Pyro Core:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Installation</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Install from Source</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Getting Started</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Primitives</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Inference</td>
<td>11</td>
</tr>
<tr>
<td>4.1</td>
<td>SVI</td>
<td>11</td>
</tr>
<tr>
<td>4.2</td>
<td>ELBO</td>
<td>12</td>
</tr>
<tr>
<td>4.3</td>
<td>Importance</td>
<td>18</td>
</tr>
<tr>
<td>4.4</td>
<td>Sequential Monte Carlo</td>
<td>19</td>
</tr>
<tr>
<td>4.5</td>
<td>Stein Methods</td>
<td>20</td>
</tr>
<tr>
<td>4.6</td>
<td>Discrete Inference</td>
<td>22</td>
</tr>
<tr>
<td>4.7</td>
<td>Inference Utilities</td>
<td>23</td>
</tr>
<tr>
<td>4.8</td>
<td>MCMC</td>
<td>25</td>
</tr>
<tr>
<td>4.9</td>
<td>Automatic Guide Generation</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Distributions</td>
<td>39</td>
</tr>
<tr>
<td>5.1</td>
<td>PyTorch Distributions</td>
<td>39</td>
</tr>
<tr>
<td>5.2</td>
<td>Pyro Distributions</td>
<td>43</td>
</tr>
<tr>
<td>5.3</td>
<td>Transforms</td>
<td>63</td>
</tr>
<tr>
<td>5.4</td>
<td>TransformModules</td>
<td>65</td>
</tr>
<tr>
<td>6</td>
<td>Parameters</td>
<td>79</td>
</tr>
<tr>
<td>6.1</td>
<td>ParamStore</td>
<td>79</td>
</tr>
<tr>
<td>7</td>
<td>Neural Network</td>
<td>83</td>
</tr>
<tr>
<td>7.1</td>
<td>AutoRegressiveNN</td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>Optimization</td>
<td>87</td>
</tr>
<tr>
<td>8.1</td>
<td>Pyro Optimizers</td>
<td>87</td>
</tr>
<tr>
<td>8.2</td>
<td>PyTorch Optimizers</td>
<td>89</td>
</tr>
<tr>
<td>8.3</td>
<td>Higher-Order Optimizers</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>Poutine (Effect handlers)</td>
<td>93</td>
</tr>
<tr>
<td>9.1</td>
<td>Handlers</td>
<td>93</td>
</tr>
<tr>
<td>9.2</td>
<td>Trace</td>
<td>100</td>
</tr>
</tbody>
</table>
1.1 Install from Source

Pyro supports 3.4+. To setup, install PyTorch then run:

```
pip install pyro-ppl
```

or install from source:

```
git clone https://github.com/uber/pyro.git
cd pyro
python setup.py install
```
• Install Pyro.
• Learn the basic concepts of Pyro: models and inference.
• Dive in to other tutorials and examples.
CHAPTER 3

Primitives

sample *(name, fn, *args, **kwargs)*

Calls the stochastic function `fn` with additional side-effects depending on `name` and the enclosing context (e.g. an inference algorithm). See Intro I and Intro II for a discussion.

Parameters

- `name` – name of sample
- `fn` – distribution class or function
- `obs` – observed datum (optional; should only be used in context of inference) optionally specified in kwargs

Returns sample

param *(name, *args, **kwargs)*

Saves the variable as a parameter in the param store. To interact with the param store or write to disk, see **Parameters**.

Parameters

- `name` *(str)* – name of parameter
- `init_tensor` *(torch.Tensor or callable)* – initial tensor or lazy callable that returns a tensor. For large tensors, it may be cheaper to write e.g. lambda: `torch.randn(100000)`, which will only be evaluated on the initial statement.
- `event_dim` *(int)* – (optional) number of rightmost dimensions unrelated to batching. Dimension to the left of this will be considered batch dimensions; if the param statement is inside a subsampled plate, then corresponding batch dimensions of the parameter will be correspondingly subsampled. If unspecified, all dimensions will be considered event dims and no subsampling will be performed.
Returns parameter

Return type torch.Tensor

module (name, nn_module, update_module_params=False)
Takes a torch.nn.Module and registers its parameters with the ParamStore. In conjunction with the ParamStore save() and load() functionality, this allows the user to save and load modules.

Parameters

- name (str) – name of module
- nn_module (torch.nn.Module) – the module to be registered with Pyro
- update_module_params – determines whether Parameters in the PyTorch module get overridden with the values found in the ParamStore (if any). Defaults to False

Returns torch.nn.Module

random_module (name, nn_module, prior, *args, **kwargs)
Places a prior over the parameters of the module nn_module. Returns a distribution (callable) over nn.Modules, which upon calling returns a sampled nn.Module. See the Bayesian Regression tutorial for an example.

Parameters

- name (str) – name of pyro module
- nn_module (torch.nn.Module) – the module to be registered with pyro
- prior – pyro distribution, stochastic function, or python dict with parameter names as keys and respective distributions/stochastic functions as values.

Returns a callable which returns a sampled module

factor (name, log_factor)
Factor statement to add arbitrary log probability factor to a probabilistic model.

Parameters

- name (str) – Name of the trivial sample
- log_factor (torch.Tensor) – A possibly batched log probability factor.

class plate (name, size=None, subsample_size=None, subsample=None, dim=None, use_cuda=None, device=None)
Construct for conditionally independent sequences of variables.

plate can be used either sequentially as a generator or in parallel as a context manager (formerly irange and iarange, respectively).

Sequential plate is similar to range() in that it generates a sequence of values.

Vectorized plate is similar to torch.arange() in that it yields an array of indices by which other tensors can be indexed. plate differs from torch.arange() in that it also informs inference algorithms that the variables being indexed are conditionally independent. To do this, plate is a provided as context manager rather than a function, and users must guarantee that all computation within an plate context is conditionally independent:

```python
with plate("name", size) as ind:
    # ...do conditionally independent stuff with ind...
```

Additionally, plate can take advantage of the conditional independence assumptions by subsampling the indices and informing inference algorithms to scale various computed values. This is typically used to subsample minibatches of data:
with plate("data", len(data), subsample_size=100) as ind:
 batch = data[ind]
 assert len(batch) == 100

By default subsample_size=False and this simply yields a torch.arange(0, size). If 0 < subsample_size <= size this yields a single random batch of indices of size subsample_size and scales all log likelihood terms by size/batch_size, within this context.

Warning: This is only correct if all computation is conditionally independent within the context.

Parameters

- **name (str)** – A unique name to help inference algorithms match plate sites between models and guides.
- **size (int)** – Optional size of the collection being subsampled (like stop in builtin range).
- **subsample_size (int)** – Size of minibatches used in subsampling. Defaults to size.
- **subsample** (Anything supporting len()) – Optional custom subsample for user-defined subsampling schemes. If specified, then subsample_size will be set to len(subsample).
- **dim (int)** – An optional dimension to use for this independence index. If specified, dim should be negative, i.e. should index from the right. If not specified, dim is set to the rightmost dim that is left of all enclosing plate contexts.
- **use_cuda (bool)** – DEPRECATED, use the device arg instead. Optional bool specifying whether to use cuda tensors for subsample and log_prob. Defaults to torch.Tensor.is_cuda.
- **device (str)** – Optional keyword specifying which device to place the results of subsample and log_prob on. By default, results are placed on the same device as the default tensor.

Returns A reusabe context manager yielding a single 1-dimensional torch.Tensor of indices.

Examples:

```python
>>> # This version declares sequential independence and subsamples data:
>>> for i in plate('data', 100, subsample_size=10):
...     if z[i]:  # Control flow in this example prevents vectorization.
...         obs = sample('obs_{i}'.format(i), dist.Normal(loc, scale), obs=data[i])

>>> # This version declares vectorized independence:
>>> with plate('data'):\n...     obs = sample('obs', dist.Normal(loc, scale), obs=data)

>>> # This version subsamples data in vectorized way:
>>> with plate('data', 100, subsample_size=10) as ind:
...     obs = sample('obs', dist.Normal(loc, scale), obs=data[ind])

>>> # This wraps a user-defined subsampling method for use in pyro:
>>> ind = torch.randint(0, 100, (10,)).long()  # custom subsample
>>> with plate('data', 100, subsample=ind):
...     obs = sample('obs', dist.Normal(loc, scale), obs=data[ind])
```
This reuses two different independence contexts.

```python
>>> x_axis = plate('outer', 320, dim=-1)
>>> y_axis = plate('inner', 200, dim=-2)
>>> with x_axis:
...     x_noise = sample("x_noise", dist.Normal(loc, scale))
...     assert x_noise.shape == (320,)
>>> with y_axis:
...     y_noise = sample("y_noise", dist.Normal(loc, scale))
...     assert y_noise.shape == (200, 1)
>>> with x_axis, y_axis:
...     xy_noise = sample("xy_noise", dist.Normal(loc, scale))
...     assert xy_noise.shape == (200, 320)
```

See SVI Part II for an extended discussion.

get_param_store()
Returns the ParamStore

clear_param_store()
Clears the ParamStore. This is especially useful if you’re working in a REPL.

validation_enabled(is_validate=True)
Context manager that is useful when temporarily enabling/disabling validation checks.

Parameters

- **is_validate** (bool) – (optional; defaults to True) temporary validation check override.

enable_validation(is_validate=True)
Enable or disable validation checks in Pyro. Validation checks provide useful warnings and errors, e.g. NaN checks, validating distribution arguments and support values, etc. which is useful for debugging. Since some of these checks may be expensive, we recommend turning this off for mature models.

Parameters

- **is_validate** (bool) – (optional; defaults to True) whether to enable validation checks.

trace(fn=None, ignore_warnings=False, jit_options=None)
Lazy replacement for torch.jit.trace() that works with Pyro functions that call pyro.param().

The actual compilation artifact is stored in the compiled attribute of the output. Call diagnostic methods on this attribute.

Example:

```python
def model(x):
    scale = pyro.param("scale", torch.tensor(0.5), constraint=constraints.
    \rightarrow positive)
    return pyro.sample("y", dist.Normal(x, scale))

@pyro.ops.jit.trace
def model_log_prob_fn(x, y):
    cond_model = pyro.condition(model, data={"y": y})
    tr = pyro.poutine.trace(cond_model).get_trace(x)
    return tr.log_prob_sum()
```

Parameters

- **fn** (callable) – The function to be traced.
- **ignore_warnings** (bool) – Whether to ignore jit warnings.
• **jit_options** (*dict*) – Optional dict of options to pass to `torch.jit.trace()` , e.g.
  ```json
  "optimize": False
  ```
In the context of probabilistic modeling, learning is usually called inference. In the particular case of Bayesian inference, this often involves computing (approximate) posterior distributions. In the case of parameterized models, this usually involves some sort of optimization. Pyro supports multiple inference algorithms, with support for stochastic variational inference (SVI) being the most extensive. Look here for more inference algorithms in future versions of Pyro.

See Intro II for a discussion of inference in Pyro.

4.1 SVI

```python
class SVI(model, guide, optim, loss, loss_and_grads=None, num_samples=10, num_steps=0, **kwargs)
```

Bases: `pyro.infer.abstract_infer.TracePosterior`

Parameters

- `model` – the model (callable containing Pyro primitives)
- `guide` – the guide (callable containing Pyro primitives)
- `optim` (`pyro.optim.PyroOptim`) – a wrapper a for a PyTorch optimizer
- `loss` (`pyro.infer.elbo.ELBO`) – an instance of a subclass of `ELBO`. Pyro provides three built-in losses: `Trace_ELBO`, `TraceGraph_ELBO`, and `TraceEnum_ELBO`. See the `ELBO` docs to learn how to implement a custom loss.
- `num_samples` – the number of samples for Monte Carlo posterior approximation
- `num_steps` – the number of optimization steps to take in `run()`

A unified interface for stochastic variational inference in Pyro. The most commonly used loss is `loss=Trace_ELBO()`. See the tutorial SVI Part I for a discussion.

```python
evaluate_loss(*args, **kwargs)
```

Returns estimate of the loss
Return type float

Evaluate the loss function. Any args or kwargs are passed to the model and guide.

```
run(*args, **kwargs)
```

```
step(*args, **kwargs)
```

Returns estimate of the loss

Return type float

Take a gradient step on the loss function (and any auxiliary loss functions generated under the hood by `loss_and_grads`). Any args or kwargs are passed to the model and guide.

4.2 ELBO

```
class ELBO(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict Enumeration_warning=True, ignore jit_warnings=False, jit_options=None, retain_graph=None, tail adaptive beta=-1.0)
```

Bases: `object`

`ELBO` is the top-level interface for stochastic variational inference via optimization of the evidence lower bound. Most users will not interact with this base class `ELBO` directly; instead they will create instances of derived classes: `Trace_ELBO`, `TraceGraph_ELBO`, or `TraceEnum_ELBO`.

Parameters

- **num_particles** – The number of particles/samples used to form the ELBO (gradient) estimators.

- **max_plate_nesting** (int) – Optional bound on max number of nested `pyro.plate()` contexts. This is only required when enumerating over sample sites in parallel, e.g. if a site sets `infer={"enumerate": "parallel"}`. If omitted, `ELBO` may guess a valid value by running the (model,guide) pair once, however this guess may be incorrect if model or guide structure is dynamic.

- **vectorize_particles** (bool) – Whether to vectorize the ELBO computation over `num_particles`. Defaults to False. This requires static structure in model and guide.

- **strict Enumeration_warning** (bool) – Whether to warn about possible misuse of enumeration, i.e. that `pyro.infer.TraceEnum_ELBO` is used iff there are enumerated sample sites.

- **ignore jit_warnings** (bool) – Flag to ignore warnings from the JIT tracer. When this is True, all `torch.jit.TracerWarning` will be ignored. Defaults to False.

- **jit_options** (bool) – Optional dict of options to pass to `torch.jit.trace()`, e.g. `{"optimize": False}`.

- **retain graph** (bool) – Whether to retain autograd graph during an SVI step. Defaults to None (False).

- **tail adaptive beta** (float) – Exponent beta with $-1.0 \leq \beta < 0.0$ for use with `TraceTailAdaptive_ELBO`.

References

[2] Black Box Variational Inference, Rajesh Ranganath, Sean Gerrish, David M. Blei
class Trace_ELBO(
 num_particles=1,
 max_plate_nesting=inf,
 max_iarange_nesting=None,
 vectorize_particles=False,
 strict Enumeration_warning=True,
 ignore_jit_warnings=False,
 jit_options=None,
 retain_graph=None,
 tail_adaptive_beta=-1.0)

Bases: pyro.infer.elbo.ELBO

A trace implementation of ELBO-based SVI. The estimator is constructed along the lines of references [1] and [2]. There are no restrictions on the dependency structure of the model or the guide. The gradient estimator includes partial Rao-Blackwellization for reducing the variance of the estimator when non-reparameterizable random variables are present. The Rao-Blackwellization is partial in that it only uses conditional independence information that is marked by plate contexts. For more fine-grained Rao-Blackwellization, see TraceGraph_ELBO.

References

[2] Black Box Variational Inference, Rajesh Ranganath, Sean Gerrish, David M. Blei

loss(model, guide, *args, **kwargs)

Returns

returns an estimate of the ELBO

Return type

float

Evaluates the ELBO with an estimator that uses num_particles many samples/particles.

differentiable_loss(model, guide, *args, **kwargs)

Computes the surrogate loss that can be differentiated with autograd to produce gradient estimates for the model and guide parameters

loss_and_grads(model, guide, *args, **kwargs)

Returns

returns an estimate of the ELBO

Return type

float

Computes the ELBO as well as the surrogate ELBO that is used to form the gradient estimator. Performs backward on the latter. Num_particle many samples are used to form the estimators.

class JitTrace_ELBO(
 num_particles=1,
 max_plate_nesting=inf,
 max_iarange_nesting=None,
 vectorize_particles=False,
 strict Enumeration_warning=True,
 ignore_jit_warnings=False,
 jit_options=None,
 retain_graph=None,
 tail_adaptive_beta=-1.0)

Bases: pyro.infer.trace_elbo.Trace_ELBO

Like Trace_ELBO but uses pyro.ops.jit.compile() to compile loss_and_grads().

This works only for a limited set of models:

• Models must have static structure.
• Models must not depend on any global data (except the param store).
• All model inputs that are tensors must be passed in via *args.
• All model inputs that are not tensors must be passed in via **kwargs, and compilation will be triggered once per unique **kwargs.

loss_and_surrogate_loss(model, guide, *args, **kwargs)

differentiable_loss(model, guide, *args, **kwargs)

loss_and_grads(model, guide, *args, **kwargs)
class TraceGraph_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None,
vectorize_particles=False, strict_enumeration_warning=True,
ignore_jit_warnings=False, jit_options=None, retain_graph=None,
tail_adaptive_beta=-1.0)

Bases: pyro.infer.elbo.ELBO

A TraceGraph implementation of ELBO-based SVI. The gradient estimator is constructed along the lines of reference [1] specialized to the case of the ELBO. It supports arbitrary dependency structure for the model and guide as well as baselines for non-reparameterizable random variables. Where possible, conditional dependency information as recorded in the Trace is used to reduce the variance of the gradient estimator. In particular two kinds of conditional dependency information are used to reduce variance:

- the sequential order of samples (z is sampled after y => y does not depend on z)
- plate generators

References

[2] Neural Variational Inference and Learning in Belief Networks Andriy Mnih, Karol Gregor

loss(model, guide, *args, **kwargs)

Returns returns an estimate of the ELBO

Return type float

Evaluates the ELBO with an estimator that uses num_particles many samples/particles.

loss_and_grads(model, guide, *args, **kwargs)

Returns returns an estimate of the ELBO

Return type float

Computes the ELBO as well as the surrogate ELBO that is used to form the gradient estimator. Performs backward on the latter. Num_particle many samples are used to form the estimators. If baselines are present, a baseline loss is also constructed and differentiated.

class JitTraceGraph_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None,
vectorize_particles=False, strict_enumeration_warning=True,
ignore_jit_warnings=False, jit_options=None, retain_graph=None,
tail_adaptive_beta=-1.0)

Bases: pyro.infer.tracegraph_elbo.TraceGraph_ELBO

Like TraceGraph_ELBO but uses torch.jit.trace() to compile loss_and_grads().

This works only for a limited set of models:

- Models must have static structure.
- Models must not depend on any global data (except the param store).
- All model inputs that are tensors must be passed in via *args.
- All model inputs that are not tensors must be passed in via **kwargs, and compilation will be triggered once per unique **kwargs.

loss_and_grads(model, guide, *args, **kwargs)

class BackwardSampleMessenger(enum_trace, guide_trace)

Bases: pyro.poutine.messenger.Messenger

Implements forward filtering / backward sampling for sampling from the joint posterior distribution.

Chapter 4. Inference
class TraceEnum_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict Enumeration_warning=True, ignore enumeration warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)

Bases: pyro.infer.elbo.ELBO

A trace implementation of ELBO-based SVI that supports - exhaustive enumeration over discrete sample sites, and - local parallel sampling over any sample site.

To enumerate over a sample site in the guide, mark the site with either infer={'enumerate': 'sequential'} or infer={'enumerate': 'parallel'}. To configure all guide sites at once, use config EnumerateGates(). To enumerate over a sample site in the model, mark the site infer={'enumerate': 'parallel'} and ensure the site does not appear in the guide.

This assumes restricted dependency structure on the model and guide: variables outside of an plate can never depend on variables inside that plate.

loss(model, guide, *args, **kwargs)

Returns an estimate of the ELBO

Return type float

Estimates the ELBO using num particles many samples (particles).

differentiable_loss(model, guide, *args, **kwargs)

Returns a differentiable estimate of the ELBO

Return type torch.Tensor

Raises ValueError – if the ELBO is not differentiable (e.g. is identically zero)

Estimates a differentiable ELBO using num particles many samples (particles). The result should be infinitely differentiable (as long as underlying derivatives have been implemented).

loss_and_grads(model, guide, *args, **kwargs)

Returns an estimate of the ELBO

Return type float

Estimates the ELBO using num particles many samples (particles). Performs backward on the ELBO of each particle.

compute marginals(model, guide, *args, **kwargs)

Computes marginal distributions at each model enumerated sample site.

Returns a dict mapping site name to marginal Distribution object

Return type OrderedDict

sample posterior(model, guide, *args, **kwargs)

Sample from the joint posterior distribution of all model enumerated sites given all observations

class JitTraceEnum_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict Enumeration_warning=True, ignore enumeration warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)

Bases: pyro.infer.traceEnum_elbo.TraceEnum_ELBO

Like TraceEnum_ELBO but uses pyro.ops.jit.compile() to compile loss_and_grads().

This works only for a limited set of models:

- Models must have static structure.
• Models must not depend on any global data (except the param store).
• All model inputs that are tensors must be passed in via *args.
• All model inputs that are not tensors must be passed in via **kwargs, and compilation will be triggered once per unique **kwargs.

differentiable_loss(model, guide, *args, **kwargs)

loss_and_grads(model, guide, *args, **kwargs)

class TraceMeanField_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict_enumeration_warning=True, ignore_jit_warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)

Bases: pyro.infer.trace_elbo.Trace_ELBO

A trace implementation of ELBO-based SVI. This is currently the only ELBO estimator in Pyro that uses analytic KL divergences when those are available.

In contrast to, e.g., TraceGraph_ELBO and Trace_ELBO this estimator places restrictions on the dependency structure of the model and guide. In particular it assumes that the guide has a mean-field structure, i.e. that it factorizes across the different latent variables present in the guide. It also assumes that all of the latent variables in the guide are reparameterized. This latter condition is satisfied for, e.g., the Normal distribution but is not satisfied for, e.g., the Categorical distribution.

Warning: This estimator may give incorrect results if the mean-field condition is not satisfied.

Note for advanced users:

The mean field condition is a sufficient but not necessary condition for this estimator to be correct. The precise condition is that for every latent variable \(z \) in the guide, its parents in the model must not include any latent variables that are descendants of \(z \) in the guide. Here ‘parents in the model’ and ‘descendants in the guide’ is with respect to the corresponding (statistical) dependency structure. For example, this condition is always satisfied if the model and guide have identical dependency structures.

loss(model, guide, *args, **kwargs)

Returns returns an estimate of the ELBO

Return type float

Evaluates the ELBO with an estimator that uses num_particles many samples/particles.

class JitTraceMeanField_ELBO(num_particles=1, max_plate_nesting=inf, max_iarange_nesting=None, vectorize_particles=False, strict_enumeration_warning=True, ignore_jit_warnings=False, jit_options=None, retain_graph=None, tail_adaptive_beta=-1.0)

Bases: pyro.infer.trace_mean_field_elbo.TraceMeanField_ELBO

Like TraceMeanField_ELBO but uses pyro.ops.jit.trace() to compile loss_and_grads().

This works only for a limited set of models:
• Models must have static structure.
• Models must not depend on any global data (except the param store).
• All model inputs that are tensors must be passed in via *args.
• All model inputs that are not tensors must be passed in via **kwargs, and compilation will be triggered once per unique **kwargs.
```python
differentiable_loss(model, guide, *args, **kwargs)
loss_and_grads(model, guide, *args, **kwargs)

class TraceTailAdaptive_ELBO(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict Enumeration warning=True, ignore jit warnings=False, jit options=None, retain graph=None, tail adaptive beta=-1.0)

Bases: pyro.infer.trace_elbo.Trace_ELBO

Interface for Stochastic Variational Inference with an adaptive f-divergence as described in ref. [1]. Users should specify num_particles > 1 and vectorize_particles=True. The argument tail adaptive beta can be specified to modify how the adaptive f-divergence is constructed. See reference for details.

Note that this interface does not support computing the variational objective itself; rather it only supports computing gradients of the variational objective. Consequently, one might want to use another SVI interface (e.g. RenyiELBO) in order to monitor convergence.

Note that this interface only supports models in which all the latent variables are fully reparameterized. It also does not support data subsampling.


loss(model, guide, *args, **kwargs)

It is not necessary to estimate the tail-adaptive f-divergence itself in order to compute the corresponding gradients. Consequently the loss method is left unimplemented.

class RenyiELBO(alpha=0, num_particles=2, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict Enumeration warning=True)

Bases: pyro.infer.elbo.ELBO

An implementation of Renyi’s α-divergence variational inference following reference [1].

In order for the objective to be a strict lower bound, we require α ≥ 0. Note, however, that according to reference [1], depending on the dataset α < 0 might give better results. In the special case α = 0, the objective function is that of the important weighted autoencoder derived in reference [2].

Note: Setting α < 1 gives a better bound than the usual ELBO. For α = 1, it is better to use Trace_ELBO class because it helps reduce variances of gradient estimations.

Warning: Mini-batch training is not supported yet.

Parameters

- **alpha** (float) – The order of α-divergence. Here α ≠ 1. Default is 0.
- **num_particles** – The number of particles/samples used to form the objective (gradient) estimator. Default is 2.
- **max_plate_nesting** (int) – Bound on max number of nested pyro.plate() contexts. Default is infinity.
- **strict Enumeration warning** (bool) – Whether to warn about possible misuse of enumeration, i.e. that TraceEnum_ELBO is used iff there are enumerated sample sites.

References:

[1] Renyi Divergence Variational Inference, Yingzhen Li, Richard E. Turner
```

4.2. ELBO 17
Importance Weighted Autoencoders, Yuri Burda, Roger Grosse, Ruslan Salakhutdinov

loss(model, guide, *args, **kwargs)

Returns
returns an estimate of the ELBO

Return type
float

Evaluates the ELBO with an estimator that uses num_particles many samples/particles.

loss_and_grads(model, guide, *args, **kwargs)

Returns
returns an estimate of the ELBO

Return type
float

Computes the ELBO as well as the surrogate ELBO that is used to form the gradient estimator. Performs backward on the latter. Num_particle many samples are used to form the estimators.

4.3 Importance

class Importance(model, guide=None, num_samples=None)
Bases: pyro.infer.abstract_infer.TracePosterior

Parameters

• model – probabilistic model defined as a function

• guide – guide used for sampling defined as a function

• num_samples – number of samples to draw from the guide (default 10)

This method performs posterior inference by importance sampling using the guide as the proposal distribution. If no guide is provided, it defaults to proposing from the model's prior.

gget_ESS()
Compute (Importance Sampling) Effective Sample Size (ESS).

gget_log_normalizer()
Estimator of the normalizing constant of the target distribution. (mean of the unnormalized weights)

gget_normalized_weights(log_scale=False)
Compute the normalized importance weights.

gpsis_diagnostic(model, guide, *args, **kwargs)
Computes the Pareto tail index k for a model/guide pair using the technique described in [1], which builds on previous work in [2]. If 0 < k < 0.5 the guide is a good approximation to the model posterior, in the sense described in [1]. If 0.5 ≤ k ≤ 0.7, the guide provides a suboptimal approximation to the posterior, but may still be useful in practice. If k > 0.7 the guide program provides a poor approximation to the full posterior, and caution should be used when using the guide. Note, however, that a guide may be a poor fit to the full posterior while still yielding reasonable model predictions. If k < 0.0 the importance weights corresponding to the model and guide appear to be bounded from above; this would be a bizarre outcome for a guide trained via ELBO maximization. Please see [1] for a more complete discussion of how the tail index k should be interpreted.

Please be advised that a large number of samples may be required for an accurate estimate of k.

Note that we assume that the model and guide are both vectorized and have static structure. As is canonical in Pyro, the args and kwargs are passed to the model and guide.

References
[1] ‘Yes, but Did It Work?: Evaluating Variational Inference.’ Yuling Yao, Aki Vehtari, Daniel Simpson, Andrew Gelman
Parameters

• **model** (*callable*) – the model program.
• **guide** (*callable*) – the guide program.
• **num_particles** (*int*) – the total number of times we run the model and guide in order to compute the diagnostic. defaults to 1000.
• **max_simultaneous_particles** – the maximum number of simultaneous samples drawn from the model and guide. defaults to num_particles. num_particles must be divisible by max_simultaneous_particles. compute the diagnostic. defaults to 1000.
• **max_plate_nesting** (*int*) – optional bound on max number of nested `pyro.plate()` contexts in the model/guide. defaults to 7.

Returns float the PSIS diagnostic k

`vectorized_importance_weights(model, guide, *args, **kwargs)`

Parameters

• **model** – probabilistic model defined as a function
• **guide** – guide used for sampling defined as a function
• **num_samples** – number of samples to draw from the guide (default 1)
• **max_plate_nesting** (*int*) – Bound on max number of nested `pyro.plate()` contexts.
• **normalized** (*bool*) – set to True to return self-normalized importance weights

Returns returns a (num_samples,)-shaped tensor of importance weights and the model and guide traces that produced them

Vectorized computation of importance weights for models with static structure:

```python
log_weights, model_trace, guide_trace = 
    vectorized_importance_weights(model, guide, *args,
                                   num_samples=1000,
                                   max_plate_nesting=4,
                                   normalized=False)
```

4.4 Sequential Monte Carlo

class **SMCFilter** (model, guide, num_particles, max_plate_nesting)

Bases: object

`SMCFilter` is the top-level interface for filtering via sequential monte carlo.

The model and guide should be objects with two methods: `.init()` and `.step()`. These two methods should have the same signature as `init()` and `step()` of this class. These methods are intended to be called first with `init()`, then with `step()` repeatedly.

Parameters

• **model** (*object*) – probabilistic model defined as a function
• **guide** (*object*) – guide used for sampling defined as a function
• **num_particles** (*int*) – The number of particles used to form the distribution.
• **max_plate_nesting** *(int)* – Bound on max number of nested `pyro.plate()` contexts.

```python
def get_empirical() -> dict:
    """Returns a marginal distribution over every latent variable."
    return {"variable": EmpiricalObject()}
```

```python
def get_values_and_log_weights() -> tuple:
    """Returns the particles and its (unnormalized) log weights."
    return (dictionary of latent values, array of log weights)
```

```python
def init(*args, **kwargs):
    """Perform any initialization for sequential importance resampling. Any args or kwargs are passed to the model and guide."
```

```python
def step(*args, **kwargs):
    """Take a filtering step using sequential importance resampling updating the particle weights and values while resampling if desired. Any args or kwargs are passed to the model and guide."
```

4.5 Stein Methods

class IMQSteinKernel *(alpha=0.5, beta=-0.5, bandwidth_factor=None)*

Bases: pyro.infer.svgd.SteinKernel

An IMQ (inverse multi-quadratic) kernel for use in the SVGD inference algorithm [1]. The bandwidth of the kernel is chosen from the particles using a simple heuristic as in reference [2]. The kernel takes the form

$$K(x, y) = (\alpha + \|x - y\|^2/h)^\beta$$

where α and β are user-specified parameters and h is the bandwidth.

Parameters

- **alpha** *(float)* – Kernel hyperparameter, defaults to 0.5.
- **beta** *(float)* – Kernel hyperparameter, defaults to -0.5.
- **bandwidth_factor** *(float)* – Optional factor by which to scale the bandwidth, defaults to 1.0.

Variables

- **bandwidth_factor** *(float)* – Property that controls the factor by which to scale the bandwidth at each iteration.

References


```python
def log_kernel_and_grad(particles)
    """See pyro.infer.svgd.SteinKernel.log_kernel_and_grad()"
```

class RBFSteinKernel *(bandwidth_factor=None)*

Bases: pyro.infer.svgd.SteinKernel

A RBF kernel for use in the SVGD inference algorithm. The bandwidth of the kernel is chosen from the particles using a simple heuristic as in reference [1].
Parameters `bandwidth_factor (float)` – Optional factor by which to scale the bandwidth, defaults to 1.0.

Variables `bandwidth_factor (float)` – Property that controls the factor by which to scale the bandwidth at each iteration.

References

`bandwidth_factor`

`log_kernel_and_grad (particles)`

See `pyro.infer.svgd.SteinKernel.log_kernel_and_grad()`

class `SVGD (model, kernel, optim, num_particles, max_plate_nesting, mode='univariate')`

Bases: `object`

A basic implementation of Stein Variational Gradient Descent as described in reference [1].

Parameters

- `model` – The model (callable containing Pyro primitives). Model must be fully vectorized and may only contain continuous latent variables.
- `kernel` – a SVGD compatible kernel like `RBFSteinKernel`.
- `optim (pyro.optim.PyroOptim)` – A wrapper a for a PyTorch optimizer.
- `num_particles (int)` – The number of particles used in SVGD.
- `max_plate_nesting (int)` – The max number of nested `pyro.plate()` contexts in the model.
- `mode (str)` – Whether to use a Kernelized Stein Discrepancy that makes use of multivariate test functions (as in [1]) or univariate test functions (as in [2]). Defaults to univariate.

Example usage:

```python
from pyro.infer import SVGD, RBFSteinKernel
from pyro.optim import Adam

kernel = RBFSteinKernel()
adam = Adam({"lr": 0.1})
svgd = SVGD(model, kernel, adam, num_particles=50, max_plate_nesting=0)

for step in range(500):
    svgd.step(model_arg1, model_arg2)

final_particles = svgd.get_named_particles()
```

References

`get_named_particles ()`

Create a dictionary mapping name to vectorized value, of the form `{name: tensor}`. The leading dimension of each tensor corresponds to particles, i.e. this creates a struct of arrays.
Pyro Documentation

Functions

step (*args, **kwargs*)

Computes the SVGD gradient, passing args and kwargs to the model, and takes a gradient step.

Return dict A dictionary of the form `{name: float}`, where each float is a mean squared gradient. This can be used to monitor the convergence of SVGD.

Class: SteinKernel

Bases: object

Abstract class for kernels used in the SVGD inference algorithm.

log_kernel_and_grad (*particles*)

Compute the component kernels and their gradients.

Parameters

- `particles` – a tensor with shape (N, D)

Returns

A pair `(log_kernel, kernel_grad)` where `log_kernel` is a (N, N, D)-shaped tensor equal to the logarithm of the kernel and `kernel_grad` is a (N, N, D)-shaped tensor where the entry (n, m, d) represents the derivative of `log_kernel` w.r.t. \(x_{m,d} \), where \(x_{m,d} \) is the d\(^\text{th}\) dimension of particle m.

vectorize (*fn, num_particles, max_plate_nesting*)

4.6 Discrete Inference

infer_discrete (*fn=None, first_available_dim=None, temperature=1*)

A poutine that samples discrete sites marked with `site["infer"]["enumerate"] = "parallel"` from the posterior, conditioned on observations.

Example:

```python
@infer_discrete(first_available_dim=-1, temperature=0)
@config_enumerate
def viterbi_decoder(data, hidden_dim=10):
    transition = 0.3 / hidden_dim + 0.7 * torch.eye(hidden_dim)
    means = torch.arange(float(hidden_dim))
    states = [0]
    for t in pyro.markov(range(len(data))):
        states.append(pyro.sample("states_{}/".format(t),
                                  dist.Categorical(transition[states[-1]])))
        pyro.sample("obs_{}/".format(t),
                    dist.Normal(means[states[-1]], 1.))
        obs=data[t])
    return states  # returns maximum likelihood states
```

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)

- `first_available_dim` (*int*) – The first tensor dimension (counting from the right) that is available for parallel enumeration. This dimension and all dimensions left may be used internally by Pyro. This should be a negative integer.

- `temperature` (*int*) – Either 1 (sample via forward-filter backward-sample) or 0 (optimize via Viterbi-like MAP inference). Defaults to 1 (sample).
class TraceEnumSample_ELBO(num_particles=1, max_plate_nesting=inf, max iarange_nesting=None, vectorize_particles=False, strict enumeration warning=True, ignore jit warnings=False, jit options=None, retain graph=None, tail adaptive beta=-1.0)

Bases: pyro.infer.traceenum_elbo.TraceEnum_ELBO

This extends TraceEnum_ELBO to make it cheaper to sample from discrete latent states during SVI.

The following are equivalent but the first is cheaper, sharing work between the computations of loss and z:

```python
# Version 1.
elbo = TraceEnumSample_ELBO(max_plate_nesting=1)
loss = elbo.loss(*args, **kwargs)
z = elbo.sample_saved()

# Version 2.
elbo = TraceEnum_ELBO(max_plate_nesting=1)
loss = elbo.loss(*args, **kwargs)
guide_trace = poutine.trace(guide).get_trace(*args, **kwargs)
z = infer_discrete(poutine.replay(model, guide_trace),
                   first_available_dim=-2)(*args, **kwargs)
```

sample_saved()
Generate latent samples while reusing work from SVI.step().

4.7 Inference Utilities

class EmpiricalMarginal

```python
class EmpiricalMarginal (trace_posterior, sites=None, validate_args=None)

Bases: pyro.distributions.empirical.Empirical

Marginal distribution over a single site (or multiple, provided they have the same shape) from the TracePosterior's model.
```

Note: If multiple sites are specified, they must have the same tensor shape. Samples from each site will be stacked and stored within a single tensor. See *Empirical*. To hold the marginal distribution of sites having different shapes, use *Marginals* instead.

Parameters

- `trace_posterior` (*TracePosterior*) – a TracePosterior instance representing a Monte Carlo posterior.
- `sites` (*list*) – optional list of sites for which we need to generate the marginal distribution.

class Marginals

```python
class Marginals (trace_posterior, sites=None, validate_args=None)

Bases: object

Holds the marginal distribution over one or more sites from the TracePosterior's model. This is a convenience container class, which can be extended by TracePosterior subclasses. e.g. for implementing diagnostics.
```

Parameters

- `trace_posterior` (*TracePosterior*) – a TracePosterior instance representing a Monte Carlo posterior.
• sites (list) – optional list of sites for which we need to generate the marginal distribution.

empirical
A dictionary of sites’ names and their corresponding EmpiricalMarginal distribution.

Type OrderedDict

support (flatten=False)
Gets support of this marginal distribution.

Parameters flatten (bool) – A flag to decide if we want to flatten batch_shape when the marginal distribution is collected from the posterior with num_chains > 1. Defaults to False.

Returns a dict with keys are sites’ names and values are sites’ supports.

Return type OrderedDict

class TracePosterior (num_chains=1)
Bases: object

Abstract TracePosterior object from which posterior inference algorithms inherit. When run, collects a bag of execution traces from the approximate posterior. This is designed to be used by other utility classes like EmpiricalMarginal, that need access to the collected execution traces.

information_criterion (pointwise=False)
Computes information criterion of the model. Currently, returns only “Widely Applicable/Watanabe-Akaike Information Criterion” (WAIC) and the corresponding effective number of parameters.

Reference:
[1] Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC, Aki Vehtari, Andrew Gelman, and Jonah Gabry

Parameters pointwise (bool) – a flag to decide if we want to get a vectorized WAIC or not. When pointwise=False, returns the sum.

Returns a dictionary containing values of WAIC and its effective number of parameters.

Return type OrderedDict

marginal (sites=None)
Generates the marginal distribution of this posterior.

Parameters sites (list) – optional list of sites for which we need to generate the marginal distribution.

Returns A Marginals class instance.

Return type Marginals

run (*args, **kwargs)
Calls self._traces to populate execution traces from a stochastic Pyro model.

Parameters
• args – optional args taken by self._traces.
• kwargs – optional keywords args taken by self._traces.

class TracePredictive (model, posterior, num_samples, keep_sites=None)
Bases: pyro.infer.abstract_infer.TracePosterior

Generates and holds traces from the posterior predictive distribution, given model execution traces from the approximate posterior. This is achieved by constraining latent sites to randomly sampled parameter values from
the model execution traces and running the model forward to generate traces with new response (“_RETURN”) sites.

