tuple) – The current position of the mouse.

• relative_position (tuple) – The vector representing the motion of the mouse.

• buttons (list) – The buttons pressed on the mouse.

class pyrogi.MouseWheelScrolledEvent(position, scroll_amount)
An event triggered when the mouse wheel is scrolled.

The __init__ method is as follows:

Parameters

• position (tuple) – The current position of the mouse.

• scroll_amount (int) – The amount scrolled.

class pyrogi.Screen
The Screen class is the top level UIElementContainer. It represents a single screen in a game. An
example may be the menu screen, the main game screen, or the shop screen if you are placed in a view separate
from the game world to shop. Because they are the top level container, a screen’s position is always (0, 0), and
its dimensions is always equal to that of the game window. A stack of screens is maintained in the Backend
object.

4 Chapter 1. Pyrogi Core

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int


CHAPTER 2

Indices and tables

• genindex

• modindex

• search

5



pyrogi Documentation, Release 0.1.3

6 Chapter 2. Indices and tables



Python Module Index

p
pyrogi, 1

7



pyrogi Documentation, Release 0.1.3

8 Python Module Index



Index

B
Backend (class in pyrogi), 1

E
Event (class in pyrogi), 3

G
get_caption() (in module pyrogi), 1
get_current_screen() (pyrogi.Backend method), 2
get_mouse_position() (in module pyrogi), 1
get_tile_dimensions() (in module pyrogi), 1
get_window_dimensions() (in module pyrogi), 1
go_back_n_screens() (pyrogi.Backend method), 2

H
handle_key_down() (pyrogi.Backend method), 2
handle_key_up() (pyrogi.Backend method), 2
handle_mouse_button_down() (pyrogi.Backend method),

2
handle_mouse_button_up() (pyrogi.Backend method), 2
handle_mouse_moved() (pyrogi.Backend method), 2
handle_mouse_wheel_scrolled() (pyrogi.Backend

method), 2

K
KeyDownEvent (class in pyrogi), 3
KeyUpEvent (class in pyrogi), 3

M
MouseButtonDownEvent (class in pyrogi), 3
MouseButtonUpEvent (class in pyrogi), 3
MouseMovedEvent (class in pyrogi), 3
MouseWheelScrolledEvent (class in pyrogi), 4

O
on_draw() (pyrogi.Backend method), 2
on_tick() (pyrogi.Backend method), 2

P
pyrogi (module), 1

R
run() (pyrogi.Backend method), 3

S
Screen (class in pyrogi), 4
set_screen() (pyrogi.Backend method), 3

9


	Pyrogi Core
	Indices and tables
	Python Module Index