:param model: arbitrary Python callable containing Pyro primitives.

:param TracePosterior posterior: trace posterior instance holding samples from the model’s approximate posterior.

:param int num_samples: number of samples to generate.

:param keep_sites: The sites which should be sampled from posterior distribution (default: all)

marginal (sites=None)

Gets marginal distribution for this predictive posterior distribution.

4.8 MCMC

4.8.1 MCMC

class MCMC (kernel, num_samples, warmup_steps=None, initial_params=None, num_chains=1, hook_fn=None, mp_context=None, disable_progbar=False, disable_validation=True, transforms=None)

Bases: object

Wrapper class for Markov Chain Monte Carlo algorithms. Specific MCMC algorithms are TraceKernel instances and need to be supplied as a kernel argument to the constructor.

Note: The case of num_chains > 1 uses python multiprocessing to run parallel chains in multiple processes. This goes with the usual caveats around multiprocessing in python, e.g. the model used to initialize the kernel must be serializable via pickle, and the performance / constraints will be platform dependent (e.g. only the “spawn” context is available in Windows). This has also not been extensively tested on the Windows platform.

Parameters

- **kernel** – An instance of the TraceKernel class, which when given an execution trace returns another sample trace from the target (posterior) distribution.

- **num_samples** (int) – The number of samples that need to be generated, excluding the samples discarded during the warmup phase.

- **warmup_steps** (int) – Number of warmup iterations. The samples generated during the warmup phase are discarded. If not provided, default is half of num_samples.

- **num_chains** (int) – Number of MCMC chains to run in parallel. Depending on whether num_chains is 1 or more than 1, this class internally dispatches to either _UnarySampler or _MultiSampler.

- **initial_params** (dict) – dict containing initial tensors in unconstrained space to initiate the markov chain. The leading dimension’s size must match that of num_chains. If not specified, parameter values will be sampled from the prior.

- **hook_fn** – Python callable that takes in (kernel, samples, stage, i) as arguments. stage is either sample or warmup and i refers to the i’th sample for the given stage. This can be used to implement additional logging, or more generally, run arbitrary code per generated sample.

- **mp_context** (str) – Multiprocessing context to use when num_chains > 1. Only applicable for Python 3.5 and above. Use mp_context=“spawn” for CUDA.

- **disable_progbar** (bool) – Disable progress bar and diagnostics update.
• **disable_validation** (*bool*) – Disables distribution validation check. This is disabled by default, since divergent transitions will lead to exceptions. Switch to *True* for debugging purposes.

• **transforms** (*dict*) – dictionary that specifies a transform for a sample site with constrained support to unconstrained space.

diagnostics()

Gets some diagnostics statistics such as effective sample size, split Gelman-Rubin, or divergent transitions from the sampler.

get_samples (*num_samples=None, group_by_chain=False*)

Get samples from the MCMC run, potentially resampling with replacement.

Parameters

• **num_samples** (*int*) – Number of samples to return. If *None*, all the samples from an MCMC chain are returned in their original ordering.

• **group_by_chain** (*bool*) – Whether to preserve the chain dimension. If *True*, all samples will have num_chains as the size of their leading dimension.

Returns
dictionary of samples keyed by site name.

run (*args, **kwargs*)

summary (*prob=0.9*)

Prints a summary table displaying diagnostics of samples obtained from posterior. The diagnostics displayed are mean, standard deviation, median, the 90% Credibility Interval, effective_sample_size(), split_gelman_rubin().

Parameters

• **prob** (*float*) – the probability mass of samples within the credibility interval.

4.8.2 HMC

class HMC (*model=None, potential_fn=None, step_size=1, trajectory_length=None, num_steps=None, adapt_step_size=True, adapt_mass_matrix=True, full_mass=False, transforms=None, max_plate_nesting=None, jit_compile=False, jit_options=None, ignore_jit_warnings=False, target_accept_prob=0.8*)

Bases: pyro.infer.mcmc.mcmc_kernel.MCMCKernel

Simple Hamiltonian Monte Carlo kernel, where step_size and num_steps need to be explicitly specified by the user.

References

Parameters

• **model** – Python callable containing Pyro primitives.

• **potential_fn** – Python callable calculating potential energy with input is a dict of real support parameters.

• **step_size** (*float*) – Determines the size of a single step taken by the verlet integrator while computing the trajectory using Hamiltonian dynamics. If not specified, it will be set to 1.

• **trajectory_length** (*float*) – Length of a MCMC trajectory. If not specified, it will be set to step_size x num_steps. In case num_steps is not specified, it will be set to 2π.
• **num_steps** (*int*) – The number of discrete steps over which to simulate Hamiltonian dynamics. The state at the end of the trajectory is returned as the proposal. This value is always equal to \(\text{int} \left(\frac{\text{trajectory_length}}{\text{step_size}} \right) \).

• **adapt_step_size** (*bool*) – A flag to decide if we want to adapt step_size during warm-up phase using Dual Averaging scheme.

• **adapt_mass_matrix** (*bool*) – A flag to decide if we want to adapt mass matrix during warm-up phase using Welford scheme.

• **full_mass** (*bool*) – A flag to decide if mass matrix is dense or diagonal.

• **transforms** (*dict*) – Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement `log_abs_det_jacobian`. If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in `torch.distributions.constraint_registry`.

• **max_plate_nesting** (*int*) – Optional bound on max number of nested `pyro.plate()` contexts. This is required if model contains discrete sample sites that can be enumerated over in parallel.

• **jit_compile** (*bool*) – Optional parameter denoting whether to use the PyTorch JIT to trace the log density computation, and use this optimized executable trace in the integrator.

• **jit_options** (*dict*) – A dictionary contains optional arguments for `torch.jit.trace()` function.

• **ignore_jit_warnings** (*bool*) – Flag to ignore warnings from the JIT tracer when `jit_compile=True`. Default is False.

• **target_accept_prob** (*float*) – Increasing this value will lead to a smaller step size, hence the sampling will be slower and more robust. Default to 0.8.

Note: Internally, the mass matrix will be ordered according to the order of the names of latent variables, not the order of their appearance in the model.

Example:

```python
cleanup()
clear_cache()
```
4.8.3 NUTS

class NUTS(model=None, potential_fn=None, step_size=1, adapt_step_size=True, adapt_mass_matrix=True, full_mass=False, use_multinomial_sampling=True, transforms=None, max_plate_nesting=None, jit_compile=False, jit_options=None, ignore_jit_warnings=False, target_accept_prob=0.8, max_tree_depth=10)

Bases: pyro.infer.mcmc.hmc.HMC

No-U-Turn Sampler kernel, which provides an efficient and convenient way to run Hamiltonian Monte Carlo. The number of steps taken by the integrator is dynamically adjusted on each call to sample to ensure an optimal length for the Hamiltonian trajectory [1]. As such, the samples generated will typically have lower autocorrelation than those generated by the HMC kernel. Optionally, the NUTS kernel also provides the ability to adapt step size during the warmup phase.

Refer to the baseball example to see how to do Bayesian inference in Pyro using NUTS.

References

Parameters

- **model** – Python callable containing Pyro primitives.
- **potential_fn** – Python callable calculating potential energy with input is a dict of real support parameters.
- **step_size** (*float*) – Determines the size of a single step taken by the verlet integrator while computing the trajectory using Hamiltonian dynamics. If not specified, it will be set to 1.
- **adapt_step_size** (*bool*) – A flag to decide if we want to adapt step_size during warm-up phase using Dual Averaging scheme.
- **adapt_mass_matrix** (*bool*) – A flag to decide if we want to adapt mass matrix during warm-up phase using Welford scheme.
- **full_mass** (*bool*) – A flag to decide if mass matrix is dense or diagonal.
- **use_multinomial_sampling** (*bool*) – A flag to decide if we want to sample candidates along its trajectory using “multinomial sampling” or using “slice sampling”. Slice
sampling is used in the original NUTS paper [1], while multinomial sampling is suggested in [2]. By default, this flag is set to True. If it is set to False, NUTS uses slice sampling.

- **transforms (dict)** – Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement `log_abs_det_jacobian`. If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in `torch.distributions.constraint_registry`.

- **max_plate_nesting (int)** – Optional bound on max number of nested `pyro.plate()` contexts. This is required if model contains discrete sample sites that can be enumerated over in parallel.

- **jit_compile (bool)** – Optional parameter denoting whether to use the PyTorch JIT to trace the log density computation, and use this optimized executable trace in the integrator.

- **jit_options (dict)** – A dictionary contains optional arguments for `torch.jit.trace()` function.

- **ignore_jit_warnings (bool)** – Flag to ignore warnings from the JIT tracer when `jit_compile=True`. Default is False.

- **target_accept_prob (float)** – Target acceptance probability of step size adaptation scheme. Increasing this value will lead to a smaller step size, so the sampling will be slower but more robust. Default to 0.8.

- **max_tree_depth (int)** – Max depth of the binary tree created during the doubling scheme of NUTS sampler. Default to 10.

Example:

```python
tensor([1., 2., 3.])
data = torch.randn(2000, 3)
dim = 3
target_accept_prob = 0.8
max_tree_depth = 10
```

Example:

```python
def model(data):
    coefs_mean = torch.zeros(dim)
    coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(3)))
    y = pyro.sample('y', dist.Bernoulli(logits=coefs * data).sum(-1), obs=labels)
    return y
```

```python
tensor([0.9221, 1.9464, 2.9228])
```

4.8.4 Utilities

initialize_model

```python
initialize_model(model, model_args=(), model_kwargs={}, transforms=None, max_plate_nesting=None, jit_compile=False, jit_options=None, skip_jit_warnings=False, num_chains=1)
```

Given a Python callable with Pyro primitives, generates the following model-specific properties needed for inference using HMC/NUTS kernels:
• initial parameters to be sampled using a HMC kernel,
• a potential function whose input is a dict of parameters in unconstrained space,
• transforms to transform latent sites of model to unconstrained space,
• a prototype trace to be used in MCMC to consume traces from sampled parameters.

Parameters

- **model** – a Pyro model which contains Pyro primitives.
- **model_args** (tuple) – optional args taken by model.
- **model_kwargs** (dict) – optional kwargs taken by model.
- **transforms** (dict) – Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement `log_abs_det_jacobian`. If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in `torch.distributions.constraint_registry`.
- **max_plate_nesting** (int) – Optional bound on max number of nested `pyro.plate()` contexts. This is required if model contains discrete sample sites that can be enumerated over in parallel.
- **jit_compile** (bool) – Optional parameter denoting whether to use the PyTorch JIT to trace the log density computation, and use this optimized executable trace in the integrator.
- **jit_options** (dict) – A dictionary contains optional arguments for `torch.jit.trace()` function.
- **ignore_jit_warnings** (bool) – Flag to ignore warnings from the JIT tracer when `jit_compile=True`. Default is False.
- **num_chains** (int) – Number of parallel chains. If `num_chains > 1`, the returned `initial_params` will be a list with `num_chains` elements.

Returns a tuple of `(initial_params, potential_fn, transforms, prototype_trace)`

diagnostics `(samples, num_chains=1)`

Gets diagnostics statistics such as effective sample size and split Gelman-Rubin using the samples drawn from the posterior distribution.

Parameters

- **samples** (dict) – dictionary of samples keyed by site name.
- **num_chains** (int) – number of chains. For more than a single chain, the leading dimension of samples in `samples` must match the number of chains.

Returns dictionary of diagnostic stats for each sample site.

predictive `(model, posterior_samples, *args, **kwargs)`

Run model by sampling latent parameters from `posterior_samples`, and return values at sample sites from the forward run. By default, only sites not contained in `posterior_samples` are returned. This can be modified by changing the `return_sites` keyword argument.

Warning: The interface for the `predictive` class is experimental, and might change in the future. e.g. a unified interface for predictive with SVI.
Parameters

- **model** – Python callable containing Pyro primitives.
- **posterior_samples** (**dict**) – dictionary of samples from the posterior.
- **args** – model arguments.
- **kwargs** – model kwargs; and other keyword arguments (see below).

Keyword Arguments

- **num_samples** (**int**) - number of samples to draw from the predictive distribution. This argument has no effect if `posterior_samples` is non-empty, in which case, the leading dimension size of samples in `posterior_samples` is used.
- **return_sites** (**list**) - sites to return; by default only sample sites not present in `posterior_samples` are returned.
- **return_trace** (**bool**) - whether to return the full trace. Note that this is vectorized over `num_samples`.
- **parallel** (**bool**) - predict in parallel by wrapping the existing model in an outermost `plate` messenger. Note that this requires that the model has all batch dims correctly annotated via `plate`. Default is `False`.

Returns
dict of samples from the predictive distribution, or a single vectorized `trace` (if `return_trace=True`).

4.9 Automatic Guide Generation

4.9.1 AutoGuide

```python
class AutoGuide(model, prefix='auto')
    Bases: object
    Base class for automatic guides.
    Derived classes must implement the `__call__()` method.
    Auto guides can be used individually or combined in an AutoGuideList object.

    Parameters
    
    - **model** (**callable**) – a pyro model
    - **prefix** (**str**) – a prefix that will be prefixed to all param internal sites

    __call__(*args, **kwargs)
    A guide with the same *args, **kwargs as the base model.
    Returns A dict mapping sample site name to sampled value.

    Return type  dict

median(*args, **kwargs)
    Returns the posterior median value of each latent variable.
    Returns A dict mapping sample site name to median tensor.
    Return type  dict
```

4.9. Automatic Guide Generation
sample_latent(**kwargs)
 Samples an encoded latent given the same *args, **kwargs as the base model.

4.9.2 AutoGuideList
class AutoGuideList(model, prefix='auto')
 Bases: pyro.infer.autoguide.guides.AutoGuide
 Container class to combine multiple automatic guides.
 Example usage:

    ```python
    guide = AutoGuideList(my_model)
    guide.add(AutoDiagonalNormal(poutine.block(model, hide=['assignment'])))
    guide.add(AutoDiscreteParallel(poutine.block(model, expose=['assignment'])))
    svi = SVI(model, guide, optim, Trace_ELBO())
    ```

 Parameters
 • model (callable) – a Pyro model
 • prefix (str) – a prefix that will be prefixed to all param internal sites

 __call__(*args, **kwargs)
 A composite guide with the same *args, **kwargs as the base model.
 Returns A dict mapping sample site name to sampled value.
 Return type dict

 add(part)
 Add an automatic guide for part of the model. The guide should have been created by blocking the model
 to restrict to a subset of sample sites. No two parts should operate on any one sample site.
 Parameters part (AutoGuide or callable) – a partial guide to add

 median(*args, **kwargs)
 Returns the posterior median value of each latent variable.
 Returns A dict mapping sample site name to median tensor.
 Return type dict

4.9.3 AutoCallable
class AutoCallable(model, guide, median=<function AutoCallable.<lambda>>)
 Bases: pyro.infer.autoguide.guides.AutoGuide
 AutoGuide wrapper for simple callable guides.
 This is used internally for composing autoguides with custom user-defined guides that are simple callables, e.g.:

    ```python
    def my_local_guide(*args, **kwargs):
        ...
    guide = AutoGuideList(model)
    guide.add(AutoDelta(poutine.block(model, expose=['my_global_param'])))
    guide.add(my_local_guide)  # automatically wrapped in an AutoCallable
    ```
To specify a median callable, you can instead:

```python
def my_local_median(*args, **kwargs)
    ...
guide.add(AutoCallable(model, my_local_guide, my_local_median))
```

For more complex guides that need e.g. access to plates, users should instead subclass `AutoGuide`.

Parameters

- `model (callable)` — a Pyro model
- `guide (callable)` — a Pyro guide (typically over only part of the model)
- `median (callable)` — an optional callable returning a dict mapping sample site name to computed median tensor.

```python
def __call__(*args, **kwargs)
```

4.9.4 `AutoDelta`

```python
class AutoDelta(model, prefix='auto', init_loc_fn=<function init_to_median>)
Bases: pyro.infer.autoguide.guides.AutoGuide
```

This implementation of `AutoGuide` uses Delta distributions to construct a MAP guide over the entire latent space. The guide does not depend on the model's `*args, **kwargs`.

Note: This class does MAP inference in constrained space.

Usage:

```python
guide = AutoDelta(model)
gsi = SVI(model, guide, ...)
```

By default latent variables are initialized using `init_loc_fn()`. To change this default behavior the user should call `pyro.param()` before beginning inference, with "auto_" prefixed to the targeted sample site names e.g. for sample sites named "level" and "concentration", initialize via:

```python
pyro.param("auto_level", torch.tensor([-1., 0., 1.]))
pyro.param("auto_concentration", torch.ones(k),
            constraint=constraints.positive)
```

Parameters

- `model (callable)` — A Pyro model.
- `init_loc_fn (callable)` — A per-site initialization function. See *Initialization* section for available functions.

```python
def __call__(*args, **kwargs)
```

An automatic guide with the same `*args, **kwargs` as the base model.

Returns A dict mapping sample site name to sampled value.

Return type `dict`
median(*args, **kwargs)
Returns the posterior median value of each latent variable.

Returns A dict mapping sample site name to median tensor.
Return type dict

4.9.5 AutoContinuous

class AutoContinuous(model, prefix='auto', init_loc_fn=<function init_to_median>)
Bases: pyro.infer.autoguide.guides.AutoGuide

Base class for implementations of continuous-valued Automatic Differentiation Variational Inference [1].
Each derived class implements its own get_posterior() method.
Assumes model structure and latent dimension are fixed, and all latent variables are continuous.

Parameters model(callable) – a Pyro model

Reference:
[1] Automatic Differentiation Variational Inference, Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, David M. Blei

median(*args, **kwargs)
Returns the posterior median value of each latent variable.

Returns A dict mapping sample site name to median tensor.
Return type dict

quantiles(quantiles, *args, **kwargs)
Returns posterior quantiles each latent variable. Example:

```
print(guide.quantiles([0.05, 0.5, 0.95]))
```

Parameters quantiles(torch.Tensor or list) – A list of requested quantiles between 0 and 1.

Returns A dict mapping sample site name to a list of quantile values.
Return type dict
```python
sample_latent(*args, **kwargs)
    Samples an encoded latent given the same *args, **kwargs as the base model.

4.9.6 AutoMultivariateNormal

class AutoMultivariateNormal(model, prefix='auto', init_loc_fn=<function init_to_median>)
    Bases: pyro.infer.autoguide.guides.AutoContinuous

This implementation of AutoContinuous uses a Cholesky factorization of a Multivariate Normal distribution to construct a guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.

Usage:

```python
guide = AutoMultivariateNormal(model)
svi = SVI(model, guide, ...)
```

By default the mean vector is initialized to zero and the Cholesky factor is initialized to the identity. To change this default behavior the user should call pyro.param() before beginning inference, e.g.:

```python
latent_dim = 10
pyro.param("auto_loc", torch.randn(latent_dim))
pyro.param("auto_scale_tril", torch.tril(torch.randn(latent_dim)),
 constraint=constraints.lower_cholesky)
```

get_posterior(*args, **kwargs)
    Returns a MultivariateNormal posterior distribution.

4.9.7 AutoDiagonalNormal

class AutoDiagonalNormal(model, prefix='auto', init_loc_fn=<function init_to_median>)
    Bases: pyro.infer.autoguide.guides.AutoContinuous

This implementation of AutoContinuous uses a Normal distribution with a diagonal covariance matrix to construct a guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.

Usage:

```python
guide = AutoDiagonalNormal(model)
svi = SVI(model, guide, ...)
```

By default the mean vector is initialized to zero and the scale is initialized to the identity. To change this default behavior the user should call pyro.param() before beginning inference, e.g.:

```python
latent_dim = 10
pyro.param("auto_loc", torch.randn(latent_dim))
pyro.param("auto_scale", torch.ones(latent_dim),
 constraint=constraints.positive)
```

get_posterior(*args, **kwargs)
    Returns a diagonal Normal posterior distribution.
```
4.9.8 AutoLowRankMultivariateNormal

```python
class AutoLowRankMultivariateNormal(model, prefix='auto', init_loc_fn=<function init_to_median>, rank=1)
Bases: pyro.infer.autoguide.guides.AutoContinuous
```

This implementation of `AutoContinuous` uses a low rank plus diagonal Multivariate Normal distribution to construct a guide over the entire latent space. The guide does not depend on the model's `*args, **kwargs`.

Usage:

```python
guide = AutoLowRankMultivariateNormal(model, rank=10)
svi = SVI(model, guide, ...)
```

By default the `cov_diag` is initialized to 1/2 and the `cov_factor` is initialized randomly such that `cov_factor.matmul(cov_factor.t())` is half the identity matrix. To change this default behavior the user should call `pyro.param()` before beginning inference, e.g.:

```python
latent_dim = 10
pyro.param("auto_loc", torch.randn(latent_dim))
pyro.param("auto_cov_factor", torch.randn(latent_dim, rank))
pyro.param("auto_cov_diag", torch.randn(latent_dim).exp()),
    constraint=constraints.positive)
```

Parameters

- `model (callable)` — a generative model
- `rank (int)` — the rank of the low-rank part of the covariance matrix
- `init_loc_fn (callable)` — A per-site initialization function. See `Initialization` section for available functions.
- `prefix (str)` — a prefix that will be prefixed to all param internal sites

`get_posterior(*args, **kwargs)`

Returns a LowRankMultivariateNormal posterior distribution.

4.9.9 AutoIAFNormal

```python
class AutoIAFNormal(model, hidden_dim=None, prefix='auto', init_loc_fn=<function init_to_median>)
Bases: pyro.infer.autoguide.guides.AutoContinuous
```

This implementation of `AutoContinuous` uses a Diagonal Normal distribution transformed via an InverseAutoregressiveFlow to construct a guide over the entire latent space. The guide does not depend on the model's `*args, **kwargs`.

Usage:

```python
guide = AutoIAFNormal(model, hidden_dim=latent_dim)
svi = SVI(model, guide, ...)
```

Parameters

- `model (callable)` — a generative model
- `hidden_dim (int)` — number of hidden dimensions in the IAF
• `init_loc_fn(callable)` – A per-site initialization function. See *Initialization* section for available functions.

• `prefix(str)` – a prefix that will be prefixed to all param internal sites

```
get_posterior(*args, **kwargs)
```
Returns a diagonal Normal posterior distribution transformed by `InverseAutoregressiveFlow`.

4.9.10 AutoLaplaceApproximation

class AutoLaplaceApproximation(model, prefix='auto', init_loc_fn=<function init_to_median>)

Bases: `pyro.infer.autoguide.guides.AutoContinuous`

Laplace approximation (quadratic approximation) approximates the posterior \(\log p(z|x) \) by a multivariate normal distribution in the unconstrained space. Under the hood, it uses Delta distributions to construct a MAP guide over the entire (unconstrained) latent space. Its covariance is given by the inverse of the hessian of \(-\log p(x, z) \) at the MAP point of \(z \).

Usage:

```
delta_guide = AutoLaplaceApproximation(model)
svi = SVI(model, delta_guide, ...)
# ... then train the delta_guide...
guide = delta_guide.laplace_approximation()
```

By default the mean vector is initialized to zero. To change this default behavior the user should call `pyro.param()` before beginning inference, e.g.:

```
latent_dim = 10
pyro.param("auto_loc", torch.randn(latent_dim))
```

```
get_posterior(*args, **kwargs)
```
Returns a Delta posterior distribution for MAP inference.

```
laplace_approximation(*args, **kwargs)
```
Returns a `AutoMultivariateNormal` instance whose posterior’s `loc` and `scale_tril` are given by Laplace approximation.

4.9.11 AutoDiscreteParallel

class AutoDiscreteParallel(model, prefix='auto')

Bases: `pyro.infer.autoguide.guides.AutoGuide`

A discrete mean-field guide that learns a latent discrete distribution for each discrete site in the model.

```
__call__(*args, **kwargs)
```
An automatic guide with the same `*args`, `**kwargs` as the base model.

Returns A dict mapping sample site name to sampled value.

Return type dict

4.9.12 Initialization

The `pyro.infer.autoguide-initialization` module contains initialization functions for automatic guides.
The standard interface for initialization is a function that inputs a Pyro trace site dict and returns an appropriately sized value to serve as an initial constrained value for a guide estimate.

```
init_to_feasible(site)
    Initialize to an arbitrary feasible point, ignoring distribution parameters.

init_to_sample(site)
    Initialize to a random sample from the prior.

init_to_median(site, num_samples=15)
    Initialize to the prior median; fallback to a feasible point if median is undefined.

init_to_mean(site)
    Initialize to the prior mean; fallback to median if mean is undefined.
```

class InitMessenger(init_fn)
 Bases: pyro.poutine.messenger.Messenger

 Initializes a site by replacing .sample() calls with values drawn from an initialization strategy. This is mainly for internal use by autoguide classes.

 Parameters init_fn(callable) – An initialization function.
5.1 PyTorch Distributions

Most distributions in Pyro are thin wrappers around PyTorch distributions. For details on the PyTorch distribution interface, see torch.distributions.distribution.Distribution. For differences between the Pyro and PyTorch interfaces, see TorchDistributionMixin.

5.1.1 Bernoulli

class Bernoulli (probs=None, logits=None, validate_args=None)

5.1.2 Beta

class Beta (concentration1, concentration0, validate_args=None)

5.1.3 Binomial

class Binomial (total_count=1, probs=None, logits=None, validate_args=None)

5.1.4 Categorical

class Categorical (probs=None, logits=None, validate_args=None)
Wraps torch.distributions.categorical.Categorical with TorchDistributionMixin.
5.1.5 Cauchy

class Cauchy(loc, scale, validate_args=None)
 Wraps torch.distributions.cauchy.Cauchy with TorchDistributionMixin.

5.1.6 Chi2

class Chi2(df, validate_args=None)
 Wraps torch.distributions.chi2.Chi2 with TorchDistributionMixin.

5.1.7 Dirichlet

class Dirichlet(concentration, validate_args=None)
 Wraps torch.distributions.dirichlet.Dirichlet with TorchDistributionMixin.

5.1.8 Exponential

class Exponential(rate, validate_args=None)
 Wraps torch.distributions.exponential.Exponential with TorchDistributionMixin.

5.1.9 ExponentialFamily

class ExponentialFamily(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None)
 Wraps torch.distributions.exp_family.ExponentialFamily with TorchDistributionMixin.

5.1.10 FisherSnedecor

class FisherSnedecor(df1, df2, validate_args=None)

5.1.11 Gamma

class Gamma(concentration, rate, validate_args=None)
 Wraps torch.distributions.gamma.Gamma with TorchDistributionMixin.

5.1.12 Geometric

class Geometric(probs=None, logits=None, validate_args=None)

5.1.13 Gumbel

class Gumbel(loc, scale, validate_args=None)
5.1.14 HalfCauchy

```python
class HalfCauchy(scale, validate_args=None)
Wraps torch.distributions.half_cauchy.HalfCauchy with TorchDistributionMixin.
```

5.1.15 HalfNormal

```python
class HalfNormal(scale, validate_args=None)
```

5.1.16 Independent

```python
class Independent(base_distribution, reinterpreted_batch_ndims, validate_args=None)
Wraps torch.distributions.independent.Independent with TorchDistributionMixin.
```

5.1.17 Laplace

```python
class Laplace(loc, scale, validate_args=None)
Wraps torch.distributions.laplace.Laplace with TorchDistributionMixin.
```

5.1.18 LogNormal

```python
class LogNormal(loc, scale, validate_args=None)
Wraps torch.distributions.log_normal.LogNormal with TorchDistributionMixin.
```

5.1.19 LogisticNormal

```python
class LogisticNormal(loc, scale, validate_args=None)
Wraps torch.distributions.logistic_normal.LogisticNormal with TorchDistributionMixin.
```

5.1.20 LowRankMultivariateNormal

```python
class LowRankMultivariateNormal(loc, cov_factor, cov_diag, validate_args=None)
Wraps torch.distributions.lowrank_multivariate_normal.LowRankMultivariateNormal with TorchDistributionMixin.
```

5.1.21 Multinomial

```python
class Multinomial(total_count=1, probs=None, logits=None, validate_args=None)
Wraps torch.distributions.multinomial.Multinomial with TorchDistributionMixin.
```

5.1.22 MultivariateNormal

```python
class MultivariateNormal(loc, covariance_matrix=None, precision_matrix=None, scale_tril=None, validate_args=None)
```
5.1.23 NegativeBinomial

class NegativeBinomial (total_count, probs=None, logits=None, validate_args=None)
 Wraps torch.distributions.negative_binomial.NegativeBinomial with TorchDistributionMixin.

5.1.24 Normal

class Normal (loc, scale, validate_args=None)

5.1.25 OneHotCategorical

class OneHotCategorical (probs=None, logits=None, validate_args=None)
 Wraps torch.distributions.one_hot_categorical.OneHotCategorical with TorchDistributionMixin.

5.1.26 Pareto

class Pareto (scale, alpha, validate_args=None)
 Wraps torch.distributions.pareto.Pareto with TorchDistributionMixin.

5.1.27 Poisson

class Poisson (rate, validate_args=None)
 Wraps torch.distributions.poisson.Poisson with TorchDistributionMixin.

5.1.28 RelaxedBernoulli

class RelaxedBernoulli (temperature, probs=None, logits=None, validate_args=None)
 Wraps torch.distributions.relaxed_bernoulli.RelaxedBernoulli with TorchDistributionMixin.

5.1.29 RelaxedOneHotCategorical

class RelaxedOneHotCategorical (temperature, probs=None, logits=None, validate_args=None)
 Wraps torch.distributions.relaxed_categorical.RelaxedOneHotCategorical with TorchDistributionMixin.

5.1.30 StudentT

class StudentT (df, loc=0.0, scale=1.0, validate_args=None)
 Wraps torch.distributions.studentT.StudentT with TorchDistributionMixin.
5.1.31 TransformedDistribution

class TransformedDistribution(base_distribution, transforms, validate_args=None)
 Wraps torch.distributions.transformed_distribution.TransformedDistribution with TorchDistributionMixin.

5.1.32 Uniform

class Uniform(low, high, validate_args=None)
 Wraps torch.distributions.uniform.Uniform with TorchDistributionMixin.

5.1.33 Weibull

class Weibull(scale, concentration, validate_args=None)
 Wraps torch.distributions.weibull.Weibull with TorchDistributionMixin.

5.2 Pyro Distributions

5.2.1 Abstract Distribution

class Distribution
 Bases: object

 Base class for parameterized probability distributions.

 Distributions in Pyro are stochastic function objects with sample() and log_prob() methods. Distribution are stochastic functions with fixed parameters:

 d = dist.Bernoulli(param)
 x = d() # Draws a random sample.
 p = d.log_prob(x) # Evaluates log probability of x.

 Implementing New Distributions:

 Derived classes must implement the methods: sample(), log_prob().

 Examples:

 Take a look at the examples to see how they interact with inference algorithms.

 __call__(*args, **kwargs)

 Samples a random value (just an alias for .sample(*args, **kwargs)).

 For tensor distributions, the returned tensor should have the same .shape as the parameters.

 Returns A random value.

 Return type torch.Tensor

 enumerate_support(expand=True)

 Returns a representation of the parametrized distribution’s support, along the first dimension. This is implemented only by discrete distributions.

 Note that this returns support values of all the batched RVs in lock-step, rather than the full cartesian product.

5.2. Pyro Distributions
Parameters `expand (bool)` – whether to expand the result to a tensor of shape \((n,) + \text{batch_shape} + \text{event_shape}\). If false, the return value has unexpanded shape \((n, + (1,)^{\text{len(batch_shape)}} + \text{event_shape}\) which can be broadcasted to the full shape.

Returns An iterator over the distribution’s discrete support.

Return type iterator

``` has_enumerate_support = False has_rsample = False log_prob \(x, *\text{args, **kwargs}\) Evaluates log probability densities for each of a batch of samples.

Parameters
- **x** (`torch.Tensor`) – A single value or a batch of values batched along axis 0.

Returns log probability densities as a one-dimensional `Tensor` with same batch size as value and params. The shape of the result should be `self.batch_size`.

Return type `torch.Tensor`

``` sample (*\text{args, **kwargs}\)

Samples a random value.

For tensor distributions, the returned tensor should have the same `.shape` as the parameters, unless otherwise noted.

``` Parameters sample\_shape (torch.Size) – the size of the iid batch to be drawn from the distribution.

Returns A random value or batch of random values (if parameters are batched). The shape of the result should be `self.shape()`.

Return type `torch.Tensor`

``` score_parts \(x, *\text{args, **kwargs}\)

Computes ingredients for stochastic gradient estimators of ELBO.

The default implementation is correct both for non-reparameterized and for fully reparameterized distributions. Partially reparameterized distributions should override this method to compute correct `.score_function and .entropy_term` parts.

Parameters
- **x** (`torch.Tensor`) – A single value or batch of values.

Returns A `ScoreParts` object containing parts of the ELBO estimator.

Return type `ScoreParts`

``` 5.2.2 TorchDistributionMixin

``` class TorchDistributionMixin

Bases: `pyro.distributions.distribution.Distribution`

Mixin to provide Pyro compatibility for PyTorch distributions.

You should instead use `TorchDistribution` for new distribution classes.

This is mainly useful for wrapping existing PyTorch distributions for use in Pyro. Derived classes must first inherit from `torch.distributions.distribution.Distribution` and then inherit from `TorchDistributionMixin`.```
__call__ (sample_shape=torch.Size([]))

Samples a random value.

This is reparameterized whenever possible, calling rsample() for reparameterized distributions and sample() for non-reparameterized distributions.

Parameters sample_shape (torch.Size) – the size of the iid batch to be drawn from the distribution.

Returns A random value or batch of random values (if parameters are batched). The shape of the result should be self.shape().

Return type torch.Tensor

event_dim

Returns Number of dimensions of individual events.

Return type int

shape (sample_shape=torch.Size([]))

The tensor shape of samples from this distribution.

Samples are of shape:

\[
d.\text{shape}(\text{sample_shape}) == \text{sample_shape} + d.\text{batch_shape} + d.\text{event_shape}
\]

Parameters sample_shape (torch.Size) – the size of the iid batch to be drawn from the distribution.

Returns Tensor shape of samples.

Return type torch.Size

expand_by (sample_shape)

Expands a distribution by adding sample_shape to the left side of its batch_shape.

To expand internal dims of self.batch_shape from 1 to something larger, use expand() instead.

Parameters sample_shape (torch.Size) – The size of the iid batch to be drawn from the distribution.

Returns An expanded version of this distribution.

Return type ReshapedDistribution

reshape (sample_shape=None, extra_event_dims=None)

to_event (reinterpreted_batch_ndims=None)

Reinterprets the n rightmost dimensions of this distributions batch_shape as event dims, adding them to the left side of event_shape.

Example:

```python
>>> [d1.batch_shape, d1.event_shape]
[torch.Size([2, 3]), torch.Size([4, 5])]
>>> d2 = d1.to_event(1)
>>> [d2.batch_shape, d2.event_shape]
[torch.Size([2]), torch.Size([3, 4, 5])]
>>> d3 = d1.to_event(2)
>>> [d3.batch_shape, d3.event_shape]
[torch.Size([]), torch.Size([2, 3, 4, 5])]
```
Parameters `reinterpreted_batch_ndims` *(int)* – The number of batch dimensions to reinterpret as event dimensions.

Returns A reshaped version of this distribution.

Return type `pyro.distributions.torch.Independent`

`independent` *(reinterpreted_batch_ndims=None)*

`mask` *(mask)*

Masks a distribution by a zero-one tensor that is broadcastable to the distributions `batch_shape`.

Parameters `mask` *(torch.Tensor)* – A zero-one valued float tensor.

Returns A masked copy of this distribution.

Return type `MaskedDistribution`

5.2.3 TorchDistribution

class TorchDistribution *(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None)*

Bases: `torch.distributions.distribution.Distribution`, `pyro.distributions.torch_distribution.TorchDistributionMixin`

Base class for PyTorch-compatible distributions with Pyro support.

This should be the base class for almost all new Pyro distributions.

Note: Parameters and data should be of type `Tensor` and all methods return type `Tensor` unless otherwise noted.

Tensor Shapes:

TorchDistributions provide a method `.shape()` for the tensor shape of samples:

```python
x = d.sample(sample_shape)
assert x.shape == d.shape(sample_shape)
```

Pyro follows the same distribution shape semantics as PyTorch. It distinguishes between three different roles for tensor shapes of samples:

- `sample_shape` corresponds to the shape of the iid samples drawn from the distribution. This is taken as an argument by the distribution’s `sample` method.
- `batch_shape` corresponds to non-identical (independent) parameterizations of the distribution, inferred from the distribution’s parameter shapes. This is fixed for a distribution instance.
- `event_shape` corresponds to the event dimensions of the distribution, which is fixed for a distribution class. These are collapsed when we try to score a sample from the distribution via `d.log_prob(x)`.

These shapes are related by the equation:

```python
assert d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape
```

Distributions provide a vectorized `log_prob()` method that evaluates the log probability density of each event in a batch independently, returning a tensor of shape `sample_shape + d.batch_shape`:
```python
x = d.sample(sample_shape)
assert x.shape == d.shape(sample_shape)
log_p = d.log_prob(x)
assert log_p.shape == sample_shape + d.batch_shape
```

Implementing New Distributions:

Derived classes must implement the methods `sample()` (or `rsample()` if `has_rsample == True`) and `log_prob()`, and must implement the properties `batch_shape`, and `event_shape`. Discrete classes may also implement the `enumerate_support()` method to improve gradient estimates and set `.has.enumerate_support = True`.

5.2.4 AVFMultivariateNormal

```python
class AVFMultivariateNormal(loc, scale_tril, control_var)
    Bases: pyro.distributions.torch.MultivariateNormal

Multivariate normal (Gaussian) distribution with transport equation inspired control variates (adaptive velocity fields).

A distribution over vectors in which all the elements have a joint Gaussian density.

Parameters

- `loc` (`torch.Tensor`) – D-dimensional mean vector.
- `scale_tril` (`torch.Tensor`) – Cholesky of Covariance matrix; D x D matrix.
- `control_var` (`torch.Tensor`) – 2 x L x D tensor that parameterizes the control variate; L is an arbitrary positive integer. This parameter needs to be learned (i.e. adapted) to achieve lower variance gradients. In a typical use case this parameter will be adapted concurrently with the `loc` and `scale_tril` that define the distribution.

Example usage:

```python
control_var = torch.tensor(0.1 * torch.ones(2, 1, D), requires_grad=True)
opt_cv = torch.optim.Adam([control_var], lr=0.1, betas=(0.5, 0.999))
for _ in range(1000):
 d = AVFMultivariateNormal(loc, scale_tril, control_var)
 z = d.rsample()
 cost = torch.pow(z, 2.0).sum()
 cost.backward()
 opt_cv.step()
 opt_cv.zero_grad()
```

```python
arg_constraints = {'control_var': Real(), 'loc': Real(), 'scale_tril': LowerTriangular()}
rsample(sample_shape=torch.Size([]))
```

### 5.2.5 BetaBinomial

```python
class BetaBinomial(concentration1, concentration0, total_count=1, validate_args=None)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

Compound distribution comprising of a beta-binomial pair. The probability of success (`probs` for the `Binomial` distribution) is unknown and randomly drawn from a `Beta` distribution prior to a certain number of Bernoulli trials given by `total_count`.
```
Parameters

- **or torch.Tensor concentration1** *(float)* – 1st concentration parameter (alpha) for the Beta distribution.
- **or torch.Tensor concentration0** *(float)* – 2nd concentration parameter (beta) for the Beta distribution.
- **or torch.Tensor total_count** *(int)* – number of Bernoulli trials.

```python
arg_constraints = {'concentration0': GreaterThan(lower_bound=0.0), 'concentration1':
concentration0
collection1
enumerate_support (expand=True)
expand (batch_shape, _instance=None)
has_enumerate_support = True
log_prob (value)
mean
sample (sample_shape=())
support
variance
```

5.2.6 ConditionalDistribution

```python
class ConditionalDistribution
 Bases: abc.ABC
 condition (context)
 Return type torch.distributions.Distribution
```

5.2.7 ConditionalTransformedDistribution

```python
class ConditionalTransformedDistribution (base_dist, transforms)
 Bases: pyro.distributions.conditional.ConditionalDistribution
 condition (context)
```

5.2.8 Delta

```python
class Delta (v, log_density=0.0, event_dim=0, validate_args=None)
 Bases: pyro.distributions.torch_distribution.TorchDistribution
 Degenerate discrete distribution (a single point).
 Discrete distribution that assigns probability one to the single element in its support. Delta distribution parameterized by a random choice should not be used with MCMC based inference, as doing so produces incorrect results.

 Parameters
 - **v (torch.Tensor)** – The single support element.
```
• **log_density** (*torch.Tensor*) – An optional density for this Delta. This is useful to keep the class of *Delta* distributions closed under differentiable transformation.

• **event_dim** (*int*) – Optional event dimension, defaults to zero.

```python
arg_constraints = {'log_density': Real(), 'v': Real()}
expand(batch_shape, _instance=None)
has_rsample = True
log_prob(x)
mean
rsample(sample_shape=torch.Size(()))
support = Real()
variance
```

### 5.2.9 DirichletMultinomial

```python
class DirichletMultinomial(concentration, total_count=1, is_sparse=False, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Compound distribution comprising of a dirichlet-multinomial pair. The probability of classes (probs for the *Multinomial* distribution) is unknown and randomly drawn from a *Dirichlet* distribution prior to a certain number of Categorical trials given by *total_count*.

Parameters

- or *torch.Tensor concentration* (*float*) – concentration parameter (alpha) for the Dirichlet distribution.
- or *torch.Tensor total_count* (*int*) – number of Categorical trials.
- *is_sparse* (*bool*) – Whether to assume value is mostly zero when computing *log_prob()* , which can speed up computation when data is sparse.

```python
arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'total_count': IntegerGreaterThan(lower_bound=0)}
```

```python
concentration
expand(batch_shape, _instance=None)
log_prob(value)
mean
sample(sample_shape=())
support
variance
```

5.2.10 DiscreteHMM

```python
class DiscreteHMM(initial_logits, transition_logits, observation_dist, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Hidden Markov Model with discrete latent state and arbitrary observation distribution. This uses [1] to parallelize over time, achieving $O(\log(\text{time}))$ parallel complexity.

```python
```
The event_shape of this distribution includes time on the left:

```python
event_shape = (num_steps,) + observation_dist.event_shape
```

This distribution supports any combination of homogeneous/heterogeneous time dependency of `transition_logits` and `observation_dist`. However, because time is included in this distribution's event_shape, the homogeneous+homogeneous case will have a broadcastable event_shape with `num_steps = 1`, allowing `log_prob()` to work with arbitrary length data:

```python
homogeneous + homogeneous case:
event_shape = (1,) + observation_dist.event_shape
```

References:


Parameters

- **initial_logits** (`Tensor`) – A logits tensor for an initial categorical distribution over latent states. Should have rightmost size `state_dim` and be broadcastable to `batch_shape + (state_dim,)`.

- **transition_logits** (`Tensor`) – A logits tensor for transition conditional distributions between latent states. Should have rightmost shape `(state_dim, state_dim)` (old, new), and be broadcastable to `batch_shape + (num_steps, state_dim, state_dim)`.

- **observation_dist** (`Distribution`) – A conditional distribution of observed data conditioned on latent state. The `.batch_shape` should have rightmost size `state_dim` and be broadcastable to `batch_shape + (num_steps, state_dim)`. The `.event_shape` may be arbitrary.

```
arg_constraints = {'initial_logits': Real(), 'transition_logits': Real()}
```

### `empirical_distribution`  

5.2.11 EmpiricalDistribution

```python
class Empirical(samples, log_weights, validate_args=None)
```

Empirical distribution associated with the sampled data. Note that the shape requirement for `log_weights` is that its shape must match the leftmost shape of `samples`. Samples are aggregated along the `aggregation_dim`, which is the rightmost dim of `log_weights`.

Example:
```py
>>> emp_dist = Empirical(torch.randn(2, 3, 10), torch.ones(2, 3))
>>> emp_dist.batch_shape
torch.Size([2])
>>> emp_dist.event_shape
torch.Size([10])

>>> single_sample = emp_dist.sample()
>>> single_sample.shape
torch.Size([2, 10])

>>> batch_sample = emp_dist.sample((100,))
>>> batch_sample.shape
torch.Size([100, 2, 10])

>>> emp_dist.log_prob(single_sample).shape
torch.Size([2])

Vectorized samples cannot be scored by log_prob.
>>> with pyro.validation_enabled():
... emp_dist.log_prob(batch_sample).shape
Traceback (most recent call last):
... ValueError: 'value.shape' must be torch.Size([2, 10])
```

**Parameters**

- **samples** (*torch.Tensor*) – samples from the empirical distribution.
- **log_weights** (*torch.Tensor*) – log weights (optional) corresponding to the samples.

```python
arg_constraints = {}
enumerate_support (expand=True)
 See pyro.distributions.torch_distribution.TorchDistribution.enumerate_support()

event_shape
 See pyro.distributions.torch_distribution.TorchDistribution.event_shape()

has.enumerate_support = True

log_prob (value)
 Returns the log of the probability mass function evaluated at value. Note that this currently only supports scoring values with empty sample_shape.

 Parameters
 value (*torch.Tensor*) – scalar or tensor value to be scored.

def log_weights

mean
 See pyro.distributions.torch_distribution.TorchDistribution.mean()

def sample (sample_shape=torch.Size([]))
 See pyro.distributions.torch_distribution.TorchDistribution.sample()

def sample_size
 Number of samples that constitute the empirical distribution.

 Return int number of samples collected.

def support = Real()
```
5.2.12 GammaPoisson

class GammaPoisson(concentration, rate, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Compound distribution comprising of a gamma-poisson pair, also referred to as a gamma-poisson mixture. The rate parameter for the Poisson distribution is unknown and randomly drawn from a Gamma distribution.

Note: This can be treated as an alternate parametrization of the NegativeBinomial(total_count, probs) distribution, with concentration = total_count and rate = (1 - probs) / probs.

Parameters

- or torch.Tensor concentration (float) – shape parameter (alpha) of the Gamma distribution.
- or torch.Tensor rate (float) – rate parameter (beta) for the Gamma distribution.

arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'rate': GreaterThan(lower_bound=0.0)}

expand(batch_shape, _instance=None)
log_prob(value)
mean
rate
sample(sample_shape=())
support = IntegerGreaterThan(lower_bound=0)
variance

5.2.13 GaussianHMM

class GaussianHMM(initial_dist, transition_matrix, transition_dist, observation_matrix, observation_dist, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Hidden Markov Model with Gaussians for initial, transition, and observation distributions. This adapts [1] to parallelize over time to achieve O(log(time)) parallel complexity, however it differs in that it tracks the log normalizer to ensure log_prob() is differentiable.

This corresponds to the generative model:

```python
z = initial_distribution.sample()
x = []
for t in range(num_events):
 z = z @ transition_matrix + transition_dist.sample()
 x.append(z @ observation_matrix + observation_dist.sample())
```

The event_shape of this distribution includes time on the left:
event_shape = (num_steps,) + observation_dist.event_shape

This distribution supports any combination of homogeneous/heterogeneous time dependency of transition_dist and observation_dist. However, because time is included in this distribution’s event_shape, the homogeneous+homogeneous case will have a broadcastable event_shape with num_steps = 1, allowing log_prob() to work with arbitrary length data:

event_shape = (1, obs_dim)  # homogeneous + homogeneous case

References:

Variables
• hidden_dim (int) – The dimension of the hidden state.
• obs_dim (int) – The dimension of the observed state.

Parameters
• initial_dist (MultivariateNormal) – A distribution over initial states. This should have batch_shape broadcastable to self.batch_shape. This should have event_shape (hidden_dim,).
• transition_matrix (Tensor) – A linear transformation of hidden state. This should have shape broadcastable to self.batch_shape + (num_steps, hidden_dim, hidden_dim) where the rightmost dims are ordered (old, new).
• transition_dist (MultivariateNormal) – A process noise distribution. This should have batch_shape broadcastable to self.batch_shape + (num_steps,). This should have event_shape (hidden_dim,).
• observation_matrix (Tensor) – A linear transformation from hidden to observed state. This should have shape broadcastable to self.batch_shape + (num_steps, hidden_dim, obs_dim).
• observation_dist (MultivariateNormal or Normal) – An observation noise distribution. This should have batch_shape broadcastable to self.batch_shape + (num_steps,). This should have event_shape (obs_dim,).

arg_constraints = {}
expand(batch_shape, _instance=None)

filter(value)
  Compute posterior over final state given a sequence of observations.
  Parameters value (Tensor) – A sequence of observations.
  Returns A posterior distribution over latent states at the final time step. result can then be used as initial_dist in a sequential Pyro model for prediction.
  Return type MultivariateNormal

log_prob(value)
5.2.14 GaussianMRF

class GaussianMRF (initial_dist, transition_dist, observation_dist, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Temporal Markov Random Field with Gaussian factors for initial, transition, and observation distributions. This adapts [1] to parallelize over time to achieve O(log(time)) parallel complexity, however it differs in that it tracks the log normalizer to ensure $\log\text{prob}()$ is differentiable.

The event_shape of this distribution includes time on the left:

```
 event_shape = (num_steps,) + observation_dist.event_shape
```

This distribution supports any combination of homogeneous/heterogeneous time dependency of transition_dist and observation_dist. However, because time is included in this distribution’s event_shape, the homogeneous+homogeneous case will have a broadcastable event_shape with num_steps = 1, allowing $\log\text{prob}()$ to work with arbitrary length data:

```
 event_shape = (1, obs_dim) # homogeneous + homogeneous case
```

References:


Variables

- hidden_dim (int) – The dimension of the hidden state.
- obs_dim (int) – The dimension of the observed state.

Parameters

- initial_dist (MultivariateNormal) – A distribution over initial states. This should have batch_shape broadcastable to self.batch_shape. This should have event_shape (hidden_dim,).
- transition_dist (MultivariateNormal) – A joint distribution factor over a pair of successive time steps. This should have batch_shape broadcastable to self. batch_shape + (num_steps,). This should have event_shape (hidden_dim + hidden_dim, (old+new)).
- observation_dist (MultivariateNormal) – A joint distribution factor over a hidden and an observed state. This should have batch_shape broadcastable to self. batch_shape + (num_steps,). This should have event_shape (hidden_dim + obs_dim,).

arg_constraints = {}
expand(batch_shape, _instance=None)
log_prob(value)

5.2.15 GaussianScaleMixture

class GaussianScaleMixture (coord_scale, component_logits, component_scale)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Mixture of Normal distributions with zero mean and diagonal covariance matrices.
That is, this distribution is a mixture with $K$ components, where each component distribution is a $D$-dimensional Normal distribution with zero mean and a $D$-dimensional diagonal covariance matrix. The $K$ different covariance matrices are controlled by the parameters $coord\_scale$ and $component\_scale$. That is, the covariance matrix of the $k$'th component is given by

$$\Sigma_{ii} = (component\_scale_k \cdot coord\_scale_i)^2 \quad (i = 1, \ldots, D)$$

where $component\_scale_k$ is a positive scale factor and $coord\_scale_i$ are positive scale parameters shared between all $K$ components. The mixture weights are controlled by a $K$-dimensional vector of softmax logits, $component\_logits$. This distribution implements pathwise derivatives for samples from the distribution. This distribution does not currently support batched parameters.

See reference [1] for details on the implementations of the pathwise derivative. Please consider citing this reference if you use the pathwise derivative in your research.


Note that this distribution supports both even and odd dimensions, but the former should be more a bit higher precision, since it doesn’t use any erfs in the backward call. Also note that this distribution does not support $D = 1$.

Parameters

- $coord\_scale$ ($\text{torch.tensor}$) – $D$-dimensional vector of scales
- $component\_logits$ ($\text{torch.tensor}$) – $K$-dimensional vector of logits
- $component\_scale$ ($\text{torch.tensor}$) – $K$-dimensional vector of scale multipliers

arg_constraints = {'component\_logits': Real(), 'component\_scale': GreaterThan(lower_bound=0.0), 'coord\_scale': GreaterThan(lower_bound=0.0)}

has_rsample = True

log_prob(value)
rsample(sample_shape=torch.Size([1]))

### 5.2.16 InverseGamma

class InverseGamma(concentration, rate, validate_args=None)

Bases: pyro.distributions.torch.TransformedDistribution

Creates an inverse-gamma distribution parameterized by $concentration$ and $rate$.

$$X \sim \text{Gamma}(concentration, rate) \quad Y = \frac{1}{X} \sim \text{InverseGamma}(concentration, rate)$$

Parameters

- $concentration$ ($\text{torch.Tensor}$) – the concentration parameter (i.e. alpha).
- $rate$ ($\text{torch.Tensor}$) – the rate parameter (i.e. beta).

arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'rate': GreaterThan(lower_bound=0.0)}

concentration
expand(batch_shape, _instance=None)

has_rsample = True

rate

support = GreaterThan(lower_bound=0.0)
5.2.17 LKJCorrCholesky

```python
class LKJCorrCholesky (d, eta, validate_args=None)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

 Generates cholesky factors of correlation matrices using an LKJ prior.
 The expected use is to combine it with a vector of variances and pass it to the scale_tril parameter of a multi-
 variate distribution such as MultivariateNormal.
 E.g., if theta is a (positive) vector of covariances with the same dimensionality as this distribution, and Omega
 is sampled from this distribution, scale_tril=torch.mm(torch.diag(sqrt(theta)), Omega)
 Note that the `event_shape` of this distribution is [d, d]

 Note: When using this distribution with HMC/NUTS, it is important to use a `step_size` such as 1e-4. If not,
 you are likely to experience LAPACK errors regarding positive-definiteness.
```

For example usage, refer to `pyro/examples/lkj.py`.

Parameters

- `d (int)`: Dimensionality of the matrix
- `eta (torch.Tensor)`: A single positive number parameterizing the distribution.

```
arg_constraints = {'eta': GreaterThan(lower_bound=0.0)}
expand(batch_shape, _instance=None)
has_rsample = False
lkj_constant(eta, K)
log_prob(x)
sample(sample_shape=torch.Size([]))
support = CorrCholesky()
```

5.2.18 MaskedMixture

```python
class MaskedMixture (mask, component0, component1, validate_args=None)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

 A masked deterministic mixture of two distributions.
 This is useful when the mask is sampled from another distribution, possibly correlated across the batch. Often
 the mask can be marginalized out via enumeration.
 Example:

    ```python
    change_point = pyro.sample("change_point",
        dist.Categorical(torch.ones(len(data) + 1)),
        infer={'enumerate': 'parallel'})
    mask = torch.arange(len(data), dtype=torch.long) >= changepoint
    with pyro.plate("data", len(data)):
        pyro.sample("obs", MaskedMixture(mask, dist1, dist2), obs=data)
    ```
```

Parameters
• **mask** (*torch.Tensor*) – A byte tensor toggling between `component0` and `component1`.

• **component0** (*pyro.distributions.TorchDistribution*) – a distribution for batch elements `mask == 0`.

• **component1** (*pyro.distributions.TorchDistribution*) – a distribution for batch elements `mask == 1`.

```python
arg_constraints = {}
expand(batch_shape)
has_rsample
log_prob(value)
mean
rsample(sample_shape=torch.Size([]))
sample(sample_shape=torch.Size([]))
support
variance
```

### 5.2.19 MixtureOfDiagNormals

**class MixtureOfDiagNormals** (*locs, coord_scale, component_logits*)

**Bases:** *pyro.distributions.torch_distribution.TorchDistribution*

Mixture of Normal distributions with arbitrary means and arbitrary diagonal covariance matrices.

That is, this distribution is a mixture with K components, where each component distribution is a D-dimensional Normal distribution with a D-dimensional mean parameter and a D-dimensional diagonal covariance matrix. The K different component means are gathered into the K x D dimensional parameter `locs` and the K different scale parameters are gathered into the K x D dimensional parameter `coord_scale`. The mixture weights are controlled by a K-dimensional vector of softmax logits, `component_logits`. This distribution implements pathwise derivatives for samples from the distribution.

See reference [1] for details on the implementations of the pathwise derivative. Please consider citing this reference if you use the pathwise derivative in your research. Note that this distribution does not support dimension `D = 1`.


**Parameters**

- **locs** (*torch.Tensor*) – K x D mean matrix
- **coord_scale** (*torch.Tensor*) – K x D scale matrix
- **component_logits** (*torch.Tensor*) – K-dimensional vector of softmax logits

```python
arg_constraints = {'component_logits': Real(), 'coord_scale': GreaterThan(lower_bound=0.0), 'locs': Real()}
expand(batch_shape, _instance=None)
has_rsample = True
log_prob(value)
rsample(sample_shape=torch.Size([]))
```
5.2.20 MixtureOfDiagNormalsSharedCovariance

class MixtureOfDiagNormalsSharedCovariance(locs, coord_scale, component_logits)
    Bases: pyro.distributions.torch_distribution.TorchDistribution

Mixture of Normal distributions with diagonal covariance matrices.

That is, this distribution is a mixture with K components, where each component distribution is a D-dimensional Normal distribution with a D-dimensional mean parameter loc and a D-dimensional diagonal covariance matrix specified by a scale parameter coord_scale. The K different component means are gathered into the parameter locs and the scale parameter is shared between all K components. The mixture weights are controlled by a K-dimensional vector of softmax logits, component_logits. This distribution implements pathwise derivatives for samples from the distribution.

See reference [1] for details on the implementations of the pathwise derivative. Please consider citing this reference if you use the pathwise derivative in your research. Note that this distribution does not support dimension D = 1.


Parameters

- locs (torch.Tensor) – K x D mean matrix
- coord_scale (torch.Tensor) – shared D-dimensional scale vector
- component_logits (torch.Tensor) – K-dimensional vector of softmax logits

arg_constraints = {'component_logits': Real(), 'coord_scale': GreaterThan(lower_bound=0.0), 'locs': Real()}

expand(batch_shape, _instance=None)

has_rsample = True

log_prob(value)

rsample(sample_shape=torch.Size([]))

5.2.21 OMTMultivariateNormal

class OMTMultivariateNormal(loc, scale_tril)
    Bases: pyro.distributions.torch.MultivariateNormal

Multivariate normal (Gaussian) distribution with OMT gradients w.r.t. both parameters. Note the gradient computation w.r.t. the Cholesky factor has cost O(D^3), although the resulting gradient variance is generally expected to be lower.

A distribution over vectors in which all the elements have a joint Gaussian density.

Parameters

- loc (torch.Tensor) – Mean.
- scale_tril (torch.Tensor) – Cholesky of Covariance matrix.

arg_constraints = {'loc': Real(), 'scale_tril': LowerTriangular()}

rsample(sample_shape=torch.Size([]))
### 5.2.22 RelaxedBernoulliStraightThrough

**class RelaxedBernoulliStraightThrough**(temperature, probs=None, logits=None, validate_args=None)

Bases: pyro.distributions.torch.RelaxedBernoulli

An implementation of RelaxedBernoulli with a straight-through gradient estimator.

This distribution has the following properties:

- The samples returned by the `rsample()` method are discrete/quantized.
- The `log_prob()` method returns the log probability of the relaxed/unquantized sample using the GumbelSoftmax distribution.
- In the backward pass the gradient of the sample with respect to the parameters of the distribution uses the relaxed/unquantized sample.

References:


[2] Categorical Reparameterization with Gumbel-Softmax, Eric Jang, Shixiang Gu, Ben Poole

**log_prob**(value)

See `pyro.distributions.torch.RelaxedBernoulli.log_prob()`

**rsample**(sample_shape=torch.Size([]))

See `pyro.distributions.torch.RelaxedBernoulli.rsample()`

### 5.2.23 RelaxedOneHotCategoricalStraightThrough

**class RelaxedOneHotCategoricalStraightThrough**(temperature, probs=None, logits=None, validate_args=None)

Bases: pyro.distributions.torch.RelaxedOneHotCategorical

An implementation of RelaxedOneHotCategorical with a straight-through gradient estimator.

This distribution has the following properties:

- The samples returned by the `rsample()` method are discrete/quantized.
- The `log_prob()` method returns the log probability of the relaxed/unquantized sample using the GumbelSoftmax distribution.
- In the backward pass the gradient of the sample with respect to the parameters of the distribution uses the relaxed/unquantized sample.

References:


[2] Categorical Reparameterization with Gumbel-Softmax, Eric Jang, Shixiang Gu, Ben Poole

**log_prob**(value)

See `pyro.distributions.torch.RelaxedOneHotCategorical.log_prob()`

**rsample**(sample_shape=torch.Size([]))

See `pyro.distributions.torch.RelaxedOneHotCategorical.rsample()`
5.2.24 Rejector

class Rejector (propose, log_prob_accept, log_scale)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Rejection sampled distribution given an acceptance rate function.

Parameters

- **propose** (Distribution) – A proposal distribution that samples batched proposals via propose(). rsample() supports a sample_shape arg only if propose() supports a sample_shape arg.
- **log_prob_accept** (callable) – A callable that inputs a batch of proposals and returns a batch of log acceptance probabilities.
- **log_scale** – Total log probability of acceptance.

has_rsample = True
log_prob (x)
rsample (sample_shape=torch.Size([]))
score_parts (x)

5.2.25 SpanningTree

class SpanningTree (edge_logits, sampler_options=None, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Distribution over spanning trees on a fixed number V of vertices.

A tree is represented as torch.LongTensor edges of shape (V-1, 2) satisfying the following properties:

1. The edges constitute a tree, i.e. are connected and cycle free.
2. Each edge \((v_1, v_2) = \text{edges}[e]\) is sorted, i.e. \(v_1 < v_2\).
3. The entire tensor is sorted in colexicographic order.

Use validate_edges() to verify edges are correctly formed.

The edge_logits tensor has one entry for each of the \(V \times (V-1) / 2\) edges in the complete graph on \(V\) vertices, where edges are each sorted and the edge order is colexicographic:

\[
(0,1), (0,2), (1,2), (0,3), (1,3), (2,3), (0,4), (1,4), (2,4), \ldots
\]

This ordering corresponds to the size-independent pairing function:

\[
k = v_1 + v_2 \times (v_2 - 1) / 2
\]

where \(k\) is the rank of the edge \((v_1, v_2)\) in the complete graph. To convert a matrix of edge logits to the linear representation used here:

```python
assert my_matrix.shape == (V, V)
i, j = make_complete_graph(V)
edge_logits = my_matrix[i, j]
```

Parameters
• **edge_logits** (*torch.Tensor*) – A tensor of length \( V \cdot (V-1) // 2 \) containing logits (aka negative energies) of all edges in the complete graph on \( V \) vertices. See above comment for edge ordering.

• **sampler_options** (*dict*) – An optional dict of sampler options including: `mcmc_steps` defaulting to a single MCMC step (which is pretty good); `initial_edges` defaulting to a cheap approximate sample; `backend` one of “python” or “cpp”, defaulting to “python”.

```python
arg_constraints = {'edge_logits': Real()}
enumerate_support (expand=True)
This is implemented for trees with up to 6 vertices (and 5 edges).
has enumerate_support = True
log_partition_function
log_prob (edges)
sample (sample_shape=torch.Size([]))
This sampler is implemented using MCMC run for a small number of steps after being initialized by a cheap approximate sampler. This sampler is approximate and cubic time. This is faster than the classic Aldous-Broder sampler \([1,2]\), especially for graphs with large mixing time. Recent research \([3,4]\) proposes samplers that run in sub-matrix-multiply time but are more complex to implement.

References

support = IntegerGreaterThan(lower_bound=0)
validate_edges (edges)
Validates a batch of `edges` tensors, as returned by `sample()` or `enumerate_support()` or as input to `log_prob()`.

Parameters

- **edges** (*torch.LongTensor*) – A batch of edges.

Raises

- ValueError

Returns

- None

5.2.26 Unit

class Unit (*log_factor*, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution
Trivial nonnormalized distribution representing the unit type.
The unit type has a single value with no data, i.e. `value.numel() == 0`.
This is used for `pyro.factor()` statements.
arg_constraints = {'log_factor': Real()}
5.2.27 VonMises

class VonMises(loc, concentration, validate_args=None)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

A circular von Mises distribution.

This implementation uses polar coordinates. The loc and value args can be any real number (to facilitate
unconstrained optimization), but are interpreted as angles modulo 2 π.

See VonMises3D for a 3D cartesian coordinate cousin of this distribution.

Parameters
 • loc (torch.Tensor) – an angle in radians.
 • concentration (torch.Tensor) – concentration parameter

arg_constraints = {'concentration': GreaterThan(lower_bound=0.0), 'loc': Real()}

docs

5.2.28 VonMises3D

class VonMises3D(concentration, validate_args=None)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

Spherical von Mises distribution.

This implementation combines the direction parameter and concentration parameter into a single combined
parameter that contains both direction and magnitude. The value arg is represented in cartesian coordinates:
its must be a normalized 3-vector that lies on the 2-sphere.

See VonMises for a 2D polar coordinate cousin of this distribution.

Currently only log_prob() is implemented.

Parameters concentration (torch.Tensor) – A combined location-and-concentration vec-
tor. The direction of this vector is the location, and its magnitude is the concentration.
arg_constraints = {'concentration': Real()}
expand(batch_shape)
log_prob(value)
support = Real()

5.2.29 ZeroInflatedPoisson

class ZeroInflatedPoisson(gate, rate, validate_args=None)
 Bases: pyro.distributions.torch_distribution.TorchDistribution
 A Zero Inflated Poisson distribution.
 Parameters
 • gate(torch.Tensor) – probability of extra zeros.
 • rate(torch.Tensor) – rate of poisson distribution.

arg_constraints = {'gate': Interval(lower_bound=0.0, upper_bound=1.0), 'rate': GreaterThan(lower_bound=0.0)}
expand(batch_shape)
log_prob(value)
mean
sample(sample_shape=torch.Size[])
support = IntegerGreaterThan(lower_bound=0)
variance

5.3 Transforms

5.3.1 ConditionalTransform

class ConditionalTransform
 Bases: abc.ABC
 condition(context)
 Return type torch.distributions.Transform

5.3.2 ELUTransform

class ELUTransform(cache_size=0)
 Bases: torch.distributions.transforms.Transform
 Transform via the mapping \(y = \text{ELU}(x) \).
 bijective = True
 codomain = GreaterThan(lower_bound=0.0)
 domain = Real()
 log_abs_det_jacobian(x, y)
5.3.3 LeakyReLUTransform

class LeakyReLUTransform(cache_size=0)
 Bases: torch.distributions.transforms.Transform

Transform via the mapping \(y = \text{LeakyReLU}(x) \).

bijective = True

codomain = GreaterThan(lower_bound=0.0)
domain = Real()

log_abs_det_jacobian(x, y)

sign = 1

5.3.4 PermuteTransform

class PermuteTransform(permutation)
 Bases: torch.distributions.transforms.Transform

A bijection that reorders the input dimensions, that is, multiplies the input by a permutation matrix. This is useful in between InverseAutoregressiveFlow transforms to increase the flexibility of the resulting distribution and stabilize learning. Whilst not being an autoregressive transform, the log absolute determinant of the Jacobian is easily calculable as 0. Note that reordering the input dimension between two layers of InverseAutoregressiveFlow is not equivalent to reordering the dimension inside the MADE networks that those IAFs use; using a PermuteTransform results in a distribution with more flexibility.

Example usage:

```python
>>> from pyro.nn import AutoRegressiveNN
>>> from pyro.distributions import InverseAutoregressiveFlow, PermuteTransform

>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))

>>> iaf1 = InverseAutoregressiveFlow(AutoRegressiveNN(10, [40]))

>>> ff = PermuteTransform(torch.randperm(10, dtype=torch.long))

>>> iaf2 = InverseAutoregressiveFlow(AutoRegressiveNN(10, [40]))

>>> iaf_dist = dist.TransformedDistribution(base_dist, [iaf1, ff, iaf2])

>>> iaf_dist.sample()  # doctest: +SKIP
    tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868, 
            0.1389, -0.4629, 0.0986])
```

Parameters permutation (torch.LongTensor) – a permutation ordering that is applied to the inputs.

bijective = True

codomain = Real()

event_dim = 1

log_abs_det_jacobian(x, y)

Calculates the elementwise determinant of the log Jacobian, i.e. \(\log(\text{abs}(\text{dy}_0/\text{dx}_0, \ldots, \text{dy}_{\text{N-1}}/\text{dx}_{\text{N-1}})) \). Note that this type of transform is not autoregressive, so the log Jacobian is not the...
sum of the previous expression. However, it turns out it’s always 0 (since the determinant is -1 or +1), and so returning a vector of zeros works.

```
volume_preserving = True
```

5.3.5 TanhTransform

```python
class TanhTransform(cache_size=0):
    Bases: torch.distributions.transforms.Transform
    Transform via the mapping \( y = \tanh(x) \).
    static atanh(x)
    bijective = True
    codomain = Interval(lower_bound=-1.0, upper_bound=1.0)
    domain = Real()
    log_abs_det_jacobian(x, y)
    sign = 1
```

5.4 TransformModules

5.4.1 AffineCoupling

```python
class AffineCoupling(split_dim, hypernet, log_scale_min_clip=-5.0, log_scale_max_clip=3.0):
    Bases: pyro.distributions.torch_transform.TransformModule
    An implementation of the affine coupling layer of RealNVP (Dinh et al., 2017) that uses the transformation,
    \[
    y_{1:d} = x_{1:d} \\
    y_{(d+1):D} = \mu + \sigma \odot x_{(d+1):D}
    \]
    where \( x \) are the inputs, \( y \) are the outputs, e.g. \( x_{1:d} \) represents the first \( d \) elements of the inputs, and \( \mu, \sigma \) are shift and translation parameters calculated as the output of a function inputting only \( x_{1:d} \).
    That is, the first \( d \) components remain unchanged, and the subsequent \( D - d \) are shifted and translated by a function of the previous components.
    Together with \( TransformedDistribution \) this provides a way to create richer variational approximations.
    Example usage:

    ```python
 >>> from pyro.nn import DenseNN
 >>> input_dim = 10
 >>> split_dim = 6
 >>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
 >>> hypernet = DenseNN(split_dim, [10*input_dim], [input_dim-split_dim, input_dim-
 ... split_dim])
 >>> flow = AffineCoupling(split_dim, hypernet)
 >>> pyro.module("my_flow", flow) # doctest: +SKIP
 >>> flow_dist = dist.TransformedDistribution(base_dist, [flow])
 >>> flow_dist.sample() # doctest: +SKIP
 tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
 0.1389, -0.4629, 0.0986])
    ```
```
The inverse of the Bijector is required when, e.g., scoring the log density of a sample with *TransformedDistribution*. This implementation caches the inverse of the Bijector when its forward operation is called, e.g., when sampling from *TransformedDistribution*. However, if the cached value isn’t available, either because it was overwritten during sampling a new value or an arbitrary value is being scored, it will calculate it manually.

This is an operation that scales as \(O(1)\), i.e. constant in the input dimension. So in general, it is cheap to sample and score (an arbitrary value) from AffineCoupling.

Parameters

- **split_dim (int)** – Zero-indexed dimension \(d\) upon which to perform input/output split for transformation.
- **hypernet (callable)** – an autoregressive neural network whose forward call returns a real-valued mean and logit-scale as a tuple. The input should have final dimension \(\text{split}_\text{dim}\) and the output final dimension \(\text{input}_\text{dim} - \text{split}_\text{dim}\) for each member of the tuple.
- **log_scale_min_clip (float)** – The minimum value for clipping the log(scale) from the autoregressive NN
- **log_scale_max_clip (float)** – The maximum value for clipping the log(scale) from the autoregressive NN

References:

```python
bijective = True
codomain = Real()
domain = Real()
event_dim = 1
log_abs_det_jacobian(x, y)
```
Calculates the elementwise determinant of the log jacobian

5.4.2 BatchNormTransform

class BatchNormTransform (input_dim, momentum=0.1, epsilon=1e-05)

Bases: `pyro.distributions.torch_transform.TransformModule`

A type of batch normalization that can be used to stabilize training in normalizing flows. The inverse operation is defined as

\[
x = (y - \hat{\mu}) \odot \sqrt{\hat{\sigma}^2} \odot \gamma + \beta
\]

that is, the standard batch norm equation, where \(x\) is the input, \(y\) is the output, \(\gamma, \beta\) are learnable parameters, and \(\hat{\mu}/\hat{\sigma}^2\) are smoothed running averages of the sample mean and variance, respectively. The constraint \(\gamma > 0\) is enforced to ease calculation of the log-det-Jacobian term.

This is an element-wise transform, and when applied to a vector, learns two parameters \((\gamma, \beta)\) for each dimension of the input.

When the module is set to training mode, the moving averages of the sample mean and variance are updated every time the inverse operator is called, e.g., when a normalizing flow scores a minibatch with the *log_prob* method.

Also, when the module is set to training mode, the sample mean and variance on the current minibatch are used in place of the smoothed averages, \(\hat{\mu}\) and \(\hat{\sigma}^2\), for the inverse operator. For this reason it is not the case that \(x = y(g^{-1}(x))\) during training, i.e., that the inverse operation is the inverse of the forward one.
Example usage:

```python
>>> from pyro.nn import AutoRegressiveNN
>>> from pyro.distributions import InverseAutoregressiveFlow
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> iafs = [InverseAutoregressiveFlow(AutoRegressiveNN(10, [40])) for _ in range(2)]
>>> bn = BatchNormTransform(10)
>>> flow_dist = dist.TransformedDistribution(base_dist, [iafs[0], bn, iafs[1]])
>>> flow_dist.sample()  # doctest: +SKIP
    tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868, 0.1389, -0.4629, 0.0986])
```

Parameters

- `input_dim (int)`: the dimension of the input
- `momentum (float)`: momentum parameter for updating moving averages
- `epsilon (float)`: small number to add to variances to ensure numerical stability

References:

5.4.3 BlockAutoregressive

```python
class BlockAutoregressive:
    input_dim, hidden_factors=[8, 8], activation='tanh', residual=None
    Bases: pyro.distributions.torch_transform.TransformModule
    An implementation of Block Neural Autoregressive Flow (block-NAF) (De Cao et al., 2019) transformation. Block-NAF uses a similar transformation to deep dense NAF, building the autoregressive NN into the structure of the flow, in a sense.
    Together with TransformedDistribution this provides a way to create richer variational approximations.
```

Example usage:
The inverse operation is not implemented. This would require numerical inversion, e.g., using a root finding method - a possibility for a future implementation.

Parameters

- **input_dim** (*int*) – The dimensionality of the input and output variables.
- **hidden_factors** (*list*) – Hidden layer i has hidden_factors[i] hidden units per input dimension. This corresponds to both a and b in De Cao et al. (2019). The elements of hidden_factors must be integers.
- **activation** (*string*) – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.
- **residual** (*string*) – Type of residual connections to use. Choices are “None”, “normal” for y + f(y), and “gated” for αy + (1 − αy) for learnable parameter α.

References:

autoregressive = True

bijective = True

codomain = Real()

domain = Real()

event_dim = 1

log_abs_det_jacobian(x, y)

Calculates the elementwise determinant of the log jacobian

5.4.4 ConditionalPlanarFlow

class ConditionalPlanarFlow(nn)

Bases: pyro.distributions.conditional.ConditionalTransformModule

A conditional ‘planar’ normalizing flow that uses the transformation

\[y = x + u \tanh(w^T z + b) \]

where x are the inputs with dimension D, y are the outputs, and the pseudo-parameters \(b \in \mathbb{R}, u \in \mathbb{R}^D \), and \(w \in \mathbb{R}^D \) are the output of a function, e.g. a NN, with input \(z \in \mathbb{R}^M \) representing the context variable to condition on. For this to be an invertible transformation, the condition \(w^T u > -1 \) is enforced.

Together with \(\text{ConditionalTransformedDistribution} \) this provides a way to create richer variational approximations.

Example usage:
```python
>>> from pyro.nn.dense_nn import DenseNN
>>> input_dim = 10
>>> context_dim = 5
>>> batch_size = 3
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> hypernet = DenseNN(context_dim, [50, 50], param_dims=[1, input_dim, input_dim])
>>> plf = ConditionalPlanarFlow(hypernet)
>>> z = torch.rand(batch_size, context_dim)
>>> plf_dist = dist.ConditionalTransformedDistribution(base_dist, [plf]).condition(z)
>>> plf_dist.sample(sample_shape=torch.Size([batch_size]))  # doctest: +SKIP
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using planar flow can be scored.

Parameters

- `nn (callable)` – a function inputting the context variable and outputting a triplet of real-valued parameters of dimensions `(1, D, D)`.

References: Variational Inference with Normalizing Flows [arXiv:1505.05770] Danilo Jimenez Rezende, Shakir Mohamed

- `bijective = True`
- `codomain = Real()`
- `condition (context)`

See [pyro.distributions.conditional.ConditionalTransformModule.condition()](http://example.com)

- `domain = Real()`
- `event_dim = 1`

5.4.5 ConditionalTransformModule

class `ConditionalTransformModule(*args, **kwargs)`

Conditional transforms with learnable parameters such as normalizing flows should inherit from this class rather than `ConditionalTransform`, so they are also a subclass of `Module` and inherit all the useful methods of that class.

5.4.6 HouseholderFlow

class `HouseholderFlow(input_dim, count_transforms=1)`

- `Bases: pyro.distributions.torch_transform.TransformModule`

A flow formed from multiple applications of the Householder transformation. A single Householder transformation takes the form,

\[
y = (I - 2 * \frac{uu^T}{||u||^2})x
\]

where \(x\) are the inputs, \(y\) are the outputs, and the learnable parameters are \(u \in \mathbb{R}^D\) for input dimension \(D\).

The transformation represents the reflection of \(x\) through the plane passing through the origin with normal \(u\).
D applications of this transformation are able to transform standard i.i.d. standard Gaussian noise into a Gaussian variable with an arbitrary covariance matrix. With $K < D$ transformations, one is able to approximate a full-rank Gaussian distribution using a linear transformation of rank K.

Together with $\text{TransformedDistribution}$ this provides a way to create richer variational approximations.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> flow = HouseholderFlow(10, count_transforms=5)
>>> pyro.module("my_flow", p)  # doctest: +SKIP
>>> flow_dist = dist.TransformedDistribution(base_dist, flow)
>>> flow_dist.sample()  # doctest: +SKIP
```

Parameters

- **input_dim** (int) – the dimension of the input (and output) variable.
- **count_transforms** (int) – number of applications of Householder transformation to apply.

References:

- **bijective** = True
- **codomain** = Real()
- **domain** = Real()
- **event_dim** = 1
- **log_abs_det_jacobian** (x, y)
 Calculates the elementwise determinant of the log jacobian. Householder flow is measure preserving, so $\log(|det(J)|) = 0$
- **reset_parameters** ()
- **volume_preserving** = True

5.4.7 InverseAutoRegressiveFlow

class InverseAutoregressiveFlow (autoregressive_nn, log_scale_min_clip=-5.0, log_scale_max_clip=3.0)

Bases: pyro.distributions.torch_transform.TransformModule

An implementation of Inverse Autoregressive Flow, using Eq (10) from Kingma Et Al., 2016,

$$y = \mu_t + \sigma_t \odot x$$

where x are the inputs, y are the outputs, μ_t, σ_t are calculated from an autoregressive network on x, and $\sigma_t > 0$.

Together with $\text{TransformedDistribution}$ this provides a way to create richer variational approximations.

Example usage:
The inverse of the Bijector is required when, e.g., scoring the log density of a sample with TransformedDistribution. This implementation caches the inverse of the Bijector when its forward operation is called, e.g., when sampling from TransformedDistribution. However, if the cached value isn’t available, either because it was overwritten during sampling a new value or an arbitrary value is being scored, it will calculate it manually. Note that this is an operation that scales as O(D) where D is the input dimension, and so should be avoided for large dimensional uses. So in general, it is cheap to sample from IAF and score a value that was sampled by IAF, but expensive to score an arbitrary value.

Parameters

- **autoregressive_nn**(nn.Module) – an autoregressive neural network whose forward call returns a real-valued mean and logit-scale as a tuple
- **log_scale_min_clip**(float) – The minimum value for clipping the log(scale) from the autoregressive NN
- **log_scale_max_clip**(float) – The maximum value for clipping the log(scale) from the autoregressive NN

References:

5.4.8 InverseAutoRegressiveFlowStable

```python
class InverseAutoRegressiveFlowStable (autoregressive_nn, sigmoid_bias=2.0)
    Bases: pyro.distributions.torch_transform.TransformModule

    An implementation of an Inverse Autoregressive Flow, using Eqs (13)/(14) from Kingma Et Al., 2016, $y = \sigma_t \odot x + (1 - \sigma_t) \odot \mu_t$}
```
where \(x \) are the inputs, \(y \) are the outputs, \(\mu_t, \sigma_t \) are calculated from an autoregressive network on \(x \), and \(\sigma_t \) is restricted to \((0, 1)\).

This variant of IAF is claimed by the authors to be more numerically stable than one using Eq (10), although in practice it leads to a restriction on the distributions that can be represented, presumably since the input is restricted to rescaling by a number on \((0, 1)\).

Example usage:

```python
>>> from pyro.nn import AutoRegressiveNN
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> iaf = InverseAutoregressiveFlowStable(AutoRegressiveNN(10, [40]))
>>> iaf_module = pyro.module("my_iaf", iaf)
>>> iaf_dist = dist.TransformedDistribution(base_dist, [iaf])
>>> iaf_dist.sample()  # doctest: +SKIP
    tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
             0.1389, -0.4629, 0.0986])
```

See `InverseAutoregressiveFlow` docs for a discussion of the running cost.

Parameters

- `autoregressive_nn (nn.Module)` – an autoregressive neural network whose forward call returns a real-valued mean and logit-scale as a tuple
- `sigmoid_bias (float)` – bias on the hidden units fed into the sigmoid; default='2.0'

References:

- `bijective = True`
- `codomain = Real()`
- `domain = Real()`
- `event_dim = 1`

`log_abs_det_jacobian(x, y)`

Calculates the elementwise determinant of the log jacobian

5.4.9 NeuralAutoregressive

class `NeuralAutoregressive (autoregressive_nn, hidden_units=16, activation='sigmoid')`

Bases: `pyro.distributions.torch_transform.TransformModule`

An implementation of deep Neural Autoregressive Flow (NAF), of the “IAF flavour” that can be used for sampling and scoring samples drawn from it (but not arbitrary ones).

Example usage:
The inverse operation is not implemented. This would require numerical inversion, e.g., using a root finding method - a possibility for a future implementation.

Parameters

- **autoregressive_nn** ([nn.Module]) – an autoregressive neural network whose forward call returns a tuple of three real-valued tensors, whose last dimension is the input dimension, and whose penultimate dimension is equal to hidden_units.
- **hidden_units** ([int]) – the number of hidden units to use in the NAF transformation (see Eq (8) in reference)
- **activation** ([string]) – Activation function to use. One of ‘ELU’, ‘LeakyReLU’, ‘sigmoid’, or ‘tanh’.

Reference:

bijective = True

codomain = Real()

domain = Real()

event_dim = 1

log_abs_det_jacobian ([x, y])

Calculates the elementwise determinant of the log jacobian

5.4.10 PlanarFlow

class PlanarFlow ([input_dim])

Bases: pyro.distributions.transforms.planar.ConditionedPlanarFlow, pyro.distributions.torch_transform.TransformModule

A ‘planar’ normalizing flow that uses the transformation

\[
y = x + u \tanh(w^T z + b)
\]

where \(x\) are the inputs, \(y\) are the outputs, and the learnable parameters are \(b \in \mathbb{R}, u \in \mathbb{R}^D, w \in \mathbb{R}^D\) for input dimension \(D\). For this to be an invertible transformation, the condition \(w^Tu > -1\) is enforced.

Together with **TransformedDistribution** this provides a way to create richer variational approximations.

Example usage:

```python
class PlanarFlow(input_dim)

>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> plf = PlanarFlow(10)
>>> pyro.module("my_plf", plf) # doctest: +SKIP
```
plf_dist = dist.TransformedDistribution(base_dist, [plf])
plf_dist.sample() # doctest: +SKIP
tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
 0.1389, -0.4629, 0.0986])

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using planar flow can be scored.

Parameters

input_dim *(int)* – the dimension of the input (and output) variable.

References:

bijective = True
codomain = Real()
domain = Real()
event_dim = 1
reset_parameters()

5.4.11 PolynomialFlow

class PolynomialFlow *(autoregressive_nn, input_dim, count_degree, count_sum)*

Bases: pyro.distributions.torch_transform.TransformModule

An autoregressive normalizing flow as described in Jaini et al. (2019) using the element-wise transformation

\[y_n = c_n + \int_0^{x_n} \sum_{k=1}^K \left(\sum_{r=0}^R a_{r,k}^{(n)} u^r \right) du \]

where \(x_n \) is the \(n \)th input, \(a_{r,k}^{(n)} \in \mathbb{R} \) are learnable parameters that are the output of an autoregressive NN inputting \(x_{<n} = x_1, x_2, \ldots, x_{n-1} \).

Together with *TransformedDistribution* this provides a way to create richer variational approximations.

Example usage:

>>> from pyro.nn import AutoRegressiveNN
>>> input_dim = 10
>>> count_degree = 4
>>> count_sum = 3
>>> base_dist = dist.Normal(torch.zeros(input_dim), torch.ones(input_dim))
>>> arn = AutoRegressiveNN(input_dim, [input_dim*10], param_dims=[(count_degree + \rightarrow 1)*count_sum])
>>> flow = PolynomialFlow(arn, input_dim=input_dim, count_degree=count_degree, count_sum=count_sum)
>>> pyro.module("my_flow", flow) # doctest: +SKIP
>>> flow_dist = dist.TransformedDistribution(base_dist, [flow])
>>> flow_dist.sample() # doctest: +SKIP
tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
 0.1389, -0.4629, 0.0986])

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using polynomial flow can be scored.
Parameters

- **autoregressive_nn** (*nn.Module*) – an autoregressive neural network whose forward call returns a tensor of real-valued numbers of size `(batch_size, (count_degree+1)*count_sum, input_dim)`
- **count_degree** (*int*) – The degree of the polynomial to use for each element-wise transformation.
- **count_sum** (*int*) – The number of polynomials to sum in each element-wise transformation.

References:

```python
autoregressive = True
bijective = True
codomain = Real()
domain = Real()
event_dim = 1
log_abs_det_jacobian(x, y)
```

Calculates the elementwise determinant of the log Jacobian

```python
reset_parameters()
```

5.4.12 RadialFlow

```python
class RadialFlow(input_dim)
Bases: pyro.distributions.torch_transform.TransformModule
```

A ‘radial’ normalizing flow that uses the transformation

\[y = x + \beta h(\alpha, r)(x - x_0) \]

where \(x\) are the inputs, \(y\) are the outputs, and the learnable parameters are \(\alpha \in \mathbb{R}^+, \beta \in \mathbb{R}, x_0 \in \mathbb{R}^D\), for input dimension \(D\), \(r = ||x - x_0||_2\), \(h(\alpha, r) = 1/(\alpha + r)\). For this to be an invertible transformation, the condition \(\beta > -\alpha\) is enforced.

Together with `TransformedDistribution` this provides a way to create richer variational approximations.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> flow = RadialFlow(10)
>>> pyro.module("my_flow", flow)  # doctest: +SKIP
>>> flow_dist = dist.TransformedDistribution(base_dist, [flow])
>>> flow_dist.sample()  # doctest: +SKIP
  tensor([-0.4071, -0.5030,  0.7924, -0.2366, -0.2387, -0.1417,  0.0868,
          0.1389, -0.4629,  0.0986])
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using radial flow can be scored.

Parameters **input_dim** (*int*) – the dimension of the input (and output) variable.
References:

bijective = True
codomain = Real()
domain = Real()
event_dim = 1

log_abs_det_jacobian(x, y)
Calculates the elementwise determinant of the log jacobian
reset_parameters()

5.4.13 SylvesterFlow

class SylvesterFlow(input_dim, count_transforms=1)
Bases: pyro.distributions.transforms.householder.HouseholderFlow

An implementation of Sylvester flow of the Householder variety (Van den Berg Et Al., 2018),

\[y = x + QR \tanh(SQ^T x + b) \]

where \(x \) are the inputs, \(y \) are the outputs, \(R, S \sim D \times D \) are upper triangular matrices for input dimension \(D \), \(Q \sim D \times D \) is an orthogonal matrix, and \(b \sim D \) is learnable bias term.

Sylvester flow is a generalization of Planar flow. In the Householder type of Sylvester flow, the orthogonality of \(Q \) is enforced by representing it as the product of Householder transformations

Together with TransformedDistribution it provides a way to create richer variational approximations.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> hsf = SylvesterFlow(10, count_transforms=4)
>>> pyro.module("my_hsf", hsf)  # doctest: +SKIP
>>> hsf_dist = dist.TransformedDistribution(base_dist, [hsf])
>>> hsf_dist.sample()  # doctest: +SKIP
tensor([-0.4071, -0.5030, 0.7924, -0.2366, -0.2387, -0.1417, 0.0868,
        0.1389, -0.4629, 0.0986])
```

The inverse of this transform does not possess an analytical solution and is left unimplemented. However, the inverse is cached when the forward operation is called during sampling, and so samples drawn using Sylvester flow can be scored.

References:

\(Q(x) \)
\(R() \)
\(S() \)

bijective = True
codomain = Real()
domain = Real()
dtanh_dx(x)
event_dim = 1
log_abs_det_jacobian(x, y)
Calculates the elementwise determinant of the log jacobian
reset_parameters2()

5.4.14 TransformModule

class TransformModule(*args, **kwargs)

 Transforms with learnable parameters such as normalizing flows should inherit from this class rather than Transform so they are also a subclass of nn.Module and inherit all the useful methods of that class.
Parameters in Pyro are basically thin wrappers around PyTorch Tensors that carry unique names. As such Parameters are the primary stateful objects in Pyro. Users typically interact with parameters via the Pyro primitive `pyro.param`. Parameters play a central role in stochastic variational inference, where they are used to represent point estimates for the parameters in parameterized families of models and guides.

6.1 ParamStore

class ParamStoreDict

Bases: `object`

Global store for parameters in Pyro. This is basically a key-value store. The typical user interacts with the ParamStore primarily through the primitive `pyro.param`.

See Intro Part II for further discussion and SVI Part I for some examples.

Some things to bear in mind when using parameters in Pyro:

- parameters must be assigned unique names
- the `init_tensor` argument to `pyro.param` is only used the first time that a given (named) parameter is registered with Pyro.
- for this reason, a user may need to use the `clear()` method if working in a REPL in order to get the desired behavior. this method can also be invoked with `pyro.clear_param_store()`.
- the internal name of a parameter within a PyTorch `nn.Module` that has been registered with Pyro is prepended with the Pyro name of the module. so nothing prevents the user from having two different modules each of which contains a parameter named `weight`. by contrast, a user can only have one top-level parameter named `weight` (outside of any module).
- parameters can be saved and loaded from disk using `save` and `load`.

clear()

Clear the ParamStore
items()
Iterate over (name, constrained_param) pairs.

keys()
Iterate over param names.

values()
Iterate over constrained parameter values.

setdefault(name, init_constrained_value, constraint=Real())
Retrieve a constrained parameter value from the if it exists, otherwise set the initial value. Note that this is a little fancier than dict.setdefault().

If the parameter already exists, init_constrained_tensor will be ignored. To avoid expensive creation of init_constrained_tensor you can wrap it in a lambda that will only be evaluated if the parameter does not already exist:

```python
param_store.get("foo", lambda: (0.001 * torch.randn(1000, 1000)).exp(), constraint=constraints.positive)
```

Parameters

- name (str) – parameter name
 - init_constrained_value (torch.Tensor or callable returning a torch.Tensor) – initial constrained value
 - constraint (torch.distributions.constraints.Constraint) – torch constraint object

Returns constrained parameter value

Return type torch.Tensor

dict named_parameters()
Returns an iterator over (name, unconstrained_value) tuples for each parameter in the ParamStore.

dict get_all_param_names()

dict replace_param(param_name, new_param, old_param)

dict get_param(name, init_tensor=None, constraint=Real(), event_dim=None)
Get parameter from its name. If it does not yet exist in the ParamStore, it will be created and stored. The Pyro primitive pyro.param dispatches to this method.

Parameters

- name (str) – parameter name
 - init_tensor (torch.Tensor) – initial tensor
 - constraint (torch.distributions.constraints.Constraint) – torch constraint
 - event_dim (int) – (ignored)

Returns parameter

Return type torch.Tensor

dict match(name)
Get all parameters that match regex. The parameter must exist.
Parameters `name (str)` – regular expression

Returns dict with key param name and value torch Tensor

`param_name (p)`
Get parameter name from parameter

Parameters `p` – parameter

Returns parameter name

`get_state()`
Get the ParamStore state.

`set_state(state)`
Set the ParamStore state using state from a previous `get_state()` call

`save(filename)`
Save parameters to disk

Parameters `filename (str)` – file name to save to

`load(filename, map_location=None)`
Loads parameters from disk

Note: If using `pyro.module()` on parameters loaded from disk, be sure to set the `update_module_params` flag:

```python
pyro.get_param_store().load('saved_params.save')
pyro.module('module', nn, update_module_params=True)
```

Parameters

- `filename (str)` – file name to load from
- `map_location (function, torch.device, string or a dict)` – specifies how to remap storage locations

`param_with_module_name(pyro_name, param_name)`

`module_from_param_with_module_name(param_name)`

`user_param_name(param_name)`
The module `pyro.nn` provides implementations of neural network modules that are useful in the context of deep probabilistic programming. None of these modules is really part of the core language.

7.1 AutoRegressiveNN

class AutoRegressiveNN *(input_dim, hidden_dims, param_dims=[1, 1], permutation=None, skip_connections=False, nonlinearity=ReLU())*

Bases: `pyro.nn.auto_reg_nn.ConditionalAutoRegressiveNN`

An implementation of a MADE-like auto-regressive neural network.

Example usage:

```python
>>> x = torch.randn(100, 10)
>>> arn = AutoRegressiveNN(10, [50], param_dims=[1])
>>> p = arn(x)  # 1 parameters of size (100, 10)
>>> arn = AutoRegressiveNN(10, [50], param_dims=[1, 1])
>>> m, s = arn(x)  # 2 parameters of size (100, 10)
>>> arn = AutoRegressiveNN(10, [50], param_dims=[1, 5, 3])
>>> a, b, c = arn(x)  # 3 parameters of sizes, (100, 1, 10), (100, 5, 10), (100, 3, 10)
```

Parameters

- **input_dim** *(int)* – the dimensionality of the input variable
- **hidden_dims** *(list[int])* – the dimensionality of the hidden units per layer
- **param_dims** *(list[int])* – shape the output into parameters of dimension \((p_n, \text{input_dim})\) for \(p_n\) in `param_dims` when \(p_n > 1\) and dimension \((\text{input_dim})\) when \(p_n == 1\). The default is \([1, 1]\), i.e. output two parameters of dimension \((\text{input_dim})\), which is useful for inverse autoregressive flow.
Pyro Documentation

- **permutation** *(torch.LongTensor)* – an optional permutation that is applied to the inputs and controls the order of the autoregressive factorization. In particular for the identity permutation the autoregressive structure is such that the Jacobian is upper triangular. By default this is chosen at random.

- **skip_connections** *(bool)* – Whether to add skip connections from the input to the output.

- **nonlinearity** *(torch.nn.module)* – The nonlinearity to use in the feedforward network such as torch.nn.ReLU(). Note that no nonlinearity is applied to the final network output, so the output is an unbounded real number.

Reference:

```python
forward(x)
```
The forward method

class **ConditionalAutoRegressiveNN** *(input_dim, context_dim, hidden_dims, param_dims=[1, 1], permutation=None, skip_connections=False, nonlinearity=ReLU())*

Bases: torch.nn.modules.module.Module

An implementation of a MADE-like auto-regressive neural network that can input an additional context variable. (See Reference [2] Section 3.3 for an explanation of how the conditional MADE architecture works.)

Example usage:

```python
>>> x = torch.randn(100, 10)
>>> y = torch.randn(100, 5)
>>> arn = ConditionalAutoRegressiveNN(10, 5, [50], param_dims=[1])
>>> p = arn(x, context=y)  # 1 parameters of size (100, 10)
>>> arn = ConditionalAutoRegressiveNN(10, 5, [50], param_dims=[1, 1])
>>> m, s = arn(x, context=y)  # 2 parameters of size (100, 10)
>>> arn = ConditionalAutoRegressiveNN(10, 5, [50], param_dims=[1, 5, 3])
>>> a, b, c = arn(x, context=y)  # 3 parameters of sizes, (100, 1, 10), (100, 5, 10), (100, 3, 10)
```

Parameters

- **input_dim** *(int)* – the dimensionality of the input variable

- **context_dim** *(int)* – the dimensionality of the context variable

- **hidden_dims** *(list[int])* – the dimensionality of the hidden units per layer

- **param_dims** *(list[int])* – shape the output into parameters of dimension *(p_n, input_dim)* for *p_n* in *param_dims* when *p_n > 1* and dimension *(input_dim)* when *p_n == 1*. The default is *[1, 1]*, i.e. output two parameters of dimension *(input_dim)*, which is useful for inverse autoregressive flow.

- **permutation** *(torch.LongTensor)* – an optional permutation that is applied to the inputs and controls the order of the autoregressive factorization. In particular for the identity permutation the autoregressive structure is such that the Jacobian is upper triangular. By default this is chosen at random.

- **skip_connections** *(bool)* – Whether to add skip connections from the input to the output.
• **nonlinearity**(*torch.nn.module*) – The nonlinearity to use in the feedforward network such as *torch.nn.ReLU*. Note that no nonlinearity is applied to the final network output, so the output is an unbounded real number.

Reference:


    ```python
    forward(x, context)
    The forward method
    ```

    ```python
    get_permutation()
    Get the permutation applied to the inputs (by default this is chosen at random)
    ```

    ```python
    class MaskedLinear(in_features, out_features, mask, bias=True)
    Bases: *torch.nn.modules.linear.Linear*
    A linear mapping with a given mask on the weights (arbitrary bias)
    ```

 Parameters

 - `in_features` (*int*) – the number of input features
 - `out_features` (*int*) – the number of output features
 - `mask` (*torch.Tensor*) – the mask to apply to the `in_features` x `out_features` weight matrix
 - `bias` (*bool*) – whether or not `MaskedLinear` should include a bias term. defaults to `True`

    ```python
    forward(_input)
    the forward method that does the masked linear computation and returns the result
    ```

    ```python
    create_mask(input_dim, context_dim, hidden_dims, permutation, output_dim_multiplier)
    Creates MADE masks for a conditional distribution
    ```

 Parameters

 - `input_dim` (*int*) – the dimensionality of the input variable
 - `context_dim` (*int*) – the dimensionality of the variable that is conditioned on (for conditional densities)
 - `hidden_dims` (*list[int]*) – the dimensionality of the hidden layers(s)
 - `permutation` (*torch.LongTensor*) – the order of the input variables
 - `output_dim_multiplier` (*int*) – tiles the output (e.g. for when a separate mean and scale parameter are desired)

    ```python
    sample_mask_indices(input_dim, hidden_dim, simple=True)
    Samples the indices assigned to hidden units during the construction of MADE masks
    ```

 Parameters

 - `input_dim` (*int*) – the dimensionality of the input variable
 - `hidden_dim` (*int*) – the dimensionality of the hidden layer
 - `simple` (*bool*) – True to space fractional indices by rounding to nearest int, false round randomly
CHAPTER 8

Optimization

The module *pyro.optim* provides support for optimization in Pyro. In particular it provides *PyroOptim*, which is used to wrap PyTorch optimizers and manage optimizers for dynamically generated parameters (see the tutorial SVI Part I for a discussion). Any custom optimization algorithms are also to be found here.

8.1 Pyro Optimizers

```python
class PyroOptim(optim_constructor, optim_args)
Bases: object

A wrapper for torch.optim.Optimizer objects that helps with managing dynamically generated parameters.

Parameters

- **optim_constructor** -- a torch.optim.Optimizer
- **optim_args** -- a dictionary of learning arguments for the optimizer or a callable that returns such dictionaries

__call__(params, *args, **kwargs)

Parameters

- **params** *(an iterable of strings)* -- a list of parameters

Do an optimization step for each param in params. If a given param has never been seen before, initialize an optimizer for it.

get_state()

Get state associated with all the optimizers in the form of a dictionary with key-value pairs (parameter name, optim state dicts)

set_state(state_dict)

Set the state associated with all the optimizers using the state obtained from a previous call to get_state()

save(filename)

Parameters **filename** -- file name to save to
```
Save optimizer state to disk

load(filename)

Parameters

- `filename` – file name to load from

Load optimizer state from disk

AdagradRMSProp (optim_args)

Wraps `pyro.optim.adagrad_rmsprop.AdagradRMSProp` with `PyroOptim`.

ClippedAdam (optim_args)

Wraps `pyro.optim.clipped_adam.ClippedAdam` with `PyroOptim`.

class PyroLRScheduler (scheduler_constructor, optim_args)

Bases: `pyro.optim.optim.PyroOptim`

A wrapper for `lr_scheduler` objects that adjusts learning rates for dynamically generated parameters.

Parameters

- `scheduler_constructor` – a `lr_scheduler`

- `optim_args` – a dictionary of learning arguments for the optimizer or a callable that returns such dictionaries. must contain the key ‘optimizer’ with pytorch optimizer value

Example:

```python
optimizer = torch.optim.SGD
scheduler = pyro.optim.ExponentialLR({'optimizer': optimizer, 'optim_args': {'lr ->': 0.01}, 'gamma': 0.1})
svi = SVI(model, guide, scheduler, loss=TraceGraph_ELBO())
for i in range(epochs):
    for minibatch in DataLoader(dataset, batch_size):
        svi.step(minibatch)
        scheduler.step(epoch=i)
```

__call__(params, *args, **kwargs)

step(*args, **kwargs)

Takes the same arguments as the PyTorch scheduler (optional epoch kwarg or loss in for ReduceLROnPlateau)

class AdagradRMSProp(params, eta=1.0, delta=1e-16, t=0.1)

Bases: `torch.optim.optimizer.Optimizer`

Implements a mash-up of the Adagrad algorithm and RMSProp. For the precise update equation see equations 10 and 11 in reference [1].

Arguments:

Parameters

- `params` – iterable of parameters to optimize or dicts defining parameter groups

- `eta` (*float*) – sets the step size scale (optional; default: 1.0)

- `t` (*float*) – t, optional: momentum parameter (optional; default: 0.1)
• **delta** (*float*) – modulates the exponent that controls how the step size scales (optional: default: 1e-16)

```python
share_memory()
```

```python
step(closure=None)
```

Performs a single optimization step.

Parameters
- **closure** – A (optional) closure that reevaluates the model and returns the loss.

```python
class ClippedAdam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, clip_norm=10.0, lrd=1.0)
```

Bases: `torch.optim.optimizer.Optimizer`

Parameters
- **params** – iterable of parameters to optimize or dicts defining parameter groups
- **lr** – learning rate (default: 1e-3)
- **betas** (*Tuple*) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
- **eps** – term added to the denominator to improve numerical stability (default: 1e-8)
- **weight_decay** – weight decay (L2 penalty) (default: 0)
- **clip_norm** – magnitude of norm to which gradients are clipped (default: 10.0)
- **lrd** – rate at which learning rate decays (default: 1.0)

Small modification to the Adam algorithm implemented in `torch.optim.Adam` to include gradient clipping and learning rate decay.

Reference


```python
step(closure=None)
```

Parameters
- **closure** – An optional closure that reevaluates the model and returns the loss.

Performs a single optimization step.

8.2 PyTorch Optimizers

Adadelta *(optim_args)*

Wraps `torch.optim.Adadelta` with *PyroOptim*.

Adagrad *(optim_args)*

Wraps `torch.optim.Adagrad` with *PyroOptim*.

Adam *(optim_args)*

Wraps `torch.optim.Adam` with *PyroOptim*.

AdamW *(optim_args)*

Wraps `torch.optim.AdamW` with *PyroOptim*.

SparseAdam *(optim_args)*

Wraps `torch.optim.SparseAdam` with *PyroOptim*.

Adamax *(optim_args)*

Wraps `torch.optim.Adamax` with *PyroOptim*.

8.2. PyTorch Optimizers

89
ASGD (optim_args)
Wraps torch.optim.ASGD with PyroOptim.

SGD (optim_args)
Wraps torch.optim.SGD with PyroOptim.

Rprop (optim_args)
Wraps torch.optim.Rprop with PyroOptim.

RMSprop (optim_args)
Wraps torch.optim.RMSprop with PyroOptim.

LambdaLR (optim_args)
Wraps torch.optim.LambdaLR with PyroLRScheduler.

StepLR (optim_args)
Wraps torch.optim.StepLR with PyroLRScheduler.

MultiStepLR (optim_args)
Wraps torch.optim.MultiStepLR with PyroLRScheduler.

ExponentialLR (optim_args)
Wraps torch.optim.ExponentialLR with PyroLRScheduler.

CosineAnnealingLR (optim_args)
Wraps torch.optim.CosineAnnealingLR with PyroLRScheduler.

ReduceLROnPlateau (optim_args)
Wraps torch.optim.ReduceLROnPlateau with PyroLRScheduler.

CyclicLR (optim_args)
Wraps torch.optim.CyclicLR with PyroLRScheduler.

CosineAnnealingWarmRestarts (optim_args)
Wraps torch.optim.CosineAnnealingWarmRestarts with PyroLRScheduler.

8.3 Higher-Order Optimizers

class MultiOptimizer
Bases: object

Base class of optimizers that make use of higher-order derivatives.

Higher-order optimizers generally use torch.autograd.grad() rather than torch.Tensor.
backward(), and therefore require a different interface from usual Pyro and PyTorch optimizers. In this
interface, the step() method inputs a loss tensor to be differentiated, and backpropagation is triggered one
or more times inside the optimizer.

Derived classes must implement step() to compute derivatives and update parameters in-place.

Example:

```python
tr = poutine.trace(model).get_trace(*args, **kwargs)
loss = -tr.log_prob_sum()
params = {name: site['value'].unconstrained()
            for name, site in tr.nodes.items()
            if site['type'] == 'param'}
optim.step(loss, params)
```

Chapter 8. Optimization
step *(loss, params)*

Performs an in-place optimization step on parameters given a differentiable `loss` tensor.

Note that this detaches the updated tensors.

Parameters

- **loss** *(torch.Tensor)* – A differentiable tensor to be minimized. Some optimizers require this to be differentiable multiple times.

- **params** *(dict)* – A dictionary mapping param name to unconstrained value as stored in the param store.

get_step *(loss, params)*

Computes an optimization step of parameters given a differentiable `loss` tensor, returning the updated values.

Note that this preserves derivatives on the updated tensors.

Parameters

- **loss** *(torch.Tensor)* – A differentiable tensor to be minimized. Some optimizers require this to be differentiable multiple times.

- **params** *(dict)* – A dictionary mapping param name to unconstrained value as stored in the param store.

Returns A dictionary mapping param name to updated unconstrained value.

Return type *dict*

class **PyroMultiOptimizer**(optim)

Bases: pyro.optim.multi.MultiOptimizer

Facade to wrap PyroOptim objects in a MultiOptimizer interface.

step *(loss, params)*

class **TorchMultiOptimizer**(optim_constructor, optim_args)

Bases: pyro.optim.multi.PyroMultiOptimizer

Facade to wrap Optimizer objects in a MultiOptimizer interface.

class **MixedMultiOptimizer**(parts)

Bases: pyro.optim.multi.MultiOptimizer

Container class to combine different MultiOptimizer instances for different parameters.

Parameters

- **parts** *(list)* – A list of *(names, optim)* pairs, where each names is a list of parameter names, and each optim is a MultiOptimizer or PyroOptim object to be used for the named parameters. Together the names should partition up all desired parameters to optimize.

Raises ValueError – if any name is optimized by multiple optimizers.

step *(loss, params)*

get_step *(loss, params)*

class **Newton**(trust_radii={})

Bases: pyro.optim.multi.MultiOptimizer

Implementation of MultiOptimizer that performs a Newton update on batched low-dimensional variables, optionally regularizing via a per-parameter trust_radius. See newton_step() for details.

The result of `get_step()` will be differentiable, however the updated values from `step()` will be detached.

8.3. Higher-Order Optimizers 91
Parameters `trust_radii (dict)` – a dict mapping parameter name to radius of trust region. Missing names will use unregularized Newton update, equivalent to infinite trust radius.

`get_step (loss, params)`
Beneath the built-in inference algorithms, Pyro has a library of composable effect handlers for creating new inference algorithms and working with probabilistic programs. Pyro’s inference algorithms are all built by applying these handlers to stochastic functions.

9.1 Handlers

Poutine is a library of composable effect handlers for recording and modifying the behavior of Pyro programs. These lower-level ingredients simplify the implementation of new inference algorithms and behavior.

Handlers can be used as higher-order functions, decorators, or context managers to modify the behavior of functions or blocks of code:

For example, consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

We can mark sample sites as observed using `condition`, which returns a callable with the same input and output signatures as `model`:

```python
>>> conditioned_model = poutine.condition(model, data={"z": 1.0})
```

We can also use handlers as decorators:

```python
>>> @pyro.condition(data={"z": 1.0})
... def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

Or as context managers:
>>> with pyro.condition(data={'z': 1.0}):
... s = pyro.param('s', torch.tensor(0.5))
... z = pyro.sample('z', dist.Normal(0., s))
... y = z ** 2

Handlers compose freely:

>>> conditioned_model = poutine.condition(model, data={'z': 1.0})
>>> traced_model = poutine.trace(conditioned_model)

Many inference algorithms or algorithmic components can be implemented in just a few lines of code:

```
guide_tr = poutine.trace(guide).get_trace(...)
model_tr = poutine.trace(poutine.replay(conditioned_model, trace=guide_tr)).get_trace(...)
monte_carlo_elbo = model_tr.log_prob_sum() - guide_tr.log_prob_sum()
```

block (fn=None, hide_fn=None, expose_fn=None, hide=None, expose=None, hide_types=None, expose_types=None)

This handler selectively hides Pyro primitive sites from the outside world. Default behavior: block everything.

A site is hidden if at least one of the following holds:

0. hide_fn(msg) is True or (not expose_fn(msg)) is True
1. msg['name'] in hide
2. msg['type'] in hide_types
3. msg['name'] not in expose and msg['type'] not in expose_types
4. hide, hide_types, and expose_types are all None

For example, suppose the stochastic function fn has two sample sites “a” and “b”. Then any effect outside of `BlockMessenger(fn, hide=['a'])` will not be applied to site “a” and will only see site “b”:

```python
def fn():
...     a = pyro.sample('a', dist.Normal(0., 1.))
...     return pyro.sample('b', dist.Normal(a, 1.))
```

Parameters

- fn – a stochastic function (callable containing Pyro primitive calls)
- hide_fn – function that takes a site and returns True to hide the site or False/None to expose it. If specified, all other parameters are ignored. Only specify one of hide_fn or expose_fn, not both.
• **expose_fn** – function that takes a site and returns True to expose the site or False/None to hide it. If specified, all other parameters are ignored. Only specify one of hide_fn or expose_fn, not both.

• **hide** – list of site names to hide

• **expose** – list of site names to be exposed while all others hidden

• **hide_types** – list of site types to be hidden

• **expose_types** – list of site types to be exposed while all others hidden

Returns stochastic function decorated with a `BlockMessenger`

broadcast (fn=None)

Automatically broadcasts the batch shape of the stochastic function at a sample site when inside a single or nested plate context. The existing `batch_shape` must be broadcastable with the size of the `plate` contexts installed in the `cond_indep_stack`.

Notice how `model_automatic_broadcast` below automates expanding of distribution batch shapes. This makes it easy to modularize a Pyro model as the sub-components are agnostic of the wrapping `plate` contexts.

```python
>>> def model_broadcast_by_hand():
...     with IndepMessenger("batch", 100, dim=-2):
...         with IndepMessenger("components", 3, dim=-1):
...             sample = pyro.sample("sample", dist.Bernoulli(torch.ones(3) * 0.5)
...             .expand_by(100))
...             assert sample.shape == torch.Size((100, 3))
...     return sample

>>> @poutine.broadcast
... def model_automatic_broadcast():
...     with IndepMessenger("batch", 100, dim=-2):
...         with IndepMessenger("components", 3, dim=-1):
...             sample = pyro.sample("sample", dist.Bernoulli(torch.tensor(0.5)))
...             assert sample.shape == torch.Size((100, 3))
...     return sample
```

condition (fn=None, data=None)

Given a stochastic function with some sample statements and a dictionary of observations at names, change the sample statements at those names into observes with those values.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

To observe a value for site `z`, we can write

```python
>>> conditioned_model = condition(model, data={"z": torch.tensor(1.)})
```

This is equivalent to adding `obs=value` as a keyword argument to `pyro.sample("z", ...) in model.

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)

- **data** – a dict or a `Trace`
Returns stochastic function decorated with a `ConditionMessenger`.

do(\text{fn=None, data=None})

Given a stochastic function with some sample statements and a dictionary of values at names, set the return values of those sites equal to the values and hide them from the rest of the stack as if they were hard-coded to those values by using `block`.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

To intervene with a value for site `z`, we can write

```python
>>> intervened_model = do(model, data={"z": torch.tensor(1.)})
```

This is equivalent to replacing `z = pyro.sample("z", ...)` with `z = value`.

Parameters

- \text{fn} – a stochastic function (callable containing Pyro primitive calls)
- \text{data} – a dict or a Trace

Returns stochastic function decorated with a `BlockMessenger` and `pyro.poutine.condition_messenger.ConditionMessenger`.

enum(\text{fn=None, first_available_dim=None})

Enumerates in parallel over discrete sample sites marked \text{infer=}{\text{"enumerate": "parallel"}}.

Parameters

- \text{first_available_dim} (int) – The first tensor dimension (counting from the right) that is available for parallel enumeration. This dimension and all dimensions left may be used internally by Pyro. This should be a negative integer.

escape(\text{fn=None, escape_fn=None})

Given a callable that contains Pyro primitive calls, evaluate escape_fn on each site, and if the result is True, raise a `NonlocalExit` exception that stops execution and returns the offending site.

Parameters

- \text{fn} – a stochastic function (callable containing Pyro primitive calls)
- escape_fn – function that takes a partial trace and a site, and returns a boolean value to decide whether to exit at that site

Returns stochastic function decorated with `EscapeMessenger`.

infer_config(\text{fn=None, config_fn=None})

Given a callable that contains Pyro primitive calls and a callable taking a trace site and returning a dictionary, updates the value of the infer kwarg at a sample site to config_fn(site).

Parameters

- \text{fn} – a stochastic function (callable containing Pyro primitive calls)
- \text{config_fn} – a callable taking a site and returning an infer dict

Returns stochastic function decorated with `InferConfigMessenger`.

lift(\text{fn=None, prior=None})

Given a stochastic function with param calls and a prior distribution, create a stochastic function where all param calls are replaced by sampling from prior. Prior should be a callable or a dict of names to callables.
Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2

>>> lifted_model = lift(model, prior={"s": dist.Exponential(0.3)})
```

`lift` makes `param` statements behave like `sample` statements using the distributions in `prior`. In this example, site `s` will now behave as if it was replaced with `s = pyro.sample("s", dist.Exponential(0.3))`:

```python
>>> tr = trace(lifted_model).get_trace(0.0)
>>> tr.nodes["s"]["type"] == "sample"
True
>>> tr2 = trace(lifted_model).get_trace(0.0)
>>> bool((tr2.nodes["s"]["value"] == tr.nodes["s"]["value"]).all())
False
```

Parameters

- `fn` – function whose parameters will be lifted to random values
- `prior` – prior function in the form of a Distribution or a dict of stochastic fns

Returns

`fn` decorated with a `LiftMessenger`

markov *(fn=None, history=1, keep=False)*

Markov dependency declaration.

This can be used in a variety of ways: - as a context manager - as a decorator for recursive functions - as an iterator for markov chains

Parameters

- `history` *(int)* – The number of previous contexts visible from the current context. Defaults to 1. If zero, this is similar to `pyro.plate`.
- `keep` *(bool)* – If true, frames are replayable. This is important when branching: if `keep=True`, neighboring branches at the same level can depend on each other; if `keep=False`, neighboring branches are independent (conditioned on their share”

mask *(fn=None, mask=None)*

Given a stochastic function with some batched sample statements and masking tensor, mask out some of the sample statements elementwise.

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `mask` *(torch.BoolTensor)* – a `{0,1}`-valued masking tensor (1 includes a site, 0 excludes a site)

Returns

stochastic function decorated with a `MaskMessenger`

queue *(fn=None, queue=None, max_tries=None, extend_fn=None, escape_fn=None, num_samples=None)*

Used in sequential enumeration over discrete variables.

Given a stochastic function and a queue, return a return value from a complete trace in the queue.

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
• *queue* – a queue data structure like multiprocessing.Queue to hold partial traces

• *max_tries* – maximum number of attempts to compute a single complete trace

• *extend_fn* – function (possibly stochastic) that takes a partial trace and a site, and returns a list of extended traces

• *escape_fn* – function (possibly stochastic) that takes a partial trace and a site, and returns a boolean value to decide whether to exit

• *num_samples* – optional number of extended traces for *extend_fn* to return

Returns

stochastic function decorated with poutine logic

replay (*fn=None, trace=None, params=None*)

Given a callable that contains Pyro primitive calls, return a callable that runs the original, reusing the values at sites in trace at those sites in the new trace

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

`replay` makes `sample` statements behave as if they had sampled the values at the corresponding sites in the trace:

```python
>>> old_trace = trace(model).get_trace(1.0)
>>> replayed_model = replay(model, trace=old_trace)
>>> bool(replayed_model(0.0) == old_trace.nodes["RETURN"]['value'])
True
```

Parameters

• *fn* – a stochastic function (callable containing Pyro primitive calls)

• *trace* – a *Trace* data structure to replay against

• *params* – dict of names of param sites and constrained values in *fn* to replay against

Returns

a stochastic function decorated with a *ReplayMessenger*

scale (*fn=None, scale=None*)

Given a stochastic function with some sample statements and a positive scale factor, scale the score of all sample and observe sites in the function.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s), obs=1.0)
...     return z ** 2
```

`scale` multiplicatively scales the log-probabilities of sample sites:

```python
>>> scaled_model = scale(model, scale=0.5)
>>> scaled_tr = trace(scaled_model).get_trace(0.0)
>>> unscaled_tr = trace(model).get_trace(0.0)
>>> bool((scaled_tr.log_prob_sum() == 0.5 * unscaled_tr.log_prob_sum()).all())
True
```
Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **scale** – a positive scaling factor

Returns stochastic function decorated with a *ScaleMessenger*

trace *(fn=None, graph_type=None, param_only=None)*

Return a handler that records the inputs and outputs of primitive calls and their dependencies.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

We can record its execution using `trace` and use the resulting data structure to compute the log-joint probability of all of the sample sites in the execution or extract all parameters.

```python
>>> trace = trace(model).get_trace(0.0)
>>> logp = trace.log_prob_sum()
>>> params = [trace.nodes[name]["value"].unconstrained() for name in trace.param_nodes]
```

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **graph_type** – string that specifies the kind of graph to construct
- **param_only** – if true, only records params and not samples

Returns stochastic function decorated with a *TraceMessenger*

config Enumerate *(guide=None, default='parallel', expand=False, num_samples=None)*

Configures enumeration for all relevant sites in a guide. This is mainly used in conjunction with *TraceEnum_ELBO*.

When configuring for exhaustive enumeration of discrete variables, this configures all sample sites whose distribution satisfies `.has Enumerate_support == True`. When configuring for local parallel Monte Carlo sampling via default="parallel", num_samples=n, this configures all sample sites. This does not overwrite existing annotations infer={"enumerate": ...}.

This can be used as either a function:

```python
guide = config Enumerate(guide)
```

or as a decorator:

```python
@config Enumerate
def guide1(*args, **kwargs):
    ...

@config Enumerate(default="sequential", expand=True)
def guide2(*args, **kwargs):
    ...
```

Parameters
• **guide** (*callable*) – a pyro model that will be used as a guide in SVI.

• **default** (*str*) – Which enumerate strategy to use, one of “sequential”, “parallel”, or None. Defaults to “parallel”.

• **expand** (*bool*) – Whether to expand enumerated sample values. See `enumerate_support()` for details. This only applies to exhaustive enumeration, where num_samples=None. If num_samples is not None, then this samples will always be expanded.

• **num_samples** (*int or None*) – if not None, use local Monte Carlo sampling rather than exhaustive enumeration. This makes sense for both continuous and discrete distributions.

Returns an annotated guide

Return type *callable*

9.2 Trace

class Trace(graph_type='flat')

Bases: object

Graph data structure denoting the relationships amongst different pyro primitives in the execution trace.

An execution trace of a Pyro program is a record of every call to `pyro.sample()` and `pyro.param()` in a single execution of that program. Traces are directed graphs whose nodes represent primitive calls or input/output, and whose edges represent conditional dependence relationships between those primitive calls. They are created and populated by `poutine.trace`.

Each node (or site) in a trace contains the name, input and output value of the site, as well as additional metadata added by inference algorithms or user annotation. In the case of `pyro.sample`, the trace also includes the stochastic function at the site, and any observed data added by users.

Consider the following Pyro program:

```
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

We can record its execution using `pyro.poutine.trace` and use the resulting data structure to compute the log-joint probability of all of the sample sites in the execution or extract all parameters.

```
>>> trace = pyro.poutine.trace(model).get_trace(0.0)
>>> logp = trace.log_prob_sum()
>>> params = [trace.nodes[name]["value"].unconstrained() for name in trace.param_˓nodes]
```

We can also inspect or manipulate individual nodes in the trace. `trace.nodes` contains a `collections.OrderedDict` of site names and metadata corresponding to x, s, z, and the return value:

```
>>> list(name for name in trace.nodes.keys())  # doctest: +SKIP
["_INPUT", "s", "z", "_RETURN"]
```

Values of `trace.nodes` are dictionaries of node metadata:
```python
>>> trace.nodes['z']  # doctest: +SKIP
{'type': 'sample', 'name': 'z', 'is_observed': False,
'fn': Normal(), 'value': tensor(0.6480), 'args': (), 'kwargs': {},
'infer': {}, 'scale': 1.0, 'cond_indep_stack': (),
'done': True, 'stop': False, 'continuation': None}
```

'infer' is a dictionary of user- or algorithm-specified metadata. 'args' and 'kwargs' are the arguments passed via pyro.sample to fn.__call__ or fn.log_prob. 'scale' is used to scale the log-probability of the site when computing the log-joint. 'cond_indep_stack' contains data structures corresponding to pyro.plate contexts appearing in the execution. 'done', 'stop', and 'continuation' are only used by Pyro’s internals.

Parameters

graph_type *(string)* – string specifying the kind of trace graph to construct

add_edge *(site1, site2)*

add_node *(site_name, **kwargs)*

Parameters

site_name *(string)* – the name of the site to be added

Adds a site to the trace.

Raises an error when attempting to add a duplicate node instead of silently overwriting.

compute_log_prob *(site_filter=<function Trace.<lambda>>)*

Compute the site-wise log probabilities of the trace. Each log_prob has shape equal to the corresponding batch_shape. Each log_prob_sum is a scalar. Both computations are memoized.

compute_score_parts ()

Compute the batched local score parts at each site of the trace. Each log_prob has shape equal to the corresponding batch_shape. Each log_prob_sum is a scalar. All computations are memoized.

copy ()

Makes a shallow copy of self with nodes and edges preserved.

edges

format_shapes *(title='Trace Shapes:', last_site=None)*

Returns a string showing a table of the shapes of all sites in the trace.

iter_stochastic_nodes ()

Returns an iterator over stochastic nodes in the trace.

log_prob_sum *(site_filter=<function Trace.<lambda>>)*

Compute the site-wise log probabilities of the trace. Each log_prob has shape equal to the corresponding batch_shape. Each log_prob_sum is a scalar. The computation of log_prob_sum is memoized.

Returns

total log probability.

Return type

torch.Tensor

nonreparam_stochastic_nodes

Returns a list of names of sample sites whose stochastic functions are not reparameterizable primitive distributions

observation_nodes

Returns a list of names of observe sites

pack_tensors *(plate_to_symbol=None)*

Computes packed representations of tensors in the trace. This should be called after **compute_log_prob**() or **compute_score_parts**().
param_nodes

Returns a list of names of param sites

predecessors(site_name)

remove_node(site_name)

reparameterized_nodes

Returns a list of names of sample sites whose stochastic functions are reparameterizable primitive distributions

stochastic_nodes

Returns a list of names of sample sites

successors(site_name)

symbolize_dims(plate_to_symbol=None)

Assign unique symbols to all tensor dimensions.

topological_sort(reverse=False)

Return a list of nodes (site names) in topologically sorted order.

Parameters reverse (bool) – Return the list in reverse order.

Returns list of topologically sorted nodes (site names).

9.3 Messengers

Messenger objects contain the implementations of the effects exposed by handlers. Advanced users may modify the implementations of messengers behind existing handlers or write new messengers that implement new effects and compose correctly with the rest of the library.

9.3.1 Messenger

class Messenger

Bases: object

Context manager class that modifies behavior and adds side effects to stochastic functions i.e. callables containing Pyro primitive statements.

This is the base Messenger class. It implements the default behavior for all Pyro primitives, so that the joint distribution induced by a stochastic function fn is identical to the joint distribution induced by Messenger()(fn).

Class of transformers for messages passed during inference. Most inference operations are implemented in subclasses of this.

classmethod register(fn=None, type=None, post=None)

Parameters

• fn – function implementing operation

• type (str) – name of the operation (also passed to effectful())

• post (bool) – if True, use this operation as postprocess
Dynamically add operations to an effect. Useful for generating wrappers for libraries.

Example:
```python
@SomeMessengerClass.register
def some_function(msg):
    ...do_something...
    return msg
```

```python
classmethod unregister(fn=None, type=None)
```

Parameters

- **fn** – function implementing operation
- **type** (str) – name of the operation (also passed to `effectful()`)

Dynamically remove operations from an effect. Useful for removing wrappers from libraries.

Example:
```python
SomeMessengerClass.unregister(some_function, "name")
```

9.3.2 BlockMessenger

```python
class BlockMessenger(
    hide_fn=None, expose_fn=None, hide_all=True, expose_all=False, 
    hide=None, expose=None, hide_types=None, expose_types=None
)
```

Bases: pyro.poutine.messenger.Messenger

This Messenger selectively hides Pyro primitive sites from the outside world. Default behavior: block everything. BlockMessenger has a flexible interface that allows users to specify in several different ways which sites should be hidden or exposed.

A site is hidden if at least one of the following holds:

0. `hide_fn(msg)` is True or `(not expose_fn(msg))` is True
1. `msg["name"]` in `hide`
2. `msg["type"]` in `hide_types`
3. `msg["name"]` not in `expose` and `msg["type"]` not in `expose_types`
4. `hide`, `hide_types`, and `expose_types` are all None

For example, suppose the stochastic function `fn` has two sample sites “a” and “b”. Then any poutine outside of `BlockMessenger(fn, hide=["a"])` will not be applied to site “a” and will only see site “b”:

```python
>>> def fn():
...     a = pyro.sample("a", dist.Normal(0., 1.))
...     return pyro.sample("b", dist.Normal(a, 1.))
```
True
>>> "b" in trace_outer
True

See the constructor for details.

Parameters

- **hide_fn** – function that takes a site and returns True to hide the site or False/None to expose it. If specified, all other parameters are ignored. Only specify one of hide_fn or expose_fn, not both.

- **expose_fn** – function that takes a site and returns True to expose the site or False/None to hide it. If specified, all other parameters are ignored. Only specify one of hide_fn or expose_fn, not both.

- **hide_all**(bool) – hide all sites

- **expose_all**(bool) – expose all sites normally

- **hide**(list) – list of site names to hide, rest will be exposed normally

- **expose**(list) – list of site names to expose, rest will be hidden

- **hide_types**(list) – list of site types to hide, rest will be exposed normally

- **expose_types**(list) – list of site types to expose normally, rest will be hidden

9.3.3 BroadcastMessenger

class BroadcastMessenger

Bases: pyro.poutine.messenger.Messenger

BroadcastMessenger automatically broadcasts the batch shape of the stochastic function at a sample site when inside a single or nested plate context. The existing batch_shape must be broadcastable with the size of the plate contexts installed in the cond_indep_stack.

9.3.4 ConditionMessenger

class ConditionMessenger**(data)**

Bases: pyro.poutine.messenger.Messenger

Adds values at observe sites to condition on data and override sampling

9.3.5 EscapeMessenger

class EscapeMessenger**(escape_fn)**

Bases: pyro.poutine.messenger.Messenger

Messenger that does a nonlocal exit by raising a util.NonlocalExit exception

9.3.6 IndepMessenger

class CondIndepStackFrame

Bases: pyro.poutine.indep_messenger.CondIndepStackFrame
vectorized

class IndepMessenger(name=None, size=None, dim=None, device=None)

 Bases: pyro.poutine.messenger.Messenger

This messenger keeps track of stack of independence information declared by nested plate contexts. This information is stored in a cond_indep_stack at each sample/observe site for consumption by TraceMessenger.

Example:

```python
x_axis = IndepMessenger('outer', 320, dim=-1)
y_axis = IndepMessenger('inner', 200, dim=-2)
with x_axis:
    x_noise = sample("x_noise", dist.Normal(loc, scale).expand_by([320]))
with y_axis:
    y_noise = sample("y_noise", dist.Normal(loc, scale).expand_by([200, 1]))
with x_axis, y_axis:
    xy_noise = sample("xy_noise", dist.Normal(loc, scale).expand_by([200, 320]))
```

indices

 next_context()

 Increments the counter.

9.3.7 LiftMessenger

class LiftMessenger(prior)

 Bases: pyro.poutine.messenger.Messenger

 Messenger which “lifts” parameters to random samples. Given a stochastic function with param calls and a prior, creates a stochastic function where all param calls are replaced by sampling from prior.

 Prior should be a callable or a dict of names to callables.

9.3.8 ReplayMessenger

class ReplayMessenger(trace=None, params=None)

 Bases: pyro.poutine.messenger.Messenger

 Messenger for replaying from an existing execution trace.

9.3.9 ScaleMessenger

class ScaleMessenger(scale)

 Bases: pyro.poutine.messenger.Messenger

 This messenger rescales the log probability score.

 This is typically used for data subsampling or for stratified sampling of data (e.g. in fraud detection where negatives vastly outnumber positives).

 Parameters scale (float or torch.Tensor) – a positive scaling factor
9.3.10 TraceMessenger

class TraceHandler (msngr, fn)
 Bases: object
 Execution trace poutine.
 A TraceHandler records the input and output to every Pyro primitive and stores them as a site in a Trace(). This should, in theory, be sufficient information for every inference algorithm (along with the implicit computational graph in the Variables?)
 We can also use this for visualization.
 get_trace (*args, **kwargs)
 Returns data structure
 Return type pyro.poutine.Trace
 Helper method for a very common use case. Calls this poutine and returns its trace instead of the function’s return value.

trace
class TraceMessenger (graph_type=None, param_only=None)
 Bases: pyro.poutine.messenger.Messenger
 Execution trace messenger.
 A TraceMessenger records the input and output to every Pyro primitive and stores them as a site in a Trace(). This should, in theory, be sufficient information for every inference algorithm (along with the implicit computational graph in the Variables?)
 We can also use this for visualization.
 get_trace ()
 Returns data structure
 Return type pyro.poutine.Trace
 Helper method for a very common use case. Returns a shallow copy of self.trace.

identify_dense_edges (trace)
 Modifies a trace in-place by adding all edges based on the cond_indep_stack information stored at each site.

9.4 Runtime

element NonlocalExit (site, *args, **kwargs)
 Bases: Exception
 Exception for exiting nonlocally from poutine execution.
 Used by poutine.EscapeMessenger to return site information.
 reset_stack ()
 Reset the state of the frames remaining in the stack. Necessary for multiple re-executions in poutine.queue.
 am_i_wrapped ()
 Checks whether the current computation is wrapped in a poutine. :returns: bool
 apply_stack (initial_msg)
 Execute the effect stack at a single site according to the following scheme:
1. For each Messenger in the stack from bottom to top, execute Messenger._process_message with the message; if the message field “stop” is True, stop; otherwise, continue
2. Apply default behavior (default_process_message) to finish remaining site execution
3. For each Messenger in the stack from top to bottom, execute _postprocess_message to update the message and internal messenger state with the site results
4. If the message field “continuation” is not None, call it with the message

Parameters initial_msg (dict) – the starting version of the trace site
Returns None
default_process_message (msg)
Default method for processing messages in inference.
Parameters msg – a message to be processed
Returns None
effectful (fn=None, type=None)
Parameters
• fn – function or callable that performs an effectful computation
• type (str) – the type label of the operation, e.g. “sample”
Wrapper for calling apply_stack() to apply any active effects.

9.5 Utilities

all_escape (trace, msg)
Parameters
• trace – a partial trace
• msg – the message at a Pyro primitive site
Returns boolean decision value
Utility function that checks if a site is not already in a trace.
Used by EscapeMessenger to decide whether to do a nonlocal exit at a site. Subroutine for approximately integrating out variables for variance reduction.
discrete_escape (trace, msg)
Parameters
• trace – a partial trace
• msg – the message at a Pyro primitive site
Returns boolean decision value
Utility function that checks if a sample site is discrete and not already in a trace.
Used by EscapeMessenger to decide whether to do a nonlocal exit at a site. Subroutine for integrating out discrete variables for variance reduction.
enable_validation (is_validate)
enum_extend (trace, msg, num_samples=None)

Parameters
- `trace` – a partial trace
- `msg` – the message at a Pyro primitive site
- `num_samples` – maximum number of extended traces to return.

Returns a list of traces, copies of input trace with one extra site

Utility function to copy and extend a trace with sites based on the input site whose values are enumerated from the support of the input site’s distribution.

Used for exact inference and integrating out discrete variables.

is_validation_enabled()

mc_extend (trace, msg, num_samples=None)

Parameters
- `trace` – a partial trace
- `msg` – the message at a Pyro primitive site
- `num_samples` – maximum number of extended traces to return.

Returns a list of traces, copies of input trace with one extra site

Utility function to copy and extend a trace with sites based on the input site whose values are sampled from the input site’s function.

Used for Monte Carlo marginalization of individual sample sites.

prune_subsample_sites (trace)
Copies and removes all subsample sites from a trace.

site_is_subsample (site)
Determines whether a trace site originated from a subsample statement inside an plate.
CHAPTER 10

Miscellaneous Ops

The `pyro.ops` module implements tensor utilities that are mostly independent of the rest of Pyro.

10.1 Utilities for HMC

```python
class DualAveraging(prox_center=0, t0=10, kappa=0.75, gamma=0.05)
  Bases: object

  Dual Averaging is a scheme to solve convex optimization problems. It belongs to a class of subgradient methods which uses subgradients to update parameters (in primal space) of a model. Under some conditions, the averages of generated parameters during the scheme are guaranteed to converge to an optimal value. However, a counter-intuitive aspect of traditional subgradient methods is “new subgradients enter the model with decreasing weights” (see [1]). Dual Averaging scheme solves that phenomenon by updating parameters using weights equally for subgradients (which lie in a dual space), hence we have the name “dual averaging”.

  This class implements a dual averaging scheme which is adapted for Markov chain Monte Carlo (MCMC) algorithms. To be more precise, we will replace subgradients by some statistics calculated during an MCMC trajectory. In addition, introducing some free parameters such as `t0` and `kappa` is helpful and still guarantees the convergence of the scheme.

  References

[1] Primal-dual subgradient methods for convex problems, Yurii Nesterov


Parameters

- `prox_center (float)` – A “prox-center” parameter introduced in [1] which pulls the primal sequence towards it.
- `t0 (float)` – A free parameter introduced in [2] that stabilizes the initial steps of the scheme.
```
• **kappa** *(float)* – A free parameter introduced in [2] that controls the weights of steps of the scheme. For a small kappa, the scheme will quickly forget states from early steps. This should be a number in (0.5, 1).

• **gamma** *(float)* – A free parameter which controls the speed of the convergence of the scheme.

```python
reset()
```

step(g)

Updates states of the scheme given a new statistic/subgradient g.

Parameters **g** *(float)* – A statistic calculated during an MCMC trajectory or subgradient.

```python
get_state()
```

Returns the latest \(x_t\) and average of \(\{x_i\}_{i=1}^t\) in primal space.

```python
velocity_verlet(z, r, potential_fn, inverse_mass_matrix, step_size, num_steps=1, z_grads=None)
```

Second order symplectic integrator that uses the velocity verlet algorithm.

Parameters

• **z** *(dict)* – dictionary of sample site names and their current values (type Tensor).

• **r** *(dict)* – dictionary of sample site names and corresponding momenta (type Tensor).

• **potential_fn** *(callable)* – function that returns potential energy given z for each sample site. The negative gradient of the function with respect to z determines the rate of change of the corresponding sites' momenta r.

• **inverse_mass_matrix** *(torch.Tensor)* – a tensor \(M^{-1}\) which is used to calculate kinetic energy: \(E_{\text{kinetic}} = \frac{1}{2}z^T M^{-1} z\). Here M can be a 1D tensor (diagonal matrix) or a 2D tensor (dense matrix).

• **step_size** *(float)* – step size for each time step iteration.

• **num_steps** *(int)* – number of discrete time steps over which to integrate.

• **z_grads** *(torch.Tensor)* – optional gradients of potential energy at current z.

Return tuple \((z_{\text{next}}, r_{\text{next}}, z_{\text{grads}}, \text{potential_energy})\) next position and momenta, together with the potential energy and its gradient w.r.t. \(z_{\text{next}}\).

```python
potential_grad(potential_fn, z)
```

Gradient of \(potential_fn\) w.r.t. parameters z.

Parameters

• **potential_fn** – python callable that takes in a dictionary of parameters and returns the potential energy.

• **z** *(dict)* – dictionary of parameter values keyed by site name.

Returns tuple of \((z_{\text{grads}}, \text{potential_energy})\), where \(z_{\text{grads}}\) is a dictionary with the same keys as z containing gradients and potential_energy is a torch scalar.

```python
class WelfordCovariance(diagonal=True)
```

Bases: object

Implements Welford’s online scheme for estimating (co)variance (see [1]). Useful for adapting diagonal and dense mass structures for HMC.

References

[1] *The Art of Computer Programming*, Donald E. Knuth
reset()
update(sample)
get_covariance(regularize=True)

10.2 Newton Optimizers

newton_step(loss, x, trust_radius=None)

Performs a Newton update step to minimize loss on a batch of variables, optionally constraining to a trust region [1].

This is especially useful because the final solution of Newton iteration is differentiable wrt the inputs, even when all but the final \(x \) is detached, due to this method’s quadratic convergence [2]. \(\text{loss} \) must be twice-differentiable as a function of \(x \). If \(\text{loss} \) is \(2+d \)-times differentiable, then the return value of this function is \(d \)-times differentiable.

When \(\text{loss} \) is interpreted as a negative log probability density, then the return values \(\text{mode}, \text{cov} \) of this function can be used to construct a Laplace approximation \(\text{MultivariateNormal(mode, cov)} \).

\[\text{Warning:} \] Take care to detach the result of this function when used in an optimization loop. If you forget to detach the result of this function during optimization, then backprop will propagate through the entire iteration process, and worse will compute two extra derivatives for each step.

Example use inside a loop:

```python
x = torch.zeros(1000, 2)  # arbitrary initial value
for step in range(100):
    x = x.detach()  # block gradients through previous steps
    x.requires_grad = True  # ensure loss is differentiable wrt x
    loss = my_loss_function(x)
    x = newton_step(loss, x, trust_radius=1.0)
# the final x is still differentiable
```


Parameters

- `loss` (torch.Tensor) – A scalar function of \(x \) to be minimized.
- `x` (torch.Tensor) – A dependent variable of shape \((N, D)\) where \(N \) is the batch size and \(D \) is a small number.
- `trust_radius` (float) – An optional trust region `trust_radius`. The updated value \(\text{mode} \) of this function will be within `trust_radius` of the input \(x \).

Returns A pair \((\text{mode}, \text{cov})\) where \(\text{mode} \) is an updated tensor of the same shape as the original value \(x \), and \(\text{cov} \) is an estimate of the covariance \(D \times D \) matrix with \(\text{cov.shape} == x.\shape[:-1] + (D,D) \).

Return type tuple
newton_step_1d (loss, x, trust_radius=None)
Performs a Newton update step to minimize loss on a batch of 1-dimensional variables, optionally regularizing to constrain to a trust region.

See newton_step() for details.

Parameters

- **loss** (*torch.Tensor*) – A scalar function of x to be minimized.
- **x** (*torch.Tensor*) – A dependent variable with rightmost size of 1.
- **trust_radius** (*float*) – An optional trust region trust_radius. The updated value mode of this function will be within trust_radius of the input x.

Returns A pair (mode, cov) where mode is an updated tensor of the same shape as the original value x, and cov is an estimate of the covariance 1x1 matrix with cov.shape == x. shape[:-1] + (1,1).

Return type *tuple*

newton_step_2d (loss, x, trust_radius=None)
Performs a Newton update step to minimize loss on a batch of 2-dimensional variables, optionally regularizing to constrain to a trust region.

See newton_step() for details.

Parameters

- **loss** (*torch.Tensor*) – A scalar function of x to be minimized.
- **x** (*torch.Tensor*) – A dependent variable with rightmost size of 2.
- **trust_radius** (*float*) – An optional trust region trust_radius. The updated value mode of this function will be within trust_radius of the input x.

Returns A pair (mode, cov) where mode is an updated tensor of the same shape as the original value x, and cov is an estimate of the covariance 2x2 matrix with cov.shape == x. shape[:-1] + (2,2).

Return type *tuple*

newton_step_3d (loss, x, trust_radius=None)
Performs a Newton update step to minimize loss on a batch of 3-dimensional variables, optionally regularizing to constrain to a trust region.

See newton_step() for details.

Parameters

- **loss** (*torch.Tensor*) – A scalar function of x to be minimized.
- **x** (*torch.Tensor*) – A dependent variable with rightmost size of 2.
- **trust_radius** (*float*) – An optional trust region trust_radius. The updated value mode of this function will be within trust_radius of the input x.

Returns A pair (mode, cov) where mode is an updated tensor of the same shape as the original value x, and cov is an estimate of the covariance 3x3 matrix with cov.shape == x. shape[:-1] + (3,3).

Return type *tuple*
10.3 Tensor Indexing

vindex(tensor, args)

Vectorized advanced indexing with broadcasting semantics.

See also the convenience wrapper `Vindex`.

This is useful for writing indexing code that is compatible with batching and enumeration, especially for selecting mixture components with discrete random variables.

For example suppose `x` is a parameter with `x.dim() == 3` and we wish to generalize the expression `x[i, :, j]` from integer `i, j` to tensors `i, j` with batch dims and enum dims (but no event dims). Then we can write the generalize version using `Vindex`:

```python
xij = Vindex(x)[i, :, j]
batch_shape = broadcast_shape(i.shape, j.shape)
event_shape = (x.size(1),)
assert xij.shape == batch_shape + event_shape
```

To handle the case when `x` may also contain batch dimensions (e.g. if `x` was sampled in a plated context as when using vectorized particles), `vindex()` uses the special convention that `Ellipsis` denotes batch dimensions (hence `...` can appear only on the left, never in the middle or in the right). Suppose `x` has event dim 3. Then we can write:

```python
old_batch_shape = x.shape[:-3]
old_event_shape = x.shape[-3:]
xij = Vindex(x)[..., i, :, j]  # The ... denotes unknown batch shape.
new_batch_shape = broadcast_shape(old_batch_shape, i.shape, j.shape)
new_event_shape = (x.size(1),)
assert xij.shape == new_batch_shape + new_event_shape
```

Note that this special handling of `Ellipsis` differs from the NEP [1].

Formally, this function assumes:

1. Each arg is either `Ellipsis`, `slice(None)`, an integer, or a batched `torch.LongTensor` (i.e. with empty event shape). This function does not support Nontrivial slices or `torch.BoolTensor` masks. `Ellipsis` can only appear on the left as `args[0].`
2. If `args[0]` is not `Ellipsis` then `tensor` is not batched, and its event dim is equal to `len(args).
3. If `args[0]` is `Ellipsis` then `tensor` is batched and its event dim is equal to `len(args[1:])`. Dims of `tensor` to the left of the event dims are considered batch dims and will be broadcasted with dims of `tensor` arg.

Note that if none of the args is a tensor with `.dim() > 0`, then this function behaves like standard indexing:

```python
if not any(isinstance(a, torch.Tensor) and a.dim() for a in args):
    assert Vindex(x)[args] == x[args]
```

References

[1] https://www.numpy.org/neps/nep-0021-advanced-indexing.html introduces `vindex` as a helper for vectorized indexing. The Pyro implementation is similar to the proposed notation `x.vindex[]` except for slightly different handling of `Ellipsis`.
Parameters

- tensor (torch.Tensor) – A tensor to be indexed.
- args (tuple) – An index, as args to __getitem__.

Returns A nonstandard interpretation of tensor[args].

Return type torch.Tensor

class Vindex (tensor)

Bases: object

Convenience wrapper around vindex().

The following are equivalent:

Vindex(x)[..., i, j, :]
vindex(x, (Ellipsis, i, j, slice(None))]

Parameters tensor (torch.Tensor) – A tensor to be indexed.

Returns An object with a special __getitem__() method.

10.4 Tensor Contraction

class Vindex (tensor)

Bases: object

Convenience wrapper around vindex().

The following are equivalent:

Vindex(x)[..., i, j, :]
vindex(x, (Ellipsis, i, j, slice(None))]

Parameters tensor (torch.Tensor) – A tensor to be indexed.

Returns An object with a special __getitem__() method.

10.4 Tensor Contraction

contract_expression (equation, *shapes, **kwargs)

Wrapper around opt_einsum.contract_expression() that optionally uses Pyro’s cheap optimizer and optionally caches contraction paths.

Parameters cache_path (bool) – whether to cache the contraction path. Defaults to True.

contract (equation, *operands, **kwargs)

Wrapper around opt_einsum.contract() that optionally uses Pyro’s cheap optimizer and optionally caches contraction paths.

Parameters cache_path (bool) – whether to cache the contraction path. Defaults to True.

einsum (equation, *operands, **kwargs)

Generalized plated sum-product algorithm via tensor variable elimination.

This generalizes contract() in two ways:

1. Multiple outputs are allowed, and intermediate results can be shared.
2. Inputs and outputs can be plated along symbols given in plates; reductions along plates are product reductions.

The best way to understand this function is to try the examples below, which show how einsum() calls can be implemented as multiple calls to contract() (which is generally more expensive).

To illustrate multiple outputs, note that the following are equivalent:

z1, z2, z3 = einsum('ab,bc->a,b,c', x, y) # multiple outputs
z1 = contract('ab,bc->a', x, y)
z2 = contract('ab,bc->b', x, y)
z3 = contract('ab,bc->c', x, y)

To illustrate plated inputs, note that the following are equivalent:
assert len(x) == 3 and len(y) == 3
z = einsum('ab,ai,bi->b', w, x, y, plates='i')

z = contract('ab,a,a,b,b->b', w, *x, *y)

When a sum dimension \(a \) always appears with a plate dimension \(i \), then \(a \) corresponds to a distinct symbol for each slice of \(a \). Thus the following are equivalent:

assert len(x) == 3 and len(y) == 3
z = einsum('ai,ai->', x, y, plates='i')

z = contract('a,b,c,a,b,c->', *x, *y)

When such a sum dimension appears in the output, it must be accompanied by all of its plate dimensions, e.g. the following are equivalent:

assert len(x) == 3 and len(y) == 3
z0 = contract('ab,ac,ad,ab,ac,ad->b', *x, *y)
z1 = contract('ab,ac,ad,ab,ac,ad->c', *x, *y)
z2 = contract('ab,ac,ad,ab,ac,ad->d', *x, *y)
z = torch.stack([z0, z1, z2])

Note that each plate slice through the output is multilinear in all plate slices through all inputs, thus e.g. batch matrix multiply would be implemented without plates, so the following are all equivalent:

xy = einsum('abc,acd->abd', x, y, plates='')
xy = torch.stack([xa.mm(ya) for xa, ya in zip(x, y)])
xy = torch.bmm(x, y)

Among all valid equations, some computations are polynomial in the sizes of the input tensors and other computations are exponential in the sizes of the input tensors. This function raises `NotImplementedError` whenever the computation is exponential.

Parameters

- `equation (str)` – An einsum equation, optionally with multiple outputs.
- `operands (torch.Tensor)` – A collection of tensors.
- `plates (str)` – An optional string of plate symbols.
- `backend (str)` – An optional einsum backend, defaults to ‘torch’.
- `cache (dict)` – An optional `shared_intermediates()` cache.
- `modulo_total (bool)` – Optionally allow einsum to arbitrarily scale each result plate, which can significantly reduce computation. This is safe to set whenever each result plate denotes a nonnormalized probability distribution whose total is not of interest.

Returns

a tuple of tensors of requested shape, one entry per output.

Return type `tuple`

Raises

- `ValueError` – if tensor sizes mismatch or an output requests a plated dim without that dim’s plates.
- `NotImplementedError` – if contraction would have cost exponential in the size of any input tensor.
ubersum(equation, *operands, **kwargs)
Deprecated, use einsum() instead.

10.5 Gaussian Contraction

class Gaussian(log_normalizer, info_vec, precision)
 Bases: object

Non-normalized Gaussian distribution.

This represents an arbitrary semidefinite quadratic function, which can be interpreted as a rank-deficient scaled Gaussian distribution. The precision matrix may have zero eigenvalues, thus it may be impossible to work directly with the covariance matrix.

Parameters
- log_normalizer(torch.Tensor) – a normalization constant, which is mainly used to keep track of normalization terms during contractions.
- info_vec(torch.Tensor) – information vector, which is a scaled version of the mean info_vec = precision @ mean. We use this representation to make gaussian contraction fast and stable.
- precision(torch.Tensor) – precision matrix of this gaussian.

dim()
batch_shape
expand(batch_shape)
reshape(batch_shape)
__getitem__(index)
 Index into the batch_shape of a Gaussian.
static cat(parts, dim=0)
 Concatenate a list of Gaussians along a given batch dimension.
event_pad(left=0, right=0)
 Pad along event dimension.
event_permute(perm)
 Permute along event dimension.
__add__(other)
 Adds two Gaussians in log-density space.
log_density(value)
 Evaluate the log density of this Gaussian at a point value:

\[-0.5 * value.T @ precision @ value + value.T @ info_vec + log_normalizer\]

This is mainly used for testing.
condition(value)
 Condition this Gaussian on a trailing subset of its state. This should satisfy:

```python
    g.condition(y).dim() == g.dim() - y.size(-1)
```
Note that since this is a non-normalized Gaussian, we include the density of y in the result. Thus `condition()` is similar to a `functools.partial` binding of arguments:

```python
def condition(x):
    left = x[..., :n]
    right = x[..., n:]
    return q.log_density(x) == q.condition(right).log_density(left)
```

marginalize(left=0, right=0)
Marginalizing out variables on either side of the event dimension:

```python
q.marginalize(left=n).event_logsumexp() == q.logsumexp()
q.marginalize(right=n).event_logsumexp() == q.logsumexp()
```

and for data x:

```
g.condition(x).event_logsumexp() = q.marginalize(left=q.dim() - x.size(-1)).log_density(x)
```

`event_logsumexp()`
Integrates out all latent state (i.e. operating on event dimensions).

class **AffineNormal**(matrix, loc, scale)

Bases: `object`

Represents a conditional diagonal normal distribution over a random variable Y whose mean is an affine function of a random variable X. The likelihood of X is thus:

```
AffineNormal(matrix, loc, scale).condition(y).log_density(x)
```

which is equivalent to:

```
Normal(x @ matrix + loc, scale).to_event(1).log_prob(y)
```

Parameters
- **matrix** (`torch.Tensor`) – A transformation from X to Y. Should have rightmost shape (x_dim, y_dim).
- **loc** (`torch.Tensor`) – A constant offset for Y's mean. Should have rightmost shape $(y_dim,)$.
- **scale** (`torch.Tensor`) – Standard deviation for Y. Should have rightmost shape $(y_dim,)$.

`condition`(value)
Condition on a Y value.

Parameters
- **value** (`torch.Tensor`) – A value of Y.

Return
- **Gaussian** – A gaussian likelihood over X.

`mvn_to_gaussian`(mvn)
Convert a MultivariateNormal distribution to a Gaussian.

Parameters
- **mvn** (*MultivariateNormal*) – A multivariate normal distribution.

Returns
- **Gaussian** – An equivalent Gaussian object.

`matrix_and_mvn_to_gaussian`(matrix, mvn)
Convert a noisy affine function to a Gaussian. The noisy affine function is defined as:
\[y = x @ matrix + mvn.sample() \]

Parameters
- **matrix** *(Tensor)* – A matrix with rightmost shape \((x_{\text{dim}}, y_{\text{dim}})\).
- **mvn** *(MultivariateNormal)* – A multivariate normal distribution.

Returns
A Gaussian with broadcasted batch shape and \(.\text{dim}() == x_{\text{dim}} + y_{\text{dim}}\).

Return type
Gaussian

gaussian_productdot \((x, y, \text{dims}=0)\)
Computes the integral over two gaussians:
\[
(x @ y)(a, c) = \log(\text{integral}(\exp(x(a, b) + y(b, c)), b)),
\]
where \(x\) is a gaussian over variables \((a, b)\), \(y\) is a gaussian over variables \((b, c)\), \((a, b, c)\) can each be sets of zero or more variables, and \(\text{dims}\) is the size of \(b\).

Parameters
- **x** – a Gaussian instance
- **y** – a Gaussian instance
- **dims** – number of variables to contract

10.6 Statistical Utilities

gelman_rubin \((\text{input, chain_dim}=0, \text{sample_dim}=1)\)
Computes R-hat over chains of samples. It is required that \(\text{input.size(sample_dim)} >= 2\) and \(\text{input.size(chain_dim)} >= 2\).

Parameters
- **input** *(torch.Tensor)* – the input tensor.
- **chain_dim** *(int)* – the chain dimension.
- **sample_dim** *(int)* – the sample dimension.

Returns
\(\text{torch.Tensor}\) R-hat of \(\text{input}\).

split_gelman_rubin \((\text{input, chain_dim}=0, \text{sample_dim}=1)\)
Computes R-hat over chains of samples. It is required that \(\text{input.size(sample_dim)} >= 4\).

Parameters
- **input** *(torch.Tensor)* – the input tensor.
- **chain_dim** *(int)* – the chain dimension.
- **sample_dim** *(int)* – the sample dimension.

Returns
\(\text{torch.Tensor}\) split R-hat of \(\text{input}\).

autocorrelation \((\text{input, dim}=0)\)
Computes the autocorrelation of samples at dimension \(\text{dim}\).

Reference: https://en.wikipedia.org/wiki/Autocorrelation#Efficient_computation

Parameters

• `input(torch.Tensor)` – the input tensor.
• `dim(int)` – the dimension to calculate autocorrelation.

Returns `torch.Tensor` autocorrelation of `input`.

autocovariance (`input, dim=0`) Computes the autocovariance of samples at dimension `dim`.

Parameters
• `input(torch.Tensor)` – the input tensor.
• `dim(int)` – the dimension to calculate autocorrelation.

Returns `torch.Tensor` autocorrelation of `input`.

effective_sample_size (`input, chain_dim=0, sample_dim=1`) Computes effective sample size of input.

Reference:

Parameters
• `input(torch.Tensor)` – the input tensor.
• `chain_dim(int)` – the chain dimension.
• `sample_dim(int)` – the sample dimension.

Returns `torch.Tensor` effective sample size of `input`.

resample (`input, num_samples, dim=0, replacement=False`) Draws `num_samples` samples from `input` at dimension `dim`.

Parameters
• `input(torch.Tensor)` – the input tensor.
• `num_samples(int)` – the number of samples to draw from `input`.
• `dim(int)` – dimension to draw from `input`.

Returns `torch.Tensor` samples drawn randomly from `input`.

quantile (`input, probs, dim=0`) Computes quantiles of `input` at `probs`. If `probs` is a scalar, the output will be squeezed at `dim`.

Parameters
• `input(torch.Tensor)` – the input tensor.
• `probs(list)` – quantile positions.
• `dim(int)` – dimension to take quantiles from `input`.

Returns `torch.Tensor` quantiles of `input` at `probs`.

pi (`input, prob, dim=0`) Computes percentile interval which assigns equal probability mass to each tail of the interval.

Parameters
• `input(torch.Tensor)` – the input tensor.
• \texttt{prob} \texttt{(float)} – the probability mass of samples within the interval.
• \texttt{dim} \texttt{(int)} – dimension to calculate percentile interval from input.

Returns \texttt{torch.Tensor} quantiles of \texttt{input} at \texttt{probs}.

\textbf{hpdi} \texttt{(input, prob, dim=0)}

Computes “highest posterior density interval” which is the narrowest interval with probability mass \texttt{prob}.

Parameters
• \texttt{input} \texttt{(torch.Tensor)} – the input tensor.
• \texttt{prob} \texttt{(float)} – the probability mass of samples within the interval.
• \texttt{dim} \texttt{(int)} – dimension to calculate percentile interval from input.

Returns \texttt{torch.Tensor} quantiles of \texttt{input} at \texttt{probs}.

\textbf{waic} \texttt{(input, log_weights=None, pointwise=False, dim=0)}

Computes “Widely Applicable/Watanabe-Akaike Information Criterion” (WAIC) and its corresponding effective number of parameters.

Reference:
[1] WAIC and cross-validation in Stan, Aki Vehtari, Andrew Gelman

Parameters
• \texttt{input} \texttt{(torch.Tensor)} – the input tensor, which is log likelihood of a model.
• \texttt{log_weights} \texttt{(torch.Tensor)} – weights of samples along \texttt{dim}.
• \texttt{dim} \texttt{(int)} – the sample dimension of \texttt{input}.

Returns tuple of WAIC and effective number of parameters.

\textbf{fit_generalized_pareto} \texttt{(X)}

Given a dataset \(X\) assumed to be drawn from the Generalized Pareto Distribution, estimate the distributional parameters \(\kappa, \sigma\) using a variant of the technique described in reference [1], as described in reference [2].

Parameters \texttt{torch.Tensor} – the input data \(X\)

Returns tuple of floats \((\kappa, \sigma)\) corresponding to the fit parameters.

\textbf{crps_empirical} \texttt{(pred, truth)}

Computes negative Continuous Ranked Probability Score CRPS* [1] between a set of samples \texttt{pred} and true data \texttt{truth}. This uses an \(n \log(n)\) time algorithm to compute a quantity equal that would naively have complexity quadratic in the number of samples \(n\):

\[
\text{CRPS*} = \mathbb{E}|\text{pred} - \text{truth}| - \frac{1}{2} \mathbb{E}|\text{pred} - \text{pred}'|
= (\text{pred} - \text{truth}).\text{abs}().\text{mean}(0)
- (\text{pred} - \text{pred}.'\text{unsqueeze}(1)).\text{abs}().\text{mean}([0, 1]) / 2
\]

Note that for a single sample this reduces to absolute error.

Parameters
• **pred** *(torch.Tensor)* – A set of sample predictions batched on rightmost dim. This should have shape *(num_samples,) + truth.shape*.

• **truth** *(torch.Tensor)* – A tensor of true observations.

Returns A tensor of shape *truth.shape*.

Return type *torch.Tensor*
The `pyro.generic` module provides an interface to dynamically dispatch Pyro code to custom backends.

```python
class GenericModule(name, default_backend)
    Bases: object

    Wrapper for a module that can be dynamically routed to a custom backend.

    current_backend = {'distributions': 'pyro.distributions', 'infer': 'pyro.infer', 'ops': 'torch', 'optim': 'pyro.optim', 'pyro': 'pyro'}

pyro_backend(*aliases, **new_backends)
    Context manager to set a custom backend for Pyro models.

    Backends can be specified either by name (for standard backends) or by providing a dict mapping module name to backend module name. Standard backends include: pyro, minipyro, funsor, and numpy.
```
The `pyro.contrib.autoname` module provides tools for automatically generating unique, semantically meaningful names for sample sites.

scope (*fn=None*, *prefix=None*, *inner=None*)

Parameters
- *fn* – a stochastic function (callable containing Pyro primitive calls)
- *prefix* – a string to prepend to sample names (optional if *fn* is provided)
- *inner* – switch to determine where duplicate name counters appear

Returns fn decorated with a `ScopeMessenger`

`sscope` prepends a prefix followed by a / to the name at a Pyro sample site. It works much like TensorFlow's `name_scope` and `variable_scope`, and can be used as a context manager, a decorator, or a higher-order function.

`sScope` is very useful for aligning compositional models with guides or data.

Example:

```python
>>> @scope(prefix="a")
... def model():
...     return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "a/x" in poutine.trace(model).get_trace()
```

Example:

```python
>>> def model():
...     with scope(prefix="a"):
...         return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "a/x" in poutine.trace(model).get_trace()
```

Scopes compose as expected, with outer scopes appearing before inner scopes in names:
When used as a decorator or higher-order function, `scope` will use the name of the input function as the prefix if no user-specified prefix is provided.

Example:

```python
>>> @scope
... def model():
...     with scope(prefix="a"):
...         return pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "b/a/x" in poutine.trace(model).get_trace()
```

`name_count (fn=None)`

`name_count` is a very simple autonaming scheme that simply appends a suffix “__” plus a counter to any name that appears multiple times in an execution. Only duplicate instances of a name get a suffix; the first instance is not modified.

Example:

```python
>>> @name_count
... def model():
...     for i in range(3):
...         pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "x" in poutine.trace(model).get_trace()
>>> assert "x__1" in poutine.trace(model).get_trace()
>>> assert "x__2" in poutine.trace(model).get_trace()
```

`name_count` also composes with `scope()` by adding a suffix to duplicate scope entrances:

Example:

```python
>>> @name_count
... def model():
...     for i in range(3):
...         with pyro.contrib.autoname.scope(prefix="a"):  
...             pyro.sample("x", dist.Bernoulli(0.5))
... >>> assert "a/x" in poutine.trace(model).get_trace()
>>> assert "a__1/x" in poutine.trace(model).get_trace()
>>> assert "a__2/x" in poutine.trace(model).get_trace()
```

(continues on next page)
12.1 Named Data Structures

The `pyro.contrib.named` module is a thin syntactic layer on top of Pyro. It allows Pyro models to be written to look like programs with operating on Python data structures like `latent.x.sample(...)`, rather than programs with string-labeled statements like `x = pyro.sample("x", ...)`. This module provides three container data structures `named.Object`, `named.List`, and `named.Dict`. These data structures are intended to be nested in each other. Together they track the address of each piece of data in each data structure, so that this address can be used as a Pyro site. For example:

```python
>>> state = named.Object("state")
>>> print(str(state))
state
>>> z = state.x.y.z  # z is just a placeholder.
>>> print(str(z))
state.x.y.z
>>> state.xs = named.List()  # Create a contained list.
>>> x0 = state.xs.add()
>>> print(str(x0))
state.xs[0]
>>> state.ys = named.Dict()
>>> foo = state.ys['foo']
>>> print(str(foo))
state.ys['foo']
```

These addresses can now be used inside `sample`, `observe` and `param` statements. These named data structures even provide in-place methods that alias Pyro statements. For example:

```python
>>> state = named.Object("state")
>>> loc = state.loc.param_(torch.zeros(1, requires_grad=True))
>>> scale = state.scale.param_(torch.ones(1, requires_grad=True))
>>> z = state.z.sample_(dist.Normal(loc, scale))
>>> obs = state.x.sample_(dist.Normal(loc, scale), obs=z)
```

For deeper examples of how these can be used in model code, see the Tree Data and Mixture examples.

Authors: Fritz Obermeyer, Alexander Rush

```python
class Object(name)
    Bases: object
    
    Object to hold immutable latent state.
    
    This object can serve either as a container for nested latent state or as a placeholder to be replaced by a tensor via a named.sample, named.observe, or named.param statement. When used as a placeholder, Object objects take the place of strings in normal pyro.sample statements.

    Parameters
    name(str) -- The name of the object.
```

Example:
state = named.Object("state")
state.x = 0
state.ys = named.List()
state.zs = named.Dict()
state.a.b.c.d.e.f.g = 0 # Creates a chain of named.Objects.

Warning: This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.

```python
sample_(fn, *args, **kwargs)
Calls the stochastic function fn with additional side-effects depending on name and the enclosing context (e.g. an inference algorithm). See Intro I and Intro II for a discussion.

**Parameters**
- **name** – name of sample
- **fn** – distribution class or function
- **obs** – observed datum (optional; should only be used in context of inference) optionally specified in kwargs
- **infer (dict)** – Optional dictionary of inference parameters specified in kwargs. See inference documentation for details.

**Returns** sample
```

```python
param_(*args, **kwargs)
Saves the variable as a parameter in the param store. To interact with the param store or write to disk, see Parameters.

**Parameters**
- **name** (**str**) – name of parameter
- **init_tensor** (**torch.Tensor or callable**) – initial tensor or lazy callable that returns a tensor. For large tensors, it may be cheaper to write e.g. lambda: torch.randn(100000), which will only be evaluated on the initial statement.
- **constraint** (**torch.distributions.constraints.Constraint**) – torch constraint, defaults to constraints.real.
- **event_dim** (**int**) – (optional) number of rightmost dimensions unrelated to batching. Dimension to the left of this will be considered batch dimensions; if the param statement is inside a subsampled plate, then corresponding batch dimensions of the parameter will be correspondingly subsampled. If unspecified, all dimensions will be considered event dims and no subsampling will be performed.

**Returns** parameter

**Return type** torch.Tensor
```

class List(name=None)
Bases: list

List-like object to hold immutable latent state.
This must either be given a name when constructed:
latent = named.List("root")

or must be immediately stored in a named.Object:

latent = named.Object("root")
latent.xs = named.List() # Must be bound to a Object before use.

Warning: This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.

add()
Append one new named.Object.

Returns a new latent object at the end

Return type named.Object

class Dict(name=None)
Bases: dict

Dict-like object to hold immutable latent state.
This must either be given a name when constructed:

latent = named.Dict("root")

or must be immediately stored in a named.Object:

latent = named.Object("root")
latent.xs = named.Dict() # Must be bound to a Object before use.

Warning: This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.

12.2 Scoping

pyro.contrib.autoname.scoping contains the implementation of pyro.contrib.autoname.scope(), a tool for automatically appending a semantically meaningful prefix to names of sample sites.

class NameCountMessenger
Bases: pyro.poutine.messenger.Messenger

NameCountMessenger is the implementation of pyro.contrib.autoname.name_count()

class ScopeMessenger(prefix=None, inner=None)
Bases: pyro.poutine.messenger.Messenger

ScopeMessenger is the implementation of pyro.contrib.autoname.scope()

scope(fn=None, prefix=None, inner=None)

Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
• **prefix** – a string to prepend to sample names (optional if `fn` is provided)

• **inner** – switch to determine where duplicate name counters appear

Returns
`fn` decorated with a `ScopeMessenger`

`scope` prepends a prefix followed by a `/` to the name at a Pyro sample site. It works much like TensorFlow’s `name_scope` and `variable_scope`, and can be used as a context manager, a decorator, or a higher-order function.

`scope` is very useful for aligning compositional models with guides or data.

Example:

```python
def model():
    return pyro.sample("x", dist.Bernoulli(0.5))
```

```python
>>> @scope(prefix="a")
... def model():
...     return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "a/x" in poutine.trace(model).get_trace()
```

Example:

```python
def model():
    with scope(prefix="a"):
        return pyro.sample("x", dist.Bernoulli(0.5))
```

```python
>>> def model():
...     with scope(prefix="a"):
...         return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "a/x" in poutine.trace(model).get_trace()
```

Scopes compose as expected, with outer scopes appearing before inner scopes in names:

```python
>>> @scope(prefix="b")
... def model():
...     with scope(prefix="a"):
...         return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "b/a/x" in poutine.trace(model).get_trace()
```

When used as a decorator or higher-order function, `scope` will use the name of the input function as the prefix if no user-specified prefix is provided.

Example:

```python
>>> @scope
... def model():
...     return pyro.sample("x", dist.Bernoulli(0.5))
...
>>> assert "model/x" in poutine.trace(model).get_trace()
```

name_count (`fn=None`)

`name_count` is a very simple autonaming scheme that simply appends a suffix “__” plus a counter to any name that appears multiple times in an execution. Only duplicate instances of a name get a suffix; the first instance is not modified.

Example:

```python
>>> @name_count
... def model():
...     for i in range(3):
...         pyro.sample("x", dist.Bernoulli(0.5))
...
(continues on next page)```
name_count also composes with scope() by adding a suffix to duplicate scope entrances:

Example:

```python
>>> @name_count
def model():
 for i in range(3):
 with pyro.contrib.autoname.scope(prefix="a"):
 pyro.sample("x", dist.Bernoulli(0.5))

>>> assert "a/x" in poutine.trace(model).get_trace()
>>> assert "a__1/x" in poutine.trace(model).get_trace()
>>> assert "a__2/x" in poutine.trace(model).get_trace()
```

Example:

```python
>>> @name_count
def model():
 with pyro.contrib.autoname.scope(prefix="a"):
 for i in range(3):
 pyro.sample("x", dist.Bernoulli(0.5))

>>> assert "a/x" in poutine.trace(model).get_trace()
>>> assert "a__1/x" in poutine.trace(model).get_trace()
>>> assert "a__2/x" in poutine.trace(model).get_trace()
```
CHAPTER 13

Bayesian Neural Networks

13.1 HiddenLayer

class HiddenLayer(X=None, A_mean=None, A_scale=None, non_linearity=<function relu>, KL_factor=1.0, A_prior_scale=1.0, include_hidden_bias=True, weight_space_sampling=False)

This distribution is a basic building block in a Bayesian neural network. It represents a single hidden layer, i.e. an affine transformation applied to a set of inputs $X$ followed by a non-linearity. The uncertainty in the weights is encoded in a Normal variational distribution specified by the parameters $A_{\text{scale}}$ and $A_{\text{mean}}$. The so-called ‘local reparameterization trick’ is used to reduce variance (see reference below). In effect, this means the weights are never sampled directly; instead one samples in pre-activation space (i.e. before the non-linearity is applied). Since the weights are never directly sampled, when this distribution is used within the context of variational inference, care must be taken to correctly scale the KL divergence term that corresponds to the weight matrix. This term is folded into the $\log_{\text{prob}}$ method of this distributions.

In effect, this distribution encodes the following generative process:

$A \sim \text{Normal}(A_{\text{mean}}, A_{\text{scale}})$

output $\sim$ non_linearity$(AX)$

**Parameters**

- $X$ (torch.Tensor) – B x D dimensional mini-batch of inputs
- $A_{\text{mean}}$ (torch.Tensor) – D x H dimensional specifying weight mean
- $A_{\text{scale}}$ (torch.Tensor) – D x H dimensional (diagonal covariance matrix) specifying weight uncertainty
- non_linearity (callable) – a callable that specifies the non-linearity used. defaults to ReLU.
- KL_factor (float) – scaling factor for the KL divergence. prototypically this is equal to the size of the mini-batch divided by the size of the whole dataset. defaults to 1.0.
- A_prior (float or torch.Tensor) – the prior over the weights is assumed to be normal with mean zero and scale factor $A_{\text{prior}}$. default value is 1.0.
- **include_hidden_bias** (bool) – controls whether the activations should be augmented with a 1, which can be used to incorporate bias terms. defaults to True.

- **weight_space_sampling** (bool) – controls whether the local reparameterization trick is used. this is only intended to be used for internal testing. defaults to False.

Reference:

14.1 EasyGuide

class EasyGuide(model)
   Bases: object

   Base class for “easy guides”.

   Derived classes should define a guide() method. This guide() method can combine ordinary guide statements (e.g. pyro.sample and pyro.param) with the following special statements:

   * group = self.group(...) selects multiple pyro.sample sites in the model. See Group for subsequent methods.
   * with self.plate(...): ... should be used instead of pyro.plate.
   * self.map_estimate(...) uses a Delta guide for a single site.

   Derived classes may also override the init() method to provide custom initialization for models sites.

   Parameters model (callable) – A Pyro model.

   guide(*args, **kargs)
      Guide implementation, to be overridden by user.

   init (site)
      Model initialization method, may be overridden by user.

      This should input a site and output a valid sample from that site. The default behavior is to draw a random sample:

      return site["fn"]()

      For other possible initialization functions see http://docs.pyro.ai/en/stable/infer.autoguide.html#module-pyro.infer.autoguide.initialization

   __call__(*args, **kwargs)
      Runs the guide. This is typically used by inference algorithms.
plate\(\text{name}, \text{size}=\text{None}, \text{subsample\_size}=\text{None}, \text{subsample}=\text{None}, \ast\text{args}, \ast\ast\text{kwargs}\)  
A wrapper around pyro.plate to allow EasyGuide to automatically construct plates. You should use this rather than pyro.plate inside your guide() implementation.

group\(\text{match}='.*'\)  
Select a Group of model sites for joint guidance.

**Parameters**  
match\(\text{str}\) – A regex string matching names of model sample sites.  

**Returns**  
A group of model sites.  

**Return type** Group

map_estimate\(\text{name}\)  
Construct a maximum a posteriori (MAP) guide using Delta distributions.

**Parameters**  
name\(\text{str}\) – The name of a model sample site.  

**Returns**  
A sampled value.  

**Return type** torch.Tensor

### 14.2 easy_guide

easy_guide\(\text{model}\)  
Convenience decorator to create an EasyGuide. The following are equivalent:

```python  
Version 1. Decorate a function.
@easy_guide(model)
def guide(self, foo, bar):
 return my_guide(foo, bar)

Version 2. Create and instantiate a subclass of EasyGuide.
class Guide(EasyGuide):
 def guide(self, foo, bar):
 return my_guide(foo, bar)

guide = Guide(model)
```

**Parameters**  
model\(\text{callable}\) – a Pyro model.

### 14.3 Group

class Group\(\text{guide}, \text{sites}\)  
Bases: object  

An autoguide helper to match a group of model sites.

**Variables**

- event_shape\(\text{torch.Size}\) – The total flattened concatenated shape of all matching sample sites in the model.

- prototype_sites\(\text{list}\) – A list of all matching sample sites in a prototype trace of the model.

**Parameters**

- guide\(\text{EasyGuide}\) – An easyguide instance.
• **sites** (*list*) – A list of model sites.

**guide**

```py
sample(guide_name, fn, infer=None)
```

Wrapper around `pyro.sample()` to create a single auxiliary sample site and then unpack to multiple sample sites for model replay.

**Parameters**

- **guide_name** *(str)* – The name of the auxiliary guide site.
- **fn** *(callable)* – A distribution with shape `self.event_shape`.
- **infer** *(dict)* – Optional inference configuration dict.

**Returns** A pair `(guide_z, model_zs)` where `guide_z` is the single concatenated blob and `model_zs` is a dict mapping site name to constrained model sample.

**Return type** `tuple`

**map_estimate()**

Construct a maximum a posteriori (MAP) guide using Delta distributions.

**Returns** A dict mapping model site name to sampled value.

**Return type** `dict`
The `pyro.contrib.glmm` module provides models and guides for generalised linear mixed models (GLMM). It also includes the Normal-inverse-gamma family.

To create a classical Bayesian linear model, use:

```python
from pyro.contrib.glmm import known_covariance_linear_model

Note: coef is a p-vector, observation_sd is a scalar
Here, p=1 (one feature)
model = known_covariance_linear_model(coef_mean=torch.tensor([0.]),
 coef_sd=torch.tensor([10.]),
 observation_sd=torch.tensor(2.))

An n x p design tensor
Here, n=2 (two observations)
design = torch.tensor([1., -1.])

model(design)
```

A non-linear link function may be introduced, for instance:

```python
from pyro.contrib.glmm import logistic_regression_model

No observation_sd is needed for logistic models
model = logistic_regression_model(coef_mean=torch.tensor([0.]),
 coef_sd=torch.tensor([10.]))

Random effects may be incorporated as regular Bayesian regression coefficients. For random effects with a shared covariance matrix, see `pyro.contrib.glmm.lmer_model()`.
Gaussian Processes

See the Gaussian Processes tutorial for an introduction.

16.1 Models

16.1.1 GPModel

class GPModel(X, y, kernel, mean_function=None, jitter=1e-06)
Bases: pyro.contrib.gp.parameterized.Parameterized

Base class for Gaussian Process models.

The core of a Gaussian Process is a covariance function k which governs the similarity between input points. Given k, we can establish a distribution over functions f by a multivarite normal distribution

$$p(f(X)) = \mathcal{N}(0, k(X,X)),$$

where X is any set of input points and $k(X,X)$ is a covariance matrix whose entries are outputs $k(x,z)$ of k over input pairs (x,z). This distribution is usually denoted by

$$f \sim \mathcal{GP}(0,k).$$

Note: Generally, beside a covariance matrix k, a Gaussian Process can also be specified by a mean function m (which is a zero-value function by default). In that case, its distribution will be

$$p(f(X)) = \mathcal{N}(m(X), k(X,X)).$$

Gaussian Process models are Parameterized subclasses. So its parameters can be learned, set priors, or fixed by using corresponding methods from Parameterized. A typical way to define a Gaussian Process model is
>>> X = torch.tensor([[1., 5, 3], [4, 3, 7]])
>>> y = torch.tensor([2., 1])
>>> kernel = gp.kernels.RBF(input_dim=3)
>>> kernel.set_prior("variance", dist.Uniform(torch.tensor(0.5), torch.tensor(1. ->5))
>>> kernel.set_prior("lengthscale", dist.Uniform(torch.tensor(1.0), torch. ->tensor(3.0))
>>> gpr = gp.models.GPRegression(X, y, kernel)

There are two ways to train a Gaussian Process model:

• Using an MCMC algorithm (in module pyro.infer.mcmc) on model() to get posterior samples for the Gaussian Process’s parameters. For example:

```python
>>> hmc_kernel = HMC(gpr.model)
>>> mcmc = MCMC(hmc_kernel, num_samples=10)
>>> mcmc.run()
>>> ls_name = "GPR/RBF/lengthscale"
>>> posterior_ls = mcmc.get_samples()[ls_name]
```

• Using a variational inference on the pair model(), guide():

```python
>>> optimizer = torch.optim.Adam(gpr.parameters(), lr=0.01)
>>> loss_fn = pyro.infer.TraceMeanField_ELBO().differentiable_loss
>>> for i in range(1000):
...     svi.step()  # doctest: +SKIP
...     optimizer.zero_grad()
...     loss = loss_fn(gpr.model, gpr.guide)  # doctest: +SKIP
...     loss.backward()  # doctest: +SKIP
...     optimizer.step()
```

To give a prediction on new dataset, simply use forward() like any PyTorch torch.nn.Module:

```python
>>> Xnew = torch.tensor([[2., 3, 1]])
>>> f_loc, f_cov = gpr(Xnew, full_cov=True)
```

Reference:

Parameters

• X (torch.Tensor) – A input data for training. Its first dimension is the number of data points.
• y (torch.Tensor) – An output data for training. Its last dimension is the number of data points.
• kernel (Kernel) – A Pyro kernel object, which is the covariance function \(k \).
• mean_function (callable) – An optional mean function \(m \) of this Gaussian process. By default, we use zero mean.
• jitter (float) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

model()
A “model” stochastic function. If self.y is None, this method returns mean and variance of the Gaussian Process prior.
A “guide” stochastic function to be used in variational inference methods. It also gives posterior information to the method `forward()` for prediction.

forward (*Xnew, full_cov=False*)

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \(X_{\text{new}}\):

\[
p(f^* | X_{\text{new}}, X, y, k, \theta),
\]

where \(\theta\) are parameters of this model.

Note: Model’s parameters \(\theta\) together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- **Xnew** (torch.Tensor) – A input data for testing. Note that \(X_{\text{new}}.\text{shape}[1:]\) must be the same as \(X.\text{shape}[1:]\).

- **full_cov** (bool) – A flag to decide if we want to predict full covariance matrix or just variance.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{\text{new}}))\)

Return type tuple(torch.Tensor, torch.Tensor)

set_data (*X, y=None*)

Sets data for Gaussian Process models.

Some examples to utilize this method are:

- **Batch training on a sparse variational model:**

```python
>>> Xu = torch.tensor([[1., 0, 2]])  # inducing input
>>> likelihood = gp.likelihoods.Gaussian()
>>> vsgp = gp.models.VariationalSparseGP(X, y, kernel, Xu, likelihood)
>>> optimizer = torch.optim.Adam(vsgp.parameters(), lr=0.01)
>>> loss_fn = pyro.infer.TraceMeanField_ELBO().differentiable_loss
>>> batched_X, batched_y = X.split(split_size=10), y.split(split_size=10)
>>> for Xi, yi in zip(batched_X, batched_y):
...     optimizer.zero_grad()
...     vsgp.set_data(Xi, yi)
...     svi.step()  # doctest: +SKIP
...     loss = loss_fn(vsgp.model, vsgp.guide)  # doctest: +SKIP
...     loss.backward()  # doctest: +SKIP
...     optimizer.step()
```

- **Making a two-layer Gaussian Process stochastic function:**

```python
>>> gpr1 = gp.models.GPRegression(X, None, kernel)
>>> Z, _ = gpr1.model()
>>> gpr2 = gp.models.GPRegression(Z, y, kernel)
>>> def two_layer_model():
...     Z, _ = gpr1.model()
...     gpr2.set_data(Z, y)
...     return gpr2.model()
```
References:

Parameters

- \(\mathbf{X} \) (*torch.Tensor*) – A input data for training. Its first dimension is the number of data points.
- \(\mathbf{y} \) (*torch.Tensor*) – An output data for training. Its last dimension is the number of data points.

16.1.2 GPRegression

```python
class GPRegression(X, y, kernel, noise=None, mean_function=None, jitter=1e-06)
Bases: pyro.contrib.gp.models.model.GPModel
```

Gaussian Process Regression model.

The core of a Gaussian Process is a covariance function \(k \) which governs the similarity between input points. Given \(k \), we can establish a distribution over functions \(f \) by a multivariate normal distribution

\[
p(f(X)) = \mathcal{N}(0, k(X, X)),
\]

where \(X \) is any set of input points and \(k(X, X) \) is a covariance matrix whose entries are outputs \(k(x, z) \) of \(k \) over input pairs \((x, z) \). This distribution is usually denoted by

\[
f \sim \mathcal{GP}(0, k).
\]

Note: Generally, beside a covariance matrix \(k \), a Gaussian Process can also be specified by a mean function \(m \) (which is a zero-value function by default). In that case, its distribution will be

\[
p(f(X)) = \mathcal{N}(m(X), k(X, X)).
\]

Given inputs \(X \) and their noisy observations \(y \), the Gaussian Process Regression model takes the form

\[
f \sim \mathcal{GP}(0, k(X, X)),
\]
\[
y \sim f + \epsilon,
\]

where \(\epsilon \) is Gaussian noise.

Note: This model has \(\mathcal{O}(N^3) \) complexity for training, \(\mathcal{O}(N^3) \) complexity for testing. Here, \(N \) is the number of train inputs.

Reference:

Parameters

- \(\mathbf{X} \) (*torch.Tensor*) – A input data for training. Its first dimension is the number of data points.
• \texttt{y} (\texttt{torch.Tensor}) – An output data for training. Its last dimension is the number of data points.
• \texttt{kernel} (\texttt{Kernel}) – A Pyro kernel object, which is the covariance function \(k \).
• \texttt{noise} (\texttt{torch.Tensor}) – Variance of Gaussian noise of this model.
• \texttt{mean_function} (\texttt{callable}) – An optional mean function \(m \) of this Gaussian process. By default, we use zero mean.
• \texttt{jitter} (\texttt{float}) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

\texttt{model()}
\texttt{guide()}
\texttt{forward(Xnew, full_cov=False, noiseless=True)}

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \(X_{\text{new}} \):

\[
p(f^* \mid X_{\text{new}}, X, y, k, \epsilon) = \mathcal{N}(\text{loc}, \text{cov}).
\]

\textbf{Note:} The noise parameter \texttt{noise(\epsilon)} together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

\textbf{Parameters}

• \texttt{Xnew} (\texttt{torch.Tensor}) – A input data for testing. Note that \texttt{Xnew.shape[1:] must be the same as self.X.shape[1:]}.
• \texttt{full_cov} (\texttt{bool}) – A flag to decide if we want to predict full covariance matrix or just variance.
• \texttt{noiseless} (\texttt{bool}) – A flag to decide if we want to include noise in the prediction output or not.

\textbf{Returns} \texttt{loc} and covariance matrix (or variance) of \(p(f^*(X_{\text{new}})) \)

\textbf{Return type} \texttt{tuple(torch.Tensor, torch.Tensor)}

\texttt{iter_sample(noiseless=True)}

Iteratively constructs a sample from the Gaussian Process posterior.

Recall that at test input points \(X_{\text{new}}, \) the posterior is multivariate Gaussian distributed with mean and covariance matrix given by \texttt{forward()}.

This method samples lazily from this multivariate Gaussian. The advantage of this approach is that later query points can depend upon earlier ones. Particularly useful when the querying is to be done by an optimisation routine.

\textbf{Note:} The noise parameter \texttt{noise(\epsilon)} together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

\textbf{Parameters} \texttt{noiseless} (\texttt{bool}) – A flag to decide if we want to add sampling noise to the samples beyond the noise inherent in the GP posterior.

\textbf{Returns} \texttt{sampler}
16.1.3 SparseGPRegression

class SparseGPRegression(X, y, kernel, Xu, noise=None, mean_function=None, approx=None, jitter=1e-06)

Bases: pyro.contrib.gp.models.model.GPModel

Sparse Gaussian Process Regression model.

In GPRegression model, when the number of input data X is large, the covariance matrix $k(X, X)$ will require a lot of computational steps to compute its inverse (for log likelihood and for prediction). By introducing an additional inducing-input parameter X_u, we can reduce computational cost by approximate $k(X, X)$ by a low-rank Nymström approximation Q (see reference [1]), where

$$Q = k(X, X_u)k(X, X)^{-1}k(X_u, X).$$

Given inputs X, their noisy observations y, and the inducing-input parameters X_u, the model takes the form:

$$u \sim \mathcal{GP}(0, k(X_u, X_u)),$$
$$f \sim q(f \mid X, X_u) = \mathbb{E}_{p(u)}q(f \mid X, X_u, u),$$
$$y \sim f + \epsilon,$$

where ϵ is Gaussian noise and the conditional distribution $q(f \mid X, X_u, u)$ is an approximation of

$$p(f \mid X, X_u, u) = \mathcal{N}(m, k(X, X) - Q),$$

whose terms m and $k(X, X) - Q$ is derived from the joint multivariate normal distribution:

$$[f, u] \sim \mathcal{GP}(0, k([X, X_u], [X, X_u])).$$

This class implements three approximation methods:

- Deterministic Training Conditional (DTC):

 $$q(f \mid X, X_u, u) = \mathcal{N}(m, 0),$$

 which in turns will imply

 $$f \sim \mathcal{N}(0, Q).$$

- Fully Independent Training Conditional (FITC):

 $$q(f \mid X, X_u, u) = \mathcal{N}(m, \text{diag}(k(X, X) - Q)),$$

 which in turns will correct the diagonal part of the approximation in DTC:

 $$f \sim \mathcal{N}(0, Q + \text{diag}(k(X, X) - Q)).$$
• Variational Free Energy (VFE), which is similar to DTC but has an additional trace_term in the model’s log likelihood. This additional term makes “VFE” equivalent to the variational approach in SparseVariationalGP (see reference [2]).

Note: This model has $O(NM^2)$ complexity for training, $O(NM^2)$ complexity for testing. Here, N is the number of train inputs, M is the number of inducing inputs.

References:

Parameters
- **X** *(torch.Tensor)* – A input data for training. Its first dimension is the number of data points.
- **y** *(torch.Tensor)* – An output data for training. Its last dimension is the number of data points.
- **kernel** *(Kernel)* – A Pyro kernel object, which is the covariance function k.
- **Xu** *(torch.Tensor)* – Initial values for inducing points, which are parameters of our model.
- **noise** *(torch.Tensor)* – Variance of Gaussian noise of this model.
- **mean_function** *(callable)* – An optional mean function m of this Gaussian process. By default, we use zero mean.
- **approx** *(str)* – One of approximation methods: “DTC”, “FITC”, and “VFE” (default).
- **jitter** *(float)* – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.
- **name** *(str)* – Name of this model.

model()
guide()
forward(Xnew, full_cov=False, noiseless=True)
Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data X_{new}:

$$p(f^* \mid X_{\text{new}}, X, y, k, X_u, \epsilon) = \mathcal{N}(\text{loc}, \text{cov}).$$

Note: The noise parameter noise (ϵ), the inducing-point parameter Xu, together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters
- **Xnew** *(torch.Tensor)* – A input data for testing. Note that Xnew.shape[1:] must be the same as self.X.shape[1:].
- **full_cov** *(bool)* – A flag to decide if we want to predict full covariance matrix or just variance.
• `noiseless (bool)` – A flag to decide if we want to include noise in the prediction output or not.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{new})) \)

Return type `tuple(torch.Tensor, torch.Tensor)`

16.1.4 VariationalGP

class VariationalGP (X, y, kernel, likelihood, mean_function=None, latent_shape=None, whiten=False, jitter=1e-06)

Bases: `pyro.contrib.gp.models.model.GPModel`

Variational Gaussian Process model.

This model deals with both Gaussian and non-Gaussian likelihoods. Given inputs \(X \) and their noisy observations \(y \), the model takes the form

\[
\begin{align*}
 f & \sim \mathcal{GP}(0, k(X, X)), \\
 y & \sim p(y) = p(y | f)p(f),
\end{align*}
\]

where \(p(y | f) \) is the likelihood.

We will use a variational approach in this model by approximating \(q(f) \) to the posterior \(p(f | y) \). Precisely, \(q(f) \) will be a multivariate normal distribution with two parameters \(f_{\text{loc}} \) and \(f_{\text{scale_tril}} \), which will be learned during a variational inference process.

Note: This model can be seen as a special version of `SparseVariationalGP` model with \(X_u = X \).

Note: This model has \(\mathcal{O}(N^3) \) complexity for training, \(\mathcal{O}(N^3) \) complexity for testing. Here, \(N \) is the number of train inputs. Size of variational parameters is \(\mathcal{O}(N^2) \).

Parameters

• `X torch.Tensor` – A input data for training. Its first dimension is the number of data points.

• `y torch.Tensor` – An output data for training. Its last dimension is the number of data points.

• `kernel Kernel` – A Pyro kernel object, which is the covariance function \(k \).

• `Likelihood likelihood likelihood` – A likelihood object.

• `mean_function callable` – An optional mean function \(m \) of this Gaussian process. By default, we use zero mean.

• `latent_shape torch.Size` – Shape for latent processes (\(\text{batch_shape} \) of \(q(f) \)). By default, it equals to output batch shape \(y.\text{shape}[\ :-1] \). For the multi-class classification problems, \(\text{latent_shape}[\ :-1] \) should correspond to the number of classes.

• `whiten bool` – A flag to tell if variational parameters \(f_{\text{loc}} \) and \(f_{\text{scale_tril}} \) are transformed by the inverse of \(Lff \), where \(Lff \) is the lower triangular decomposition of \(\text{kernel}(X, X) \). Enable this flag will help optimization.

• `jitter float` – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.
model()
guide()
forward(Xnew, full_cov=False)

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data X_{new}:

$$p(f^* \mid X_{new}, X, y, k, f_{loc}, f_{scale_tril}) = \mathcal{N}(loc, cov).$$

Note: Variational parameters f_{loc}, f_{scale_tril}, together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters
- **Xnew**(torch.Tensor) – A input data for testing. Note that Xnew.shape[1:] must be the same as self.X.shape[1:].
- **full_cov**(bool) – A flag to decide if we want to predict full covariance matrix or just variance.

Returns loc and covariance matrix (or variance) of $p(f^*(X_{new}))$

Return type tuple(torch.Tensor, torch.Tensor)

16.1.5 VariationalSparseGP

class VariationalSparseGP(X, y, kernel, Xu, likelihood, mean_function=None, latent_shape=None, num_data=None, whiten=False, full_cov=False, jitter=1e-06)
Bases: pyro.contrib.gp.models.model.GPModel

Variational Sparse Gaussian Process model.

In VariationalGP model, when the number of input data X is large, the covariance matrix $k(X, X)$ will require a lot of computational steps to compute its inverse (for log likelihood and for prediction). This model introduces an additional inducing-input parameter X_u to solve that problem. Given inputs X, their noisy observations y, and the inducing-input parameters X_u, the model takes the form:

$$[f, u] \sim \mathcal{GP}(0, k([X, Xu], [X, Xu])),
\quad y \sim p(y) = p(y \mid f)p(f),$$

where $p(y \mid f)$ is the likelihood.

We will use a variational approach in this model by approximating $q(f, u)$ to the posterior $p(f, u \mid y)$. Precisely, $q(f) = p(f \mid u)q(u)$, where $q(u)$ is a multivariate normal distribution with two parameters u_{loc} and $u_{\text{scale_tril}}$, which will be learned during a variational inference process.

Note: This model can be learned using MCMC method as in reference [2]. See also GPModel.

Note: This model has $O(NM^2)$ complexity for training, $O(M^3)$ complexity for testing. Here, N is the number of train inputs, M is the number of inducing inputs. Size of variational parameters is $O(M^2)$.

References:
Parameters

- `X (torch.Tensor)` – A input data for training. Its first dimension is the number of data points.
- `y (torch.Tensor)` – An output data for training. Its last dimension is the number of data points.
- `kernel (Kernel)` – A Pyro kernel object, which is the covariance function k.
- `Xu (torch.Tensor)` – Initial values for inducing points, which are parameters of our model.
- `Likelihood likelihood (likelihood)` – A likelihood object.
- `mean_function (callable)` – An optional mean function m of this Gaussian process. By default, we use zero mean.
- `latent_shape (torch.Size)` – Shape for latent processes ($batch_shape$ of $q(u)$). By default, it equals to output batch shape $y.shape[:-1]$. For the multi-class classification problems, $latent.shape[-1]$ should correspond to the number of classes.
- `num_data (int)` – The size of full training dataset. It is useful for training this model with mini-batch.
- `whiten (bool)` – A flag to tell if variational parameters u_loc and u_scale_tril are transformed by the inverse of Luu, where Luu is the lower triangular decomposition of $kernel(X_u, X_u)$. Enable this flag will help optimization.
- `jitter (float)` – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

model ()
guide ()

forward (Xnew, full_cov=False)
Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data X_{new}:

$$p(f^* \mid X_{new}, X, y, k, X_u, u_{loc}, u_{scale_{tril}}) = \mathcal{N}(loc, cov).$$

Note: Variational parameters u_loc, u_scale_tril, the inducing-point parameter X_u, together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- `Xnew (torch.Tensor)` – A input data for testing. Note that `Xnew.shape[1:]` must be the same as `self.X.shape[1:]`.
- `full_cov (bool)` – A flag to decide if we want to predict full covariance matrix or just variance.

Returns loc and covariance matrix (or variance) of $p(f^*(X_{new}))$

Return type tuple(torch.Tensor, torch.Tensor)
16.1.6 GPLVM

class GPLVM(base_model)
Bases: pyro.contrib.gp.parameterized.Parameterized

Gaussian Process Latent Variable Model (GPLVM) model.

GPLVM is a Gaussian Process model with its train input data is a latent variable. This model is useful for
dimensional reduction of high dimensional data. Assume the mapping from low dimensional latent variable to
is a Gaussian Process instance. Then the high dimensional data will play the role of train output \(y \) and our target
is to learn latent inputs which best explain \(y \). For the purpose of dimensional reduction, latent inputs should
have lower dimensions than \(y \).

We follows reference [1] to put a unit Gaussian prior to the input and approximate its posterior by a multivariate
normal distribution with two variational parameters: \(X_{\text{loc}} \) and \(X_{\text{scale_tril}} \).

For example, we can do dimensional reduction on Iris dataset as follows:

```python
>>> # With \( y \) as the 2D Iris data of shape 150x4 and we want to reduce its
dimension
>>> # to a tensor \( X \) of shape 150x2, we will use GPLVM.

>>> # First, define the initial values for \( X \) parameter:
>>> X_init = torch.zeros(150, 2)
>>> # Then, define a Gaussian Process model with input \( X_{\text{init}} \) and output
>>> \( y \):
>>> kernel = gp.kernels.RBF(input_dim=2, lengthscale=torch.ones(2))
>>> Xu = torch.zeros(20, 2)  # initial inducing inputs of sparse model
>>> gpmodule = gp.models.SparseGPRegression(X_init, y, kernel, Xu)
>>> # Finally, wrap gpmodule by GPLVM, optimize, and get the "learned"
mean of \( X \):
>>> gplvm = gp.models.GPLVM(gpmodule)
>>> gp.util.train(gplvm)  # doctest: +SKIP
>>> X = gplvm.X
```

Reference:

Parameters

- **base_model** (GPModel) -- A Pyro Gaussian Process model object. Note that
 \(\text{base_model}.X \) will be the initial value for the variational parameter \(X_{\text{loc}} \).

- model()
- guide()
- forward(**kwargs)
 Forward method has the same signal as its \(\text{base_model} \). Note that the train input data of \(\text{base_model} \)
is sampled from GPLVM.

16.2 Kernels

16.2.1 Kernel

class Kernel(input_dim, active_dims=None)
Bases: pyro.contrib.gp.parameterized.Parameterized

Base class for kernels used in this Gaussian Process module.
Every inherited class should implement a `forward()` pass which takes inputs \(X, Z \) and returns their covariance matrix.

To construct a new kernel from the old ones, we can use methods `add()`, `mul()`, `exp()`, `warp()`, `vertical_scale()`.

References:

Parameters
- `input_dim` *(int)* – Number of feature dimensions of inputs.
- `variance` *(torch.Tensor)* – Variance parameter of this kernel.
- `active_dims` *(list)* – List of feature dimensions of the input which the kernel acts on.

forward *(X, Z=None, diag=False)*
Calculates covariance matrix of inputs on active dimensionals.

Parameters
- `X` *(torch.Tensor)* – A 2D tensor with shape \(N \times \text{input}_\text{dim} \).
- `Z` *(torch.Tensor)* – An (optional) 2D tensor with shape \(M \times \text{input}_\text{dim} \).
- `diag` *(bool)* – A flag to decide if we want to return full covariance matrix or just its diagonal part.

Returns
Covariance matrix of \(X \) and \(Z \) with shape \(N \times M \)

Return type
`torch.Tensor`

16.2.2 Brownian

class `Brownian` *(input_dim, variance=None, activeDims=None)*
Bases: `pyro.contrib.gp.kernels.kernel.Kernel`

This kernel corresponds to a two-sided Brownian motion (Wiener process):

\[
k(x, z) = \begin{cases}
\sigma^2 \min(|x|, |z|), & \text{if } x \cdot z \geq 0 \\
0, & \text{otherwise}
\end{cases}
\]

Note that the input dimension of this kernel must be 1.

Reference:

forward *(X, Z=None, diag=False)*

16.2.3 Combination

class `Combination` *(kern0, kern1)*
Bases: `pyro.contrib.gp.kernels.kernel.Kernel`

Base class for kernels derived from a combination of kernels.

Parameters
- `kern0` *(Kernel)* – First kernel to combine.
- `kern1` *(Kernel or numbers.Number)* – Second kernel to combine.
16.2.4 Constant

class Constant(input_dim, variance=None, active_dims=None)
 Bases: pyro.contrib.gp.kernels.kernel.Kernel

 Implementation of Constant kernel:
 \[k(x, z) = \sigma^2. \]
 forward(X, Z=None, diag=False)

16.2.5 Coregionalize

class Coregionalize(input_dim, rank=None, components=None, diagonal=None, active_dims=None)
 Bases: pyro.contrib.gp.kernels.kernel.Kernel

 A kernel for the linear model of coregionalization \[k(x, z) = x^T(WW^T + D)z \] where \(W \) is an input_dim-by-rank matrix and typically \(\text{rank} < \text{input_dim} \), and \(D \) is a diagonal matrix.

 This generalizes the Linear kernel to multiple features with a low-rank-plus-diagonal weight matrix. The typical use case is for modeling correlations among outputs of a multi-output GP, where outputs are coded as distinct data points with one-hot coded features denoting which output each datapoint represents.

 If only rank is specified, the kernel \((W W^T + D) \) will be randomly initialized to a matrix with expected value the identity matrix.

 References:

 Parameters
 • input_dim (int) – Number of feature dimensions of inputs.
 • rank (int) – Optional rank. This is only used if components is unspecified. If neither rank nor components is specified, then rank defaults to input_dim.
 • components (torch.Tensor) – An optional (input_dim, rank) shaped matrix that maps features to rank-many components. If unspecified, this will be randomly initialized.
 • diagonal (torch.Tensor) – An optional vector of length input_dim. If unspecified, this will be set to constant 0.5.
 • active_dims (list) – List of feature dimensions of the input which the kernel acts on.
 • name (str) – Name of the kernel.

 forward(X, Z=None, diag=False)

16.2.6 Cosine

class Cosine(input_dim, variance=None, lengthscale=None, active_dims=None)
 Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

 Implementation of Cosine kernel:
 \[k(x, z) = \sigma^2 \cos \left(\frac{|x-z|}{l} \right). \]
Parameters **lengthscale** (*torch.Tensor*) – Length-scale parameter of this kernel.

 forward(X, Z=None, diag=False)

16.2.7 DotProduct

class DotProduct (*input_dim*, *variance=None*, *active_dims=None*)

Bases: *pyro.contrib.gp.kernels.kernel.Kernel*

Base class for kernels which are functions of \(x \cdot z\).

16.2.8 Exponent

class Exponent (*kern*)

Bases: *pyro.contrib.gp.kernels.kernel.Transforming*

Creates a new kernel according to

\[k_{\text{new}}(x, z) = \exp(k(x, z)). \]

 forward(X, Z=None, diag=False)

16.2.9 Exponential

class Exponential (*input_dim*, *variance=None*, *lengthscale=None*, *active_dims=None*)

Bases: *pyro.contrib.gp.kernels.isotropic.Isotropy*

Implementation of Exponential kernel:

\[k(x, z) = \sigma^2 \exp\left(-\frac{|x-z|}{l}\right). \]

 forward(X, Z=None, diag=False)

16.2.10 Isotropy

class Isotropy (*input_dim*, *variance=None*, *lengthscale=None*, *active_dims=None*)

Bases: *pyro.contrib.gp.kernels.kernel.Kernel*

Base class for a family of isotropic covariance kernels which are functions of the distance \(|x - z|/l\), where \(l\) is the length-scale parameter.

By default, the parameter **lengthscale** has size 1. To use the isotropic version (different lengthscale for each dimension), make sure that **lengthscale** has size equal to **input_dim**.

Parameters **lengthscale** (*torch.Tensor*) – Length-scale parameter of this kernel.

16.2.11 Linear

class Linear (*input_dim*, *variance=None*, *active_dims=None*)

Bases: *pyro.contrib.gp.kernels.dot_product.DotProduct*

Implementation of Linear kernel:

\[k(x, z) = \sigma^2 x \cdot z. \]
Doing Gaussian Process regression with linear kernel is equivalent to doing a linear regression.

Note: Here we implement the homogeneous version. To use the inhomogeneous version, consider using `Polynomial` kernel with `degree=1` or making a `Sum` with a `Constant` kernel.

```python
forward(X, Z=None, diag=False)
```

16.2.12 Matern32

class Matern32(input_dim, variance=None, lengthscale=None, active_dims=None)

Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of Matern32 kernel:

\[
k(x, z) = \sigma^2 \left(1 + \sqrt{3} \times \frac{|x-z|}{l} \right) \exp \left(-\sqrt{3} \times \frac{|x-z|}{l} \right).
\]

```python
forward(X, Z=None, diag=False)
```

16.2.13 Matern52

class Matern52(input_dim, variance=None, lengthscale=None, active_dims=None)

Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of Matern52 kernel:

\[
k(x, z) = \sigma^2 \left(1 + \sqrt{5} \times \frac{|x-z|}{l} + \frac{5}{3} \times \frac{|x-z|^2}{l^2} \right) \exp \left(-\sqrt{5} \times \frac{|x-z|}{l} \right).
\]

```python
forward(X, Z=None, diag=False)
```

16.2.14 Periodic

class Periodic(input_dim, variance=None, lengthscale=None, period=None, active_dims=None)

Bases: pyro.contrib.gp.kernels.kernel.Kernel

Implementation of Periodic kernel:

\[
k(x, z) = \sigma^2 \exp \left(-2 \times \frac{\sin^2(\pi(x-z)/p)}{p^2} \right),
\]

where \(p \) is the period parameter.

References:

[1] *Introduction to Gaussian processes*, David J.C. MacKay

Parameters

- `lengthscale (torch.Tensor)` – Length scale parameter of this kernel.
- `period (torch.Tensor)` – Period parameter of this kernel.

```python
forward(X, Z=None, diag=False)
```
16.2.15 Polynomial

class Polynomial(input_dim, variance=None, bias=None, degree=1, active_dims=None)

Bases: pyro.contrib.gp.kernels.dot_product.DotProduct

Implementation of Polynomial kernel:
\[k(x, z) = \sigma^2 (\text{bias} + x \cdot z)^d. \]

Parameters

- bias (torch.Tensor) – Bias parameter of this kernel. Should be positive.
- degree (int) – Degree \(d \) of the polynomial.

forward \((X, Z=None, \text{diag}=False)\)

16.2.16 Product

class Product(kern0, kern1)

Bases: pyro.contrib.gp.kernels.kernel.Combination

Returns a new kernel which acts like a product/tensor product of two kernels. The second kernel can be a constant.

forward \((X, Z=None, \text{diag}=False)\)

16.2.17 RBF

class RBF(input_dim, variance=None, lengthscale=None, active_dims=None)

Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of Radial Basis Function kernel:
\[k(x, z) = \sigma^2 \exp \left(-0.5 \times \frac{|x-z|^2}{\ell^2} \right). \]

Note: This kernel also has name Squared Exponential in literature.

forward \((X, Z=None, \text{diag}=False)\)

16.2.18 RationalQuadratic

class RationalQuadratic(input_dim, variance=None, lengthscale=None, scale_mixture=None, active_dims=None)

Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of RationalQuadratic kernel:
\[k(x, z) = \sigma^2 \left(1 + 0.5 \times \frac{|x-z|^2}{\ell^2} \right)^{-\alpha}. \]

Parameters scale_mixture (torch.Tensor) – Scale mixture (\(\alpha \)) parameter of this kernel. Should have size 1.

forward \((X, Z=None, \text{diag}=False)\)
16.2.19 Sum

```python
class Sum(kern0, kern1):
    Bases: pyro.contrib.gp.kernels.kern0:Combination

    Returns a new kernel which acts like a sum/direct sum of two kernels. The second kernel can be a constant.
    forward(X, Z=None, diag=False)
```

16.2.20 Transforming

```python
class Transforming(kern):
    Bases: pyro.contrib.gp.kernels.kern0:Kernel

    Base class for kernels derived from a kernel by some transforms such as warping, exponent, vertical scaling.

    Parameters kern (Kernel) – The original kernel.
```

16.2.21 VerticalScaling

```python
class VerticalScaling(kern, vscaling_fn):
    Bases: pyro.contrib.gp.kernels.kern0:Transforming

    Creates a new kernel according to
    \[ k_{new}(x, z) = f(x)k(x, z)f(z), \]
    where \( f \) is a function.

    Parameters vscaling_fn (callable) – A vertical scaling function \( f \).
    forward(X, Z=None, diag=False)
```

16.2.22 Warping

```python
class Warping(kern, iwarping_fn=None, owarping_coef=None):
    Bases: pyro.contrib.gp.kernels.kern0:Transforming

    Creates a new kernel according to
    \[ k_{new}(x, z) = q(k(f(x), f(z))), \]
    where \( f \) is a function and \( q \) is a polynomial with non-negative coefficients `owarping_coef`
    We can take advantage of \( f \) to combine a Gaussian Process kernel with a deep learning architecture. For example:

    ```python
 >>> linear = torch.nn.Linear(10, 3)
 >>> # register its parameters to Pyro's ParamStore and wrap it by lambda
 >>> # to call the primitive pyro.module each time we use the linear function
 >>> pyro_linear_fn = lambda x: pyro.module("linear", linear)(x)
 >>> kernel = gp.kernels.Matern52(input_dim=3, lengthscale=torch.ones(3))
 >>> warped_kernel = gp.kernels.Warping(kernel, pyro_linear_fn)
    ```
```

Reference:

Parameters
• `i warping_fn (callable)` – An input warping function \(f \).

• `owarping_coef (list)` – A list of coefficients of the output warping polynomial. These coefficients must be non-negative.

    ```python
    forward (X, Z=None, diag=False)
    ```

16.2.23 WhiteNoise

class WhiteNoise *(input_dim, variance=None, active_dims=None)*

Bases: `pyro.contrib.gp.kernels.kernel.Kernel`

Implementation of WhiteNoise kernel:

\[
k(x, z) = \sigma^2 \delta(x, z),
\]

where \(\delta \) is a Dirac delta function.

    ```python
    forward (X, Z=None, diag=False)
    ```

16.3 Likelihoods

16.3.1 Likelihood

class Likelihood

Bases: `pyro.contrib.gp.parameterized.Parameterized`

Base class for likelihoods used in Gaussian Process.

Every inherited class should implement a forward pass which takes an input \(f \) and returns a sample \(y \).

    ```python
    forward (f_loc, f_var, y=None)
    Samples \( y \) given \( f_{loc}, f_{var} \).
    ```

Parameters

- `f_loc (torch.Tensor)` – Mean of latent function output.
- `f_var (torch.Tensor)` – Variance of latent function output.
- `y (torch.Tensor)` – Training output tensor.

Returns a tensor sampled from likelihood

Return type `torch.Tensor`

16.3.2 Binary

class Binary *(response_function=None)*

Bases: `pyro.contrib.gp.likelihoods.likelihood.Likelihood`

Implementation of Binary likelihood, which is used for binary classification problems.

Binary likelihood uses `Bernoulli` distribution, so the output of `response_function` should be in range \((0, 1)\). By default, we use `sigmoid` function.

Parameters

- `response_function (callable)` – A mapping to correct domain for Binary likelihood.
forward *(f_loc, f_var, y=None)*

Samples \(y \) given \(f_{loc}, f_{var} \) according to

\[
\begin{align*}
f & \sim N(f_{loc}, f_{var}), \\
y & \sim B(x \in \mathbb{B}(f)).
\end{align*}
\]

Note: The log likelihood is estimated using Monte Carlo with 1 sample of \(f \).

Parameters
- \(f_{loc} \) *(torch.Tensor)* – Mean of latent function output.
- \(f_{var} \) *(torch.Tensor)* – Variance of latent function output.
- \(y \) *(torch.Tensor)* – Training output tensor.

Returns a tensor sampled from likelihood

Return type torch.Tensor

16.3.3 Gaussian

class Gaussian *(variance=None)*

Bases: pyro.contrib.gp.likelihoods.likelihood.Likelihood

Implementation of Gaussian likelihood, which is used for regression problems.

Gaussian likelihood uses \textit{Normal} distribution.

Parameters variance *(torch.Tensor)* – A variance parameter, which plays the role of noise in regression problems.

forward *(f_loc, f_var, y=None)*

Samples \(y \) given \(f_{loc}, f_{var} \) according to

\[
y \sim N(x \in \mathbb{B}(f_{loc}, f_{var} + \epsilon)),
\]

where \(\epsilon \) is the variance parameter of this likelihood.

Parameters
- \(f_{loc} \) *(torch.Tensor)* – Mean of latent function output.
- \(f_{var} \) *(torch.Tensor)* – Variance of latent function output.
- \(y \) *(torch.Tensor)* – Training output tensor.

Returns a tensor sampled from likelihood

Return type torch.Tensor
16.3.4 MultiClass

```python
class MultiClass(num_classes, response_function=None)
    Bases: pyro.contrib.gp.likelihoods.likelihood.Likelihood

    Implementation of MultiClass likelihood, which is used for multi-class classification problems. MultiClass likelihood uses `Categorical` distribution, so `response_function` should normalize its input’s rightmost axis. By default, we use `softmax` function.

    Parameters
    
    - `num_classes (int)` – Number of classes for prediction.
    - `response_function (callable)` – A mapping to correct domain for MultiClass likelihood.

    forward(f_loc, f_var, y=None)

    Samples `y` given `f_loc`, `f_var` according to

    $f \sim N \setminus \mathbb{D} \prec (f_{loc}, f_{var}),$
    
    $y \sim C \setminus \mathbb{D} \prec \sim \prec \prec (f).$

    Parameters

    - `f_loc (torch.Tensor)` – Mean of latent function output.
    - `f_var (torch.Tensor)` – Variance of latent function output.
    - `y (torch.Tensor)` – Training output tensor.

    Returns a tensor sampled from likelihood
    Return type torch.Tensor
```  

16.3.5 Poisson

```python
class Poisson(response_function=None)
    Bases: pyro.contrib.gp.likelihoods.likelihood.Likelihood

    Implementation of Poisson likelihood, which is used for count data. Poisson likelihood uses the `Poisson` distribution, so the output of `response_function` should be positive. By default, we use `torch.exp()` as response function, corresponding to a log-Gaussian Cox process.

    Parameters `response_function (callable)` – A mapping to positive real numbers.

    forward(f_loc, f_var, y=None)

    Samples `y` given `f_{loc}`, `f_{var}` according to

    $f \sim N \setminus \mathbb{D} \prec (f_{loc}, f_{var}),$
    
    $y \sim P \setminus \mathbb{D} \prec \sim \prec (\exp(f)).$
```
Note: The log likelihood is estimated using Monte Carlo with 1 sample of \(f \).

Parameters
- \(f_{\text{loc}}(\text{torch.Tensor}) \) – Mean of latent function output.
- \(f_{\text{var}}(\text{torch.Tensor}) \) – Variance of latent function output.
- \(y(\text{torch.Tensor}) \) – Training output tensor.

Returns a tensor sampled from likelihood

Return type torch.Tensor

16.4 Parameterized

class Parameterized

Bases: torch.nn.modules.module.Module

A wrapper of torch.nn.Module whose parameters can be set constraints, set priors.

Under the hood, we move parameters to a buffer store and create “root” parameters which are used to generate that parameter’s value. For example, if we set a contraint to a parameter, an “unconstrained” parameter will be created, and the constrained value will be transformed from that “unconstrained” parameter.

By default, when we set a prior to a parameter, an auto Delta guide will be created. We can use the method autoguide() to setup other auto guides. To fix a parameter to a specific value, it is enough to turn off its “root” parameters’ requires_grad flags.

Example:

```python
>>> class Linear(Parameterized):
...     def __init__(self, a, b):
...         super(Linear, self).__init__()
...         self.a = Parameter(a)
...         self.b = Parameter(b)
...     def forward(self, x):
...         return self.a * x + self.b
... linear = Linear(torch.tensor(1.), torch.tensor(0.))
>>> linear.set_constraint("a", constraints.positive)
>>> linear.set_prior("b", dist.Normal(0, 1))
>>> linear.autoguide("b", dist.Normal)
>>> assert "a_unconstrained" in dict(linear.named_parameters())
>>> assert "b_loc" in dict(linear.named_parameters())
>>> assert "b_scale_unconstrained" in dict(linear.named_parameters())
>>> assert "a" in dict(linear.named_buffers())
>>> assert "b" in dict(linear.named_buffers())
>>> assert "b_scale" in dict(linear.named_buffers())
```

Note that by default, data of a parameter is a float torch.Tensor (unless we use torch.set_default_tensor_type() to change default tensor type). To cast these parameters to a correct data type or GPU device, we can call methods such as double() or cuda(). See torch.nn.Module for more information.
set_constraint *(name, constraint)*

Sets the constraint of an existing parameter.

Parameters

- **name** *(str)* – Name of the parameter.
- **constraint** *(Constraint)* – A PyTorch constraint. See `torch.distributions.constraints` for a list of constraints.

set_prior *(name, prior)*

Sets the constraint of an existing parameter.

Parameters

- **name** *(str)* – Name of the parameter.
- **prior** *(Distribution)* – A Pyro prior distribution.

autoguide *(name, dist_constructor)*

Sets an autoguide for an existing parameter with name `name` (mimic the behavior of module `pyro.infer.autoguide`).

Note: `dist_constructor` should be one of `Delta`, `Normal`, and `MultivariateNormal`. More distribution constructor will be supported in the future if needed.

Parameters

- **name** *(str)* – Name of the parameter.
- **dist_constructor** – A `Distribution` constructor.

set_mode *(mode)*

Sets `mode` of this object to be able to use its parameters in stochastic functions. If `mode="model"`, a parameter will get its value from its prior. If `mode="guide"`, the value will be drawn from its guide.

Note: This method automatically sets `mode` for submodules which belong to `Parameterized` class.

Parameters

- **mode** *(str)* – Either “model” or “guide”.

16.5 Util

conditional *(Xnew, X, kernel, f_loc, f_scale_tril=None, Lff=None, full_cov=False, whiten=False, jitter=1e-06)*

Given `Xnew`, predicts loc and covariance matrix of the conditional multivariate normal distribution

\[p(f^*(X_{\text{new}}) \mid X, k, f_{\text{loc}}, f_{\text{scale}_\text{tril}}). \]

Here `f_loc` and `f_scale_tril` are variation parameters of the variational distribution

\[q(f \mid f_{\text{loc}}, f_{\text{scale}_\text{tril}}) \sim p(f \mid X, y), \]
where \(f \) is the function value of the Gaussian Process given input \(X \)

\[
p(f(X)) \sim \mathcal{N}(0, k(X, X))
\]

and \(y \) is computed from \(f \) by some likelihood function \(p(y|f) \).

In case \(\text{f_scale_tril}=\text{None} \), we consider \(f = f_{\text{loc}} \) and computes

\[
p(f^*(X_{\text{new}}) | X, k, f).
\]

In case \(\text{f_scale_tril} \) is not \(\text{None} \), we follow the derivation from reference [1]. For the case \(\text{f_scale_tril}=\text{None} \), we follow the popular reference [2].

References:

[1] Sparse GPs: approximate the posterior, not the model

Parameters

- \(\text{Xnew} (\text{torch.Tensor}) \) – A new input data.
- \(\text{X} (\text{torch.Tensor}) \) – An input data to be conditioned on.
- \(\text{kernel} (\text{Kernel}) \) – A Pyro kernel object.
- \(\text{f_loc} (\text{torch.Tensor}) \) – Mean of \(q(f) \). In case \(\text{f_scale_tril}=\text{None} \), \(f_{\text{loc}} = f \).
- \(\text{f_scale_tril} (\text{torch.Tensor}) \) – Lower triangular decomposition of covariance matrix of \(q(f) \)’s.
- \(\text{Lff} (\text{torch.Tensor}) \) – Lower triangular decomposition of \(k(X, X) \) (optional).
- \(\text{full_cov} (\text{bool}) \) – A flag to decide if we want to return full covariance matrix or just variance.
- \(\text{whiten} (\text{bool}) \) – A flag to tell if \(\text{f_loc} \) and \(\text{f_scale_tril} \) are already transformed by the inverse of \(\text{Lff} \).
- \(\text{jitter} (\text{float}) \) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{\text{new}})) \)

Return type tuple(\text{torch.Tensor}, \text{torch.Tensor})

train \((\text{gpmodule}, \text{optimizer}=\text{None}, \text{loss_fn}=\text{None}, \text{retain_graph}=\text{None}, \text{num_steps}=1000)\)

A helper to optimize parameters for a GP module.

Parameters

- \(\text{gpmodule} (\text{GPModel}) \) – A GP module.
- \(\text{optimizer} (\text{Optimizer}) \) – A PyTorch optimizer instance. By default, we use Adam with \(lr=0.01 \).
- \(\text{loss_fn} (\text{callable}) \) – A loss function which takes inputs are \(\text{gpmodule}.\text{model}, \text{gpmodule}.\text{guide}, \) and returns ELBO loss. By default, \(\text{loss_fn}=\text{TraceMeanField_ELBO()}.\text{differentiable_loss} \).
- \(\text{retain_graph} (\text{bool}) \) – An optional flag of \(\text{torch.autograd.backward} \).
- \(\text{num_steps} (\text{int}) \) – Number of steps to run SVI.

Returns a list of losses during the training procedure

Return type list
This file contains a minimal implementation of the Pyro Probabilistic Programming Language. The API (method signatures, etc.) match that of the full implementation as closely as possible. This file is independent of the rest of Pyro, with the exception of the `pyro.distributions` module.

An accompanying example that makes use of this implementation can be found at examples/minipyro.py.

```python
class Adam(optim_args):
    Bases: object
    __call__(params)

class JitTrace_ELBO(**kwargs):
    Bases: object
    __call__(model, guide, *args)

class Messenger(fn=None):
    Bases: object
    __call__(*args, **kwargs)
    postprocess_message(msg)
    process_message(msg)

class PlateMessenger(fn, size, dim):
    Bases: pyro.contrib.minipyro.Messenger
    process_message(msg)

class SVI(model, guide, optim, loss):
    Bases: object
    step(*args, **kwargs)
    Trace_ELBO(**kwargs)
    apply_stack(msg)
```
class block (fn=None, hide_fn=<function block.<lambda>>)
 Bases: pyro.contrib.minipyro.Messenger

 process_message (msg)

eblo (model, guide, *args, **kwargs)

get_param_store ()

param (name, init_value=None, constraint=Real())

plate (name, size, dim)

class replay (fn, guide_trace)
 Bases: pyro.contrib.minipyro.Messenger

 process_message (msg)

sample (name, fn, obs=None)

class trace (fn=None)
 Bases: pyro.contrib.minipyro.Messenger

 get_trace (*args, **kwargs)

 postprocess_message (msg)
The `pyro.contrib.oed` module provides tools to create optimal experiment designs for pyro models. In particular, it provides estimators for the expected information gain (EIG) criterion.

To estimate the EIG for a particular design, use:

```python
def model(design):
    ...
# Select an appropriate EIG estimator, such as
eig = vnmc_eig(model, design, ...)
```

EIG can then be maximised using existing optimisers in `pyro.optim`.

18.1 Expected Information Gain

`laplace_eig(model, design, observation_labels, target_labels, guide, loss, optim, num_steps, final_num_samples, y_dist=None, eig=True, **prior_entropy_kwargs)`

Estimates the expected information gain (EIG) by making repeated Laplace approximations to the posterior.

Parameters

- `model (function)` – Pyro stochastic function taking `design` as only argument.
- `design (torch.Tensor)` – Tensor of possible designs.
- `observation_labels (list)` – labels of sample sites to be regarded as observables.
- `target_labels (list)` – labels of sample sites to be regarded as latent variables of interest, i.e. the sites that we wish to gain information about.
- `guide (function)` – Pyro stochastic function corresponding to `model`.
- `loss` – a Pyro loss such as `pyro.infer.Trace_ELBO().differentiable_loss`.
- `optim` – optimizer for the loss
• `num_steps (int)` – Number of gradient steps to take per sampled pseudo-observation.

• `final_num_samples (int)` – Number of y samples (pseudo-observations) to take.

• `y_dist` – Distribution to sample y from; if `None` we use the Bayesian marginal distribution.

• `eig (bool)` – Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by \(\text{EIG} = \text{prior entropy} - \text{APE} \). If `True`, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the `model`. If `False` the APE is returned.

• `prior_entropy_kwargs (dict)` – parameters for estimating the prior entropy: `num_prior_samples` indicating the number of samples for a MC estimate of prior entropy, and `mean_field` indicating if an analytic form for a mean-field prior should be tried.

Returns EIG estimate

Return type `torch.Tensor`

`vi_eig(model, design, observation_labels, target_labels, vi_parameters, is_parameters, y_dist=None, eig=True, **prior_entropy_kwargs)`

Estimates the expected information gain (EIG) using variational inference (VI).

The APE is defined as

\[
APE(d) = E_{Y \sim p(y|\theta, d)}[H(p(\theta|Y, d))]
\]

where \(H[p(x)] \) is the differential entropy. The APE is related to expected information gain (EIG) by the equation

\[
EIG(d) = H[p(\theta)] - APE(d)
\]

in particular, minimising the APE is equivalent to maximising EIG.

Parameters

• `model (function)` – A pyro model accepting `design` as only argument.

• `design (torch.Tensor)` – Tensor representation of design

• `observation_labels (list)` – A subset of the sample sites present in `model`. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.

• `target_labels (list)` – A subset of the sample sites over which the posterior entropy is to be measured.

• `vi_parameters (dict)` – Variational inference parameters which should include: `optim`: an instance of `pyro.Optim`, `guide`: a guide function compatible with `model`, `num_steps`: the number of VI steps to make, and `loss`: the loss function to use for VI

• `is_parameters (dict)` – Importance sampling parameters for the marginal distribution of Y. May include `num_samples`: the number of samples to draw from the marginal.

• `y_dist (pyro.distributions.Distribution)` – (optional) the distribution assumed for the response variable Y

• `eig (bool)` – Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by \(\text{EIG} = \text{prior entropy} - \text{APE} \). If `True`, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the `model`. If `False` the APE is returned.

• `prior_entropy_kwargs (dict)` – parameters for estimating the prior entropy: `num_prior_samples` indicating the number of samples for a MC estimate of prior entropy, and `mean_field` indicating if an analytic form for a mean-field prior should be tried.

Returns EIG estimate

Return type `torch.Tensor`
pyro documentation

NMC_EIG

Nested Monte Carlo estimate of the expected information gain (EIG). The estimate is, when there are not any random effects,

\[
\frac{1}{N} \sum_{n=1}^{N} \log p(y_n|\theta_n, d) - \frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{1}{M} \sum_{m=1}^{M} p(y_n|\theta_m, d) \right)
\]

The estimate is, in the presence of random effects,

\[
\frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{1}{M'} \sum_{m=1}^{M'} p(y_n|\theta_n, \bar{\theta}_{nm}, d) \right) - \frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{1}{M} \sum_{m=1}^{M} p(y_n|\theta_m, \bar{\theta}_m, d) \right)
\]

The latter form is used when M_prime != None.

param function model A pyro model accepting design as only argument.

param torch.Tensor design Tensor representation of design

param list observation_labels A subset of the sample sites present in model. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.

param list target_labels A subset of the sample sites over which the posterior entropy is to be measured.

param int N Number of outer expectation samples.

param int M Number of inner expectation samples for \(p(y|d)\).

param int M_prime Number of samples for \(p(y | \theta, d)\) if required.

param bool independent_priors Only used when M_prime is not None. Indicates whether the prior distributions for the target variables and the nuisance variables are independent. In this case, it is not necessary to sample the targets conditional on the nuisance variables.

return EIG estimate

rtype torch.Tensor

Donsker-Varadhan_EIG

Donsker-Varadhan estimate of the expected information gain (EIG).

\[
\sup_T E_{p(y|d)}[T(y, \theta)] - \log E_{p(y|d)p(\theta)}[\exp(T(\bar{y}, \bar{\theta}))]
\]

where \(T\) is any (measurable) function.

This method optimises the loss function over a pre-specified class of functions \(T\).

Parameters

- **model (function)** – A pyro model accepting design as only argument.
- **design (torch.Tensor)** – Tensor representation of design
- **observation_labels (list)** – A subset of the sample sites present in model. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.

18.1. Expected Information Gain
posterior_eig (model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None, eig=True, prior_entropy_kwargs={}, *args, **kwargs)

Returns EIG estimate, optionally includes full optimisation history

Return type torch.Tensor or tuple

The posterior representation of APE is

$$sup_q E_{p(y, \theta | d)} [\log q(\theta|y, d)]$$

where \(q \) is any distribution on \(\theta \).

This method optimises the loss over a given guide family \(guide \) representing \(q \).

Parameters

- **model** (function) – A pyro model accepting \(design \) as only argument.
- **design** (torch.Tensor) – Tensor representation of design
- **observation_labels** (list) – A subset of the sample sites present in \(model \). These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.
- **target_labels** (list) – A subset of the sample sites over which the posterior entropy is to be measured.
- **num_samples** (int) – Number of samples per iteration.
- **num_steps** (int) – Number of optimisation steps.
- **guide** (function) – guide family for use in the (implicit) posterior estimation. The parameters of \(guide \) are optimised to maximise the posterior objective.
- **optim** (pyro.optim.Optim) – Optimiser to use.
- **return_history** (bool) – If \(True \), also returns a tensor giving the loss function at each step of the optimisation.
• **final_design** *(torch.Tensor)* – The final design tensor to evaluate at. If None, uses design.

• **final_num_samples** *(int)* – The number of samples to use at the final evaluation, If None, uses ‘num_samples’.

• **eig** *(bool)* – Whether to compute the EIG or the average posterior entropy (APE). The EIG is given by $\text{EIG} = \text{prior entropy} - \text{APE}$. If True, the prior entropy will be estimated analytically, or by Monte Carlo as appropriate for the model. If False the APE is returned.

• **prior_entropy_kwargs** *(dict)* – parameters for estimating the prior entropy: num_prior_samples indicating the number of samples for a MC estimate of prior entropy, and mean_field indicating if an analytic form for a mean-field prior should be tried.

Returns EIG estimate, optionally includes full optimisation history

Return type torch.Tensor or tuple

marginal_eig *(model, design, observation_labels, target_labels, num_samples, num_steps, guide, optim, return_history=False, final_design=None, final_num_samples=None)*

Estimate EIG by estimating the marginal entropy $p(y|d)$. See [1] for full details.

The marginal representation of EIG is

$$\inf_q E_{p(y,\theta|d)} \left[\log \frac{p(y|\theta,d)}{q(y|d)} \right]$$

where q is any distribution on y.

Warning: this method does not estimate the correct quantity in the presence of random effects.

Parameters

• **model** *(function)* – A pyro model accepting design as only argument.

• **design** *(torch.Tensor)* – Tensor representation of design

• **observation_labels** *(list)* – A subset of the sample sites present in model. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.

• **target_labels** *(list)* – A subset of the sample sites over which the posterior entropy is to be measured.

• **num_samples** *(int)* – Number of samples per iteration.

• **num_steps** *(int)* – Number of optimisation steps.

• **guide** *(function)* – guide family for use in the marginal estimation. The parameters of guide are optimised to maximise the log-likelihood objective.

• **optim** *(pyro.optim.Optim)* – Optimiser to use.

• **return_history** *(bool)* – If True, also returns a tensor giving the loss function at each step of the optimisation.

• **final_design** *(torch.Tensor)* – The final design tensor to evaluate at. If None, uses design.

• **final_num_samples** *(int)* – The number of samples to use at the final evaluation, If None, uses ‘num_samples’.

18.1. Expected Information Gain
Returns EIG estimate, optionally includes full optimisation history

Return type torch.Tensor or tuple

lfire_eig(*model*, *design*, *observation_labels*, *target_labels*, *num_y_samples*, *num_theta_samples*, *num_steps*, *classifier*, *optim*, *return_history=False*, *final_design=None*, *final_num_samples=None*)

Estimates the EIG using the method of Likelihood-Free Inference by Ratio Estimation (LFIRE) as in [1]. LFIRE is run separately for several samples of θ.

Parameters

- **model** (*function*) – A pyro model accepting *design* as only argument.
- **design** (*torch.Tensor*) – Tensor representation of *design*.
- **observation_labels** (*list*) – A subset of the sample sites present in *model*. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.
- **target_labels** (*list*) – A subset of the sample sites over which the posterior entropy is to be measured.
- **num_y_samples** (*int*) – Number of samples to take in y for each θ.
- **num_steps** (*int*) – Number of optimisation steps.
- **classifier** (*function*) – A Pytorch or Pyro classifier used to distinguish between samples of y under $p(y|d)$ and samples under $p(y|\theta,d)$ for some θ.
- **optim** (*pyro.optim.Optim*) – Optimiser to use.
- **return_history** (*bool*) – If True, also returns a tensor giving the loss function at each step of the optimisation.
- **final_design** (*torch.Tensor*) – The final design tensor to evaluate at. If None, uses *design*.
- **final_num_samples** (*int*) – The number of samples to use at the final evaluation. If None, uses ‘num_samples’.

Param int num_theta_samples: Number of initial samples in θ to take. The likelihood ratio is estimated by LFIRE for each sample.

Returns EIG estimate, optionally includes full optimisation history

Return type torch.Tensor or tuple

vnmc_eig(*model*, *design*, *observation_labels*, *target_labels*, *num_samples*, *num_steps*, *guide*, *optim*, *

return_history=False*, *final_design=None*, *final_num_samples=None*)

Estimates the EIG using Variational Nested Monte Carlo (VNMC). The VNMC estimate [1] is

$$\frac{1}{N} \sum_{n=1}^{N} \left(\log p(y_n|\theta_n,d) - \log \left(\frac{1}{M} \sum_{m=1}^{M} p(\theta_{mn})p(y_n|\theta_{mn},d) \right) \right)$$

where $q(\theta|y)$ is the learned variational posterior approximation and $\theta_n, y_n \sim p(\theta, y|d), \theta_{mn} \sim q(\theta|y = y_n)$.

As $N \to \infty$ this is an upper bound on EIG. We minimise this upper bound by stochastic gradient descent.

Parameters

- **model**(function) – A pyro model accepting design as only argument.
- **design**(torch.Tensor) – Tensor representation of design
- **observation_labels**(list) – A subset of the sample sites present in model. These sites are regarded as future observations and other sites are regarded as latent variables over which a posterior is to be inferred.
- **target_labels**(list) – A subset of the sample sites over which the posterior entropy is to be measured.
- **num_samples**(tuple) – Number of (N, M) samples per iteration.
- **num_steps**(int) – Number of optimisation steps.
- **guide**(function) – guide family for use in the posterior estimation. The parameters of guide are optimised to minimise the VNMC upper bound.
- **optim**(pyro.optim.Optim) – Optimiser to use.
- **return_history**(bool) – If True, also returns a tensor giving the loss function at each step of the optimisation.
- **final_design**(torch.Tensor) – The final design tensor to evaluate at. If None, uses design.
- **final_num_samples**(tuple) – The number of (N, M) samples to use at the final evaluation, If None, uses 'num_samples'.

Returns EIG estimate, optionally includes full optimisation history

Return type torch.Tensor or tuple
19.1 Data Association

class MarginalAssignment (exists_logits, assign_logits, bp_iters=None)
Computes marginal data associations between objects and detections.

This assumes that each detection corresponds to zero or one object, and each object corresponds to zero or more
detections. Specifically this does not assume detections have been partitioned into frames of mutual exclusion
as is common in 2-D assignment problems.

Parameters

- **exists_logits** (torch.Tensor) – a tensor of shape [num_objects] representing
 per-object factors for existence of each potential object.

- **assign_logits** (torch.Tensor) – a tensor of shape [num_detections, num_objects] representing per-edge factors of assignment probability, where each edge
denotes that a given detection associates with a single object.

- **bp_iters (int)** – optional number of belief propagation iterations. If unspecified or
 None an expensive exact algorithm will be used.

Variables

- **num_detections (int)** – the number of detections

- **num_objects (int)** – the number of (potentially existing) objects

- **exists_dist (pyro.distributions.Bernoulli)** – a mean field posterior distri-
bution over object existence.

- **assign_dist (pyro.distributions.Categorical)** – a mean field posterior
distribution over the object (or None) to which each detection associates. This has
 event_shape == (num_objects + 1,) where the final element denotes spurious
detection, and .batch_shape == (num_frames, num_detections).
class MarginalAssignmentSparse(num_objects, num_detections, edges, exists_logits, assign_logits, bp_iters)
A cheap sparse version of MarginalAssignment.

Parameters

- **num_detections** *(int)* – the number of detections
- **num_objects** *(int)* – the number of (potentially existing) objects
- **edges** *(torch.LongTensor)* – a [2, num_edges]-shaped tensor of (detection, object) index pairs specifying feasible associations.
- **exists_logits** *(torch.Tensor)* – a tensor of shape [num_objects] representing per-object factors for existence of each potential object.
- **assign_logits** *(torch.Tensor)* – a tensor of shape [num_edges] representing per-edge factors of assignment probability, where each edge denotes that a given detection associates with a single object.
- **bp_iters** *(int)* – optional number of belief propagation iterations. If unspecified or None an expensive exact algorithm will be used.

Variables

- **num_detections** *(int)* – the number of detections
- **num_objects** *(int)* – the number of (potentially existing) objects
- **exists_dist** *(pyro.distributions.Bernoulli)* – a mean field posterior distribution over object existence.
- **assign_dist** *(pyro.distributions.Categorical)* – a mean field posterior distribution over the object (or None) to which each detection associates. This has event_shape == (num_objects + 1,) where the final element denotes spurious detection, and batch_shape == (num_frames, num_detections).

class MarginalAssignmentPersistent(exists_logits, assign_logits, bp_iters=None, bp_momentum=0.5)
This computes marginal distributions of a multi-frame multi-object data association problem with an unknown number of persistent objects.

The inputs are factors in a factor graph (existence probabilities for each potential object and assignment probabilities for each object-detection pair), and the outputs are marginal distributions of posterior existence probability of each potential object and posterior assignment probabilities of each object-detection pair.

This assumes a shared (maximum) number of detections per frame; to handle variable number of detections, simply set corresponding elements of assign_logits to -float('inf').

Parameters

- **exists_logits** *(torch.Tensor)* – a tensor of shape [num_objects] representing per-object factors for existence of each potential object.
- **assign_logits** *(torch.Tensor)* – a tensor of shape [num_frames, num_detections, num_objects] representing per-edge factors of assignment probability, where each edge denotes that at a given time frame a given detection associates with a single object.
- **bp_iters** *(int)* – optional number of belief propagation iterations. If unspecified or None an expensive exact algorithm will be used.
- **bp_momentum** *(float)* – optional momentum to use for belief propagation. Should be in the interval [0,1).
Variables

- **num_frames** *(int)* – the number of time frames
- **num_detections** *(int)* – the (maximum) number of detections per frame
- **num_objects** *(int)* – the number of (potentially existing) objects
- **exists_dist** *(pyro.distributions.Bernoulli)* – a mean field posterior distribution over object existence.
- **assign_dist** *(pyro.distributions.Categorical)* – a mean field posterior distribution over the object (or None) to which each detection associates. This has event_shape == \((\text{num_objects} + 1,)\) where the final element denotes spurious detection, and .batch_shape == \((\text{num_frames}, \text{num_detections}))\.

compute_marginals *(exists_logits, assign_logits)*

This implements exact inference of pairwise marginals via enumeration. This is very expensive and is only useful for testing.

See **MarginalAssignment** for args and problem description.

compute_marginals_bp *(exists_logits, assign_logits, bp_iters)*

This implements approximate inference of pairwise marginals via loopy belief propagation, adapting the approach of [1].

See **MarginalAssignment** for args and problem description.

compute_marginals_sparse_bp *(num_objects, num_detections, edges, exists_logits, assign_logits, bp_iters)*

This implements approximate inference of pairwise marginals via loopy belief propagation, adapting the approach of [1].

See **MarginalAssignmentSparse** for args and problem description.

compute_marginals_persistent *(exists_logits, assign_logits)*

This implements exact inference of pairwise marginals via enumeration. This is very expensive and is only useful for testing.

See **MarginalAssignmentPersistent** for args and problem description.

compute_marginals_persistent_bp *(exists_logits, assign_logits, bp_iters, bp_momentum=0.5)*

This implements approximate inference of pairwise marginals via loopy belief propagation, adapting the approach of [1], [2].

See **MarginalAssignmentPersistent** for args and problem description.

19.2 Distributions

class EKFDistribution(x0, P0, dynamic_model, measurement_cov, time_steps=1, dt=1.0, validate_args=None)
Distribution over EKF states. See EKFState. Currently only supports log_prob.

Parameters
- x0 (torch.Tensor) – PV tensor (mean)
- P0 (torch.Tensor) – covariance
- dynamic_model – DynamicModel object
- measurement_cov (torch.Tensor) – measurement covariance
- time_steps (int) – number time step
- dt (torch.Tensor) – time step

filter_states(value)
Returns the ekf states given measurements

Parameters value (torch.Tensor) – measurement means of shape (time_steps, event_shape)

log_prob(value)
Returns the joint log probability of the innovations of a tensor of measurements

Parameters value (torch.Tensor) – measurement means of shape (time_steps, event_shape)

19.3 Dynamic Models

class DynamicModel(dimension, dimension_pv, num_process_noise_parameters=None)
Dynamic model interface.

Parameters
- dimension – native state dimension.
- dimension_pv – PV state dimension.
- num_process_noise_parameters – process noise parameter space dimension. This for UKF applications. Can be left as None for EKF and most other filters.

dimension
Native state dimension access.
dimension_pv
PV state dimension access.
num_process_noise_parameters
Process noise parameters space dimension access.

forward(x, dt, do_normalization=True)
Integrate native state x over time interval dt.

Parameters
- x – current native state. If the DynamicModel is non-differentiable, be sure to handle the case of x being augmented with process noise parameters.
dt – time interval to integrate over.

do_normalization – whether to perform normalization on output, e.g., mod’ing angles into an interval.

Returns Native state x integrated dt into the future.

g**eodesic_difference**(x1, x0)

Compute and return the geodesic difference between 2 native states. This is a generalization of the Euclidean operation x1 - x0.

Parameters

• x1 – native state.

• x0 – native state.

Returns Geodesic difference between native states x1 and x2.

m**ean2pv**(x)

Compute and return PV state from native state. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters x – native state estimate mean.

Returns PV state estimate mean.

c**ov2pv**(P)

Compute and return PV covariance from native covariance. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters P – native state estimate covariance.

Returns PV state estimate covariance.

p**rocess_noise_cov**(dt=0.0)

Compute and return process noise covariance (Q).

Parameters dt – time interval to integrate over.

Returns Read-only covariance (Q). For a DifferentiableDynamicModel, this is the covariance of the native state x resulting from stochastic integration (for use with EKF). Otherwise, it is the covariance directly of the process noise parameters (for use with UKF).

p**rocess_noise_dist**(dt=0.0)

Return a distribution object of state displacement from the process noise distribution over a time interval.

Parameters dt – time interval that process noise accumulates over.

Returns MultivariateNormal.

c**lass DifferentiableDynamicModel**(dimension, dimension_pv, num_process_noise_parameters=None)

DynamicModel for which state transition Jacobians can be efficiently calculated, usu. analytically or by automatic differentiation.

j**acobian**(dt)

Compute and return native state transition Jacobian (F) over time interval dt.

Parameters dt – time interval to integrate over.

Returns Read-only Jacobian (F) of integration map (f).

c**lass Ncp**(dimension, sv2)

NCP (Nearly-Constant Position) dynamic model. May be subclassed, e.g., with CWNV (Continuous White Noise Velocity) or DWNV (Discrete White Noise Velocity).
Parameters

- **dimension** – native state dimension.
- **sv2** – variance of velocity. Usually chosen so that the standard deviation is roughly half of the max velocity one would ever expect to observe.

forward \((x, dt, do_normalization=\text{True})\)
Integrate native state \(x\) over time interval \(dt\).

Parameters

- **\(x\)** – current native state. If the DynamicModel is non-differentiable, be sure to handle the case of \(x\) being augmented with process noise parameters.
- **\(dt\)** – time interval to integrate over. \(do_normalization\): whether to perform normalization on output, e.g., mod’ing angles into an interval. Has no effect for this subclass.

Returns Native state \(x\) integrated \(dt\) into the future.

mean2pv \((x)\)
Compute and return PV state from native state. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters **\(x\)** – native state estimate mean.

Returns PV state estimate mean.

cov2pv \((P)\)
Compute and return PV covariance from native covariance. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters **\(P\)** – native state estimate covariance.

Returns PV state estimate covariance.

jacobian \((dt)\)
Compute and return cached native state transition Jacobian \((F)\) over time interval \(\Delta t\).

Parameters **\(dt\)** – time interval to integrate over.

Returns Read-only Jacobian \((F)\) of integration map \((f)\).

process_noise_cov \((dt=0.0)\)
Compute and return cached process noise covariance \((Q)\).

Parameters **\(dt\)** – time interval to integrate over.

Returns Read-only covariance \((Q)\) of the native state \(x\) resulting from stochastic integration (for use with EKF).

class Ncv \((\text{dimension, sa2})\)
NCV (Nearly-Constant Velocity) dynamic model. May be subclassed, e.g., with CWNA (Continuous White Noise Acceleration) or DWNA (Discrete White Noise Acceleration).

Parameters

- **\text{dimension}** – native state dimension.
- **\text{sa2}** – variance of acceleration. Usually chosen so that the standard deviation is roughly half of the max acceleration one would ever expect to observe.

forward \((x, dt, do_normalization=\text{True})\)
Integrate native state \(x\) over time interval \(dt\).

Parameters
• x – current native state. If the DynamicModel is non-differentiable, be sure to handle the case of x being augmented with process noise parameters.

• dt – time interval to integrate over.

• $do_{\text{normalization}}$ – whether to perform normalization on output, e.g., mod’ing angles into an interval. Has no effect for this subclass.

Returns Native state x integrated dt into the future.

$\text{mean}2\text{pv}(x)$
Compute and return PV state from native state. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters x – native state estimate mean.

Returns PV state estimate mean.

$\text{cov}2\text{pv}(P)$
Compute and return PV covariance from native covariance. Useful for combining state estimates of different types in IMM (Interacting Multiple Model) filtering.

Parameters P – native state estimate covariance.

Returns PV state estimate covariance.

$\text{jacobian}(dt)$
Compute and return cached native state transition Jacobian (F) over time interval dt.

Parameters dt – time interval to integrate over.

Returns Read-only Jacobian (F) of integration map (f).

$\text{process_noise_cov}(dt=0.0)$
Compute and return cached process noise covariance (Q).

Parameters dt – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF).

class NcpContinuous($dimension$, $sv2$)
NCP (Nearly-Constant Position) dynamic model with CWNV (Continuous White Noise Velocity).

Parameters

• $dimension$ – native state dimension.

• $sv2$ – variance of velocity. Usually chosen so that the standard deviation is roughly half of the max velocity one would ever expect to observe.

$\text{process_noise_cov}(dt=0.0)$
Compute and return cached process noise covariance (Q).

Parameters dt – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF).

class NcvContinuous($dimension$, $sa2$)
NCV (Nearly-Constant Velocity) dynamic model with CWNA (Continuous White Noise Acceleration).

19.3. Dynamic Models
Parameters

- **dimension** – native state dimension.
- **sa2** – variance of acceleration. Usually chosen so that the standard deviation is roughly half of the max acceleration one would ever expect to observe.

`process_noise_cov(dt=0.0)`
Compute and return cached process noise covariance (Q).

Parameters `dt` – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF).

```python
class NcpDiscrete(dimension, sv2)
NCP (Nearly-Constant Position) dynamic model with DWNV (Discrete White Noise Velocity).

Parameters

- **dimension** – native state dimension.
- **sv2** – variance of velocity. Usually chosen so that the standard deviation is roughly half of the max velocity one would ever expect to observe.


`process_noise_cov(dt=0.0)`
Compute and return cached process noise covariance (Q).

**Parameters** `dt` – time interval to integrate over.

**Returns** Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF).

```python
class NcvDiscrete(dimension, sa2)
NCV (Nearly-Constant Velocity) dynamic model with DWNA (Discrete White Noise Acceleration).

Parameters

- **dimension** – native state dimension.
- **sa2** – variance of acceleration. Usually chosen so that the standard deviation is roughly half of the max acceleration one would ever expect to observe.

`process_noise_cov(dt=0.0)`
Compute and return cached process noise covariance (Q).

Parameters `dt` – time interval to integrate over.

Returns Read-only covariance (Q) of the native state x resulting from stochastic integration (for use with EKF). (Note that this Q, modulo numerical error, has rank dimension/2. So, it is only positive semi-definite.)

19.4 Extended Kalman Filter

class EKFState(dynamic_model, mean, cov, time=None, frame_num=None)
State-Centric EKF (Extended Kalman Filter) for use with either an NCP (Nearly-Constant Position) or NCV
(Nearly-Constant Velocity) target dynamic model. Stores a target dynamic model, state estimate, and state time. Incoming measurement provide sensor information for updates.

Warning: For efficiency, the dynamic model is only shallow-copied. Make a deep copy outside as necessary to protect against unexpected changes.

Parameters

- `dynamic_model` – target dynamic model.
- `mean` – mean of target state estimate.
- `cov` – covariance of target state estimate.
- `time` – time of state estimate.

predict `(dt=None, destination_time=None, destination_frame_num=None)`

Use dynamic model to predict (aka propagate aka integrate) state estimate in-place.

Parameters

- `dt` – time to integrate over. The state time will be automatically incremented this amount unless you provide `destination_time`. Using `destination_time` may be preferable for prevention of roundoff error accumulation.
- `destination_time` – optional value to set continuous state time to after integration. If this is not provided, then `destination_frame_num` must be.
- `destination_frame_num` – optional value to set discrete state time to after integration. If this is not provided, then `destination_frame_num` must be.

innovation `(measurement)`

Compute and return the innovation that a measurement would induce if it were used for an update, but
don’t actually perform the update. Assumes state and measurement are time-aligned. Useful for computing Chi^2 stats and likelihoods.

Parameters

- **measurement**

Returns

Innovation mean and covariance of hypothetical update.

Return type

tuple(torch.Tensor, torch.Tensor)

log_likelihood_of_update(measurement)

Compute and return the likelihood of a potential update, but don’t actually perform the update. Assumes state and measurement are time-aligned. Useful for gating and calculating costs in assignment problems for data association.

Param

- measurement

Returns

Likelihood of hypothetical update.

update(measurement)

Use measurement to update state estimate in-place and return innovation. The innovation is useful, e.g., for evaluating filter consistency or updating model likelihoods when the EKFState is part of an IMMState.

Param

- measurement

Returns

EKF State, Innovation mean and covariance.

19.5 Hashing

class LSH(radius)

Implements locality-sensitive hashing for low-dimensional euclidean space.

Allows to efficiently find neighbours of a point. Provides 2 guarantees:

- Difference between coordinates of points not returned by `nearby()` and input point is larger than radius.

- Difference between coordinates of points returned by `nearby()` and input point is smaller than 2 radius.

Example:

```
>>> radius = 1
>>> lsh = LSH(radius)
>>> a = torch.tensor([-0.51, -0.51])  # hash(a)=(-1,-1)
>>> b = torch.tensor([-0.49, -0.49])  # hash(a)=(0,0)
>>> c = torch.tensor([1.0, 1.0])      # hash(b)=(1,1)
>>> lsh.add('a', a)
>>> lsh.add('b', b)
>>> lsh.add('c', c)
>>> # even though c is within 2radius of a
>>> lsh.nearby('a')                   # doctest: +SKIP
{'b'}
>>> lsh.nearby('b')                   # doctest: +SKIP
{'a', 'c'}
>>> lsh.remove('b')
>>> lsh.nearby('a')                   # doctest: +SKIP
set()
```
Parameters

radius (*float*) – Scaling parameter used in hash function. Determines the size of the neighbourhood.

add (*key*, *point*)

Adds (*key*, *point*) pair to the hash.

Parameters

- **key** – Key used to identify point.
- **point** (*torch.Tensor*) – Data, should be detached and on cpu.

remove (*key*)

Removes *key* and corresponding point from the hash.

Raises **KeyError** if *key* is not in hash.

Parameters

- **key** – Key used to identify point.

nearby (*key*)

Returns a set of keys which are neighbours of the point identified by *key*.

Two points are nearby if the difference of each element of their hashes is smaller than 2. In euclidean space, this corresponds to all points *p* where \(|p_k - (p_{key})_k| < r\), and some points (all points not guaranteed) where \(|p_k - (p_{key})_k| < 2r\).

Parameters

- **key** – Key used to identify input point.

Returns a set of keys identifying neighbours of the input point.

Return type set

class ApproxSet (*radius*)

Queries low-dimensional euclidean space for approximate occupancy.

Parameters

- **radius** (*float*) – Scaling parameter used in hash function. Determines the size of the bin. See **LSH** for details.

try_add (*point*)

Attempts to add *point* to set. Only adds if there are no points in the *point*'s bin.

Parameters

- **point** (*torch.Tensor*) – Point to be queried, should be detached and on cpu.

Returns *True* if point is successfully added, *False* if there is already a point in *point*'s bin.

Return type bool

merge_points (*points*, *radius*)

Greedyly merge points that are closer than given radius.

This uses **LSH** to achieve complexity that is linear in the number of merged clusters and quadratic in the size of the largest merged cluster.

Parameters

- **points** (*torch.Tensor*) – A tensor of shape (K, D) where K is the number of points and D is the number of dimensions.
- **radius** (*float*) – The minimum distance nearer than which points will be merged.

Returns A tuple (**merged_points**, **groups**) where **merged_points** is a tensor of shape (J, D) where J <= K, and **groups** is a list of tuples of indices mapping merged points to original points. Note that len(**groups**) == J and sum(len(group) for group in **groups**) == K.

Return type tuple

19.5. Hashing
19.6 Measurements

class Measurement (mean, cov, time=None, frame_num=None)
Gaussian measurement interface.

Parameters
- **mean** – mean of measurement distribution.
- **cov** – covariance of measurement distribution.
- **time** – continuous time of measurement. If this is not provided, frame_num must be.
- **frame_num** – discrete time of measurement. If this is not provided, time must be.

dimension
Measurement space dimension access.

mean
Measurement mean (z in most Kalman Filtering literature).

cov
Noise covariance (R in most Kalman Filtering literature).

time
Continuous time of measurement.

frame_num
Discrete time of measurement.

geodesic_difference (z1, z0)
Compute and return the geodesic difference between 2 measurements. This is a generalization of the Euclidean operation \(z_1 - z_0 \).

Parameters
- **z1** – measurement.
- **z0** – measurement.

Returns
Geodesic difference between \(z_1 \) and \(z_2 \).

class DifferentiableMeasurement (mean, cov, time=None, frame_num=None)
Interface for Gaussian measurement for which Jacobians can be efficiently calculated, usu. analytically or by automatic differentiation.

jacobian (x=None)
Compute and return Jacobian (H) of measurement map (h) at target PV state \(x \).

Parameters
- **x** – PV state. Use default argument None when the Jacobian is not state-dependent.

Returns
Read-only Jacobian (H) of measurement map (h).

class PositionMeasurement (mean, cov, time=None, frame_num=None)
Full-rank Gaussian position measurement in Euclidean space.

Parameters
- **mean** – mean of measurement distribution.
- **cov** – covariance of measurement distribution.
- **time** – time of measurement.

jacobian (x=None)
Compute and return Jacobian (H) of measurement map (h) at target PV state \(x \).
Parameters x – PV state. The default argument `None` may be used in this subclass since the Jacobian is not state-dependent.

Returns Read-only Jacobian H of measurement map h.

CHAPTER 20

Indices and tables

- genindex
- search
Python Module Index

p
pyro.contrib.autoname, 125
pyro.contrib.autoname.named, 127
pyro.contrib.bnn, 133
pyro.contrib.bnn.hidden_layer, 133
pyro.contrib.easyguide, 135
pyro.contrib.glm, 139
pyro.contrib.gp, 141
pyro.contrib.gp.kernels, 151
pyro.contrib.gp.likelihoods, 158
pyro.contrib.gp.models.gplvm, 151
pyro.contrib.gp.models.gpr, 144
pyro.contrib.gp.models.model, 141
pyro.contrib.gp.models.sgpr, 146
pyro.contrib.gp.models.vgp, 148
pyro.contrib.gp.models.vsgp, 149
pyro.contrib.gp.parameterized, 161
pyro.contrib.gp.util, 162
pyro.contrib.minipyro, 163
pyro.contrib.oed, 167
pyro.contrib.oed.eig, 167
pyro.contrib.tracking, 175
pyro.contrib.tracking.assignment, 175
pyro.contrib.tracking.distributions, 178
pyro.contrib.tracking.dynamic_models, 178
pyro.contrib.tracking.extended_kalman_filter, 182
pyro.contrib.tracking.hashing, 184
pyro.contrib.tracking.measurements, 186
pyro.distributions.torch, 39
pyro.generic, 123
pyro.infer.abstract_infer, 23
pyro.infer.auto_guide, 31
pyro.infer.auto_guide.initialization, 37
pyro.infer.discrete, 22
pyro.infer.elbo, 12
pyro.infer.importance, 18
pyro.infer.renyi_elbo, 17
pyro.infer.smcfilter, 19
pyro.infer.svrg, 20
pyro.infer.svi, 11
pyro.infer.trace_elbo, 12
pyro.infer.trace_mean_field_elbo, 16
pyro.infer.trace_tail_adaptive_elbo, 17
pyro.infer.traceenum_elbo, 14
pyro.infer.tracegraph_elbo, 13
pyro.nn.auto_reg_nn, 83
pyro.ops.dual_averaging, 109
pyro.ops.einsum, 114
pyro.ops.gaussian, 116
pyro.ops.indexing, 113
pyro.ops.integrator, 110
pyro.ops.newton, 111
pyro.ops.stats, 118
pyro.ops.welford, 110
pyro.optim.adagrad_rmsprop, 88
pyro.optim.clipped_adam, 89
pyro.optim.lr_scheduler, 88
pyro.optim.multi, 90
pyro.optim.optim, 87
pyro.ops.pytorch_optimizers, 89
pyro.params.param_store, 79
pyro.poutine.block_messenger, 103
pyro.poutine.broadcast_messenger, 104
pyro.poutine.condition_messenger, 104
pyro.poutine.escape_messenger, 104
pyro.poutine.handlers, 93
pyro.poutine.indep_messenger, 104
pyro.poutine.lift_messenger, 105
pyro.poutine.lift_messenger, 105
pyro.poutine.replay_messenger, 105
pyro.poutine.runtime, 106
pyro.poutine.scale_messenger, 105
pyro.poutine.trace_messenger, 106
pyro.poutine.util, 107
Symbols

__add__() (Gaussian method), 116
__call__() (Adam method), 165
__call__() (AutoCallable method), 33
__call__() (AutoContinuous method), 34
__call__() (AutoDelta method), 33
__call__() (AutoDiscreteParallel method), 37
__call__() (AutoGuide method), 31
__call__() (AutoGuideList method), 32
__call__() (Distribution method), 43
__call__() (EasyGuide method), 135
__call__() (JitTrace_ELBO method), 165
__call__() (Messenger method), 165
__call__() (PyroLRScheduler method), 88
__call__() (PyroOptim method), 87
__call__() (TorchDistributionMixin method), 44
__getitem__() (Gaussian method), 116

A

Adadelta() (in module pyro.optim.pytorch_optimizers), 89
Adagrad() (in module pyro.optim.pytorch_optimizers), 89
AdagradRMSProp (class in pyro.optim.adagrad_rmsprop), 88
AdagradRMSProp() (in module pyro.optim.pytorch_optimizers), 89
Adam (class in pyro.contrib.minipyro), 165
Adam (class in module pyro.optim.pytorch_optimizers), 89
Adamax() (in module pyro.optim.pytorch_optimizers), 89
AdamW() (in module pyro.optim.pytorch_optimizers), 89
add() (AutoGuideList method), 32
add() (List method), 129
add() (LSH method), 185
add_edge() (Trace method), 101
add_node() (Trace method), 101
AffineCoupling (class in pyro.distributions.transforms), 65
AffineNormal (class in pyro.ops.gaussian), 117

all_escape() (in module pyro.poutine.util), 107
am_i_wrapped() (in module pyro.poutine.runtime), 106
apply_stack() (in module pyro.contrib.minipyro), 165
apply_stack() (in module pyro.poutine.runtime), 106
ApproxSet (class in pyro.contrib.tracking.hashing), 185
arg_constraints (AVFMultivariateNormal attribute), 47
arg_constraints (BetaBinomial attribute), 48
arg_constraints (Delta attribute), 49
arg_constraints (DirichletMultinomial attribute), 49
arg_constraints (DiscreteHMM attribute), 50
arg_constraints (Empirical attribute), 51
arg_constraints (GammaPoisson attribute), 52
arg_constraints (GaussianHMM attribute), 53
arg_constraints (GaussianMRF attribute), 54
arg_constraints (GaussianScaleMixture attribute), 55
arg_constraints (InverseGamma attribute), 55
arg_constraints (LKJCorrCholesky attribute), 56
arg_constraints (MaskedMixture attribute), 57
arg_constraints (MixtureOfDiagNormals attribute), 57
arg_constraints (MixtureOfDiagNormalsSharedCovariance attribute), 58
arg_constraints (OMTMultivariateNormal attribute), 58
arg_constraints (SpanningTree attribute), 61
arg_constraints (Unit attribute), 61
arg_constraints (VonMises attribute), 62
arg_constraints (VonMises3D attribute), 62
arg_constraints (ZeroInflatedPoisson attribute), 63
ASGD() (in module pyro.optim.pytorch_optimizers), 89
atanh() (TanhTransform static method), 65
AutoCallable (class in pyro.infer.autoguide), 32
AutoContinuous (class in pyro.infer.autoguide), 34
compute_marginals_sparse_bp() (in module pyro.contrib.tracking.assignment), 177
compute_score_parts() (Trace method), 101
concentration (DirichletMultinomial attribute), 49
concentration (GammaPoisson attribute), 52
concentration (InverseGamma attribute), 55
concentration0 (BetaBinomial attribute), 48
concentration1 (BetaBinomial attribute), 48
CondIndepStackFrame (class in pyro.poutine.indep_messenger), 104
cov2pv() (in module pyro.poutine.runtime), 107
cov2pv() (in module pyro.ops.stats), 120
cov2pv() (in module pyro.ops.einsum), 66
cov2pv() (in module pyro.optim.pyrotorch.optimizers), 90
cov (EKFState attribute), 183
cov (Measurement attribute), 186
cov2pv() (DynamicModel method), 179
cov2pv() (Ncp method), 180
cov2pv() (Ncv method), 181
cov2pv() (EKFState attribute), 183
create_mask() (in module pyro.nn.auto_reg.nn), 85
crsps_empirical() (in module pyro.ops.stats), 120
current_backend (GenericModule attribute), 123
CyclicLR() (in module pyro.optim.pyrotorch.optimizers), 90

cpacrv1 (ConditionalDistribution method), 48
conditional (AffineNormal attribute), 117
conditional (in module pyro.poutine), 95
conditional (in module pyro.poutine.gp.util), 162
ConditionalAutoRegressiveNN (class in pyro.nn.auto_reg.nn), 84
ConditionalDistribution (class in pyro.distributions), 48
ConditionalPlanarFlow (class in pyro.distributions.transforms), 68
ConditionalTransform (class in pyro.distributions), 63
ConditionalTransformedDistribution (class in pyro.distributions), 48
ConditionalTransformModule (class in pyro.distributions), 49
ConditionMessenger (class in pyro.poutine.condition_messenger), 104
cfg2enumerate() (in module pyro.infer.enumerate), 99
Constant (in module pyro.contrib.gp.kernels), 153
constrained_gamma (BatchNormTransform attribute), 67
contract() (in module pyro.ops.einsum), 114
contract_expression() (in module pyro.ops.einsum), 114
copy() (Tracer method), 101
Coregionalize (in module pyro.contrib.gp.kernels), 153
Cosine (in module pyro.contrib.gp.kernels), 153
CosineAnnealingLR (in module pyro.optim.pyrotorch.optimizers), 90
CosineAnnealingWarmRestarts() (in module pyro.optim.pyrotorch.optimizers), 90
cov (EKFState attribute), 183
cov (Measurement attribute), 186
cov2pv() (DynamicModel method), 179
cov2pv() (Ncp method), 180
cov2pv() (Ncv method), 181
cov (EKFState attribute), 183
cov (Measurement attribute), 186
cov2pv() (DynamicModel method), 179
cov2pv() (Ncp method), 180
cov2pv() (Ncv method), 181
cov_pv (EKFState attribute), 183
create_mask() (in module pyro.nn.auto_reg.nn), 85
crsps_empirical() (in module pyro.ops.stats), 120
current_backend (GenericModule attribute), 123
CyclicLR() (in module pyro.optim.pyrotorch.optimizers), 90

ddefault_process_message() (in module pyro.poutine.runtime), 107
Delta (class in pyro.distributions), 48
diagnostics() (HMC method), 28
diagnostics() (in module pyro.infer.mcmc.util), 30
diagnostics() (MCMC method), 26
Dict (class in pyro.contrib.autoname.named), 129
differentiable_loss() (JitTrace_ELBO method), 13
differentiable_loss() (JitTraceEnum_ELBO method), 16
differentiable_loss() (JitTraceMeanField_ELBO method), 16
differentiable_loss() (Trace_ELBO method), 13
differentiable_loss() (TraceEnum_ELBO method), 15
DifferentiableDynamicModel (class in pyro.contrib.tracking.dynamic_models), 179
DifferentiableMeasurement (class in pyro.contrib.tracking.measurements), 186
dim() (Gaussian method), 116
dimension (DynamicModel attribute), 178
dimension (EKFState attribute), 183
dimension (Measurement attribute), 186
dimension_pv (DynamicModel attribute), 178
dimension_pv (EKFState attribute), 183
Dirichlet (class in pyro.distributions), 40
DirichletMultinomial (class in pyro.distributions), 49
discrete_escape() (in module pyro.poutine.util), 107
DiscreteHMM (class in pyro.distributions), 49
Distribution (class in pyro.distributions), 43
do() (in module pyro.poutine), 96
domain (AffineCoupling attribute), 66
domain (BatchNormTransform attribute), 67
domain (BlockAutoregressive attribute), 68
domain (ConditionalPlanarFlow attribute), 69
domain (ELUTransform attribute), 63
domain (HouseholderFlow attribute), 70
domain (InverseAutoregressiveFlow attribute), 71
domain (InverseAutoregressiveFlowStable attribute), 72
domain (LeakyReLUTransform attribute), 64
domain (NeuralAutoregressive attribute), 73
domain (PlanarFlow attribute), 74
forward() (Coregionalize method), 153
forward() (Cosine method), 154
forward() (DynamicModel method), 178
forward() (Exponent method), 154
forward() (Exponential method), 154
forward() (Gaussian method), 159
forward() (GPLVM method), 151
forward() (GPModel method), 143
forward() (GPRegression method), 145
forward() (Kernel method), 152
forward() (Likelihood method), 158
forward() (Linear method), 155
forward() (MaskedLinear method), 85
forward() (Matern52 method), 155
forward() (MultiClass method), 160
forward() (Ncp method), 180
forward() (Ncv method), 180
forward() (Periodic method), 155
forward() (Poisson method), 160
forward() (Polynomial method), 156
forward() (Product method), 156
forward() (RationalQuadratic method), 156
forward() (RBF method), 156
forward() (SparseGPRegression method), 147
forward() (Sum method), 157
forward() (VariationalGP method), 149
forward() (VariationalSparseGP method), 150
forward() (VerticalScaling method), 157
forward() (Warping method), 158
forward() (WhiteNoise method), 158
frame_num (EKFState attribute), 183
frame_num (Measurement attribute), 186
get_covariance() (WelfordCovariance method), 111
get_empirical() (SMCFilter method), 20
get_ESS() (Importance method), 18
get_log_normalizer() (Importance method), 18
get_named_particles() (SVGD method), 21
generalized_weights() (Importance method), 18
get_param() (ParamStoreDict method), 80
get_param_store() (in module pyro), 8
generate() (in module pyro.contrib.minipyro), 166
get_permutation() (ConditionalAutoRegressiveNN method), 85
get_posterior() (AutoContinuous method), 34
get_posterior() (AutoDiagonalNormal method), 35
get_posterior() (AutoLAPNormal method), 37
get_posterior() (AutoLaplaceApproximation method), 37
get_posterior() (AutoLowRankMultivariateNormal method), 36
get_posterior() (AutoMultivariateNormal method), 35
get_samples() (MCMC method), 26
get_state() (DualAveraging method), 110
get_state() (ParamStoreDict method), 81
get_state() (PyroOptim method), 87
get_step() (MixedMultiOptimizer method), 91
get_step() (MultiOptimizer method), 91
get_step() (Newton method), 92
get_trace() (trace method), 166
get_trace() (TraceHandler method), 106
get_trace() (Tracer method), 166
get_values_and_log_weights() (SMCFilter method), 20
GPLVM (class in pyro.contrib.gp.models.gplvm), 151
GPModel (class in pyro.contrib.gp.models.model), 141
GPRegression (class in pyro.contrib.gp.models.gpr), 144
Group (class in pyro.contrib.easyguide.easyguide), 136
group() (EasyGuide method), 136
guide (Group attribute), 137
guide() (EasyGuide method), 135
guide() (GPMixin method), 142
guide() (GPModel method), 141
guide() (GPRelation method), 145
guide() (SparseGPRegression method), 147
guide() (VariationalGP method), 149
guide() (VariationalSparseGP method), 150
Gumbel (class in pyro.distributions), 40
G
Gamma (class in pyro.distributions), 40
GammaPoisson (class in pyro.distributions), 52
Gaussian (class in pyro.contrib.gp.likelihoods), 159
Gaussian (class in pyro.ops.gaussian), 116
gaussian_tensordot() (in module pyro.ops.gaussian), 118
GaussianHMM (class in pyro.distributions), 52
GaussianMRF (class in pyro.distributions), 54
GaussianScaleMixture (class in pyro.distributions), 54
gelman_rubin() (in module pyro.operators.stats), 118
Geometric (class in pyro.distributions), 123
generalize_difference() (DynamicModel method), 179
generalize_difference() (Measurement method), 186
get_all_param_names() (ParamStoreDict method), 80
H
HalfCauchy (class in pyro.distributions), 41
HalfNormal (class in pyro.distributions), 41
has_enumerate_support (BetaBinomial attribute), 48
has_enumerate_support (Distribution attribute), 44
has_enumerate_support (Empirical attribute), 51
has_enumerate_support (SpanningTree attribute), 61
has_rsample (Delta attribute), 49
has_rsample (Distribution attribute), 44
has_rsample (GaussianScaleMixture attribute), 55
has_rsample (InverseGamma attribute), 55
has_rsample (LKJCorrCholesky attribute), 56
has_rsample (MaskedMixture attribute), 57
has_rsample (MixtureOfDiagNormals attribute), 57
has_rsample (MixtureOfDiagNormalsSharedCovariance attribute), 58
has_rsample (Rejector attribute), 60
has_rsample (VonMises attribute), 62
HiddenLayer (class in pyro.contrib.bnn.hidden_layer), 133
HMC (class in pyro.infer.mcmc), 26
HouseholderFlow (class in pyro.distributions.transforms), 69
hpdi() (in module pyro.ops.stats), 120

information_criterion() (in module pyro.poutine.trace_messenger), 106
importance (class in pyro.infer.importance), 18
IMQSteinKernel (class in pyro.infer.svgd), 20
Independent (class in pyro.distributions), 41
independent() (TorchDistributionMixin method), 46
IndepMessenger (class in pyro.poutine.indep_messenger), 105
indices (IndepMessenger attribute), 105
infer_config() (in module pyro.poutine), 96
infer_discrete() (in module pyro.poutine), 22
 initiated_model() (in module pyro.infer.mcmc.util), 29
InitMessenger (class in pyro.infer.autoguide.initialization), 38
innovation() (EKFState method), 183
inv_permutation (PermuteTransform attribute), 64
inverse_mass_matrix (HMC attribute), 28
InverseAutoregressiveFlow (class in pyro.distributions.transforms), 70
InverseAutoregressiveFlowStable (class in pyro.distributions.transforms), 71
InverseGamma (class in pyro.distributions), 55
is_validation_enabled() (in module pyro.poutine.util), 108
Isotropy (class in pyro.contrib.gp.kernels), 154
items() (ParamStoreDict method), 79
iter_sample() (GPRegression method), 145
iter_stochastic_nodes() (Trace method), 101

jacobian() (DifferentiableDynamicModel method), 179
jacobian() (DifferentiableMeasurementModel method), 186
jacobian() (Ncp method), 180
jacobian() (Ncv method), 181
jacobian() (PositionMeasurementModel method), 186
JitTrace_ELBO (class in pyro.contrib.minipyro), 165
JitTrace_ELBO (class in pyro.infer.trace_elbo), 13
JitTraceEnum_ELBO (class in pyro.infer.traceenum_elbo), 15
JitTraceGraph_ELBO (class in pyro.infer.tracegraph_elbo), 14
JitTraceMeanField_ELBO (class in pyro.infer.trace_mean_field_elbo), 16

Kernel (class in pyro.contrib.gp.kernels), 151
keys() (ParamStoreDict method), 80

LambdaLR() (in module pyro.optim.pytorch_optimizers), 90
Laplace (class in pyro.distributions), 41
laplace_approximation() (AutoLaplaceApproximation method), 37
laplace_eig() (in module pyro.contrib.ode._eig), 167
LeakyReLU勝缩 (class in pyro.distributions.transforms), 64
lfire_eig() (in module pyro.contrib.ode._eig), 172
lift() (in module pyro.poutine), 96
LiftMessenger (class in pyro.poutine.lift_messenger), 105
Likelihood (class in pyro.contrib.gp.likelihoods), 158
Linear (class in pyro.contrib.gp.kernels), 154
List (class in pyro.contrib.autoname.named), 128
lkj_constant() (LKJCorrCholesky method), 56
log_prob() (MixtureOfDiagNormals method), 57
log_prob() (MixtureOfDiagNormalsSharedCovariance method), 58
log_prob() (Rejection method), 60
log_prob() (RelaxedBernoulliStraightThrough method), 59
log_prob() (RelaxedOneHotCategoricalStraightThrough method), 59
log_prob() (SpanningTree method), 61
log_prob() (Unit method), 62
log_prob() (VonMises method), 62
log_prob() (VonMises3D method), 63
log_prob() (ZeroInflatedPoisson method), 63
log_prob_sum() (Trace method), 101
log_weights (Empirical attribute), 51
logging() (HMC method), 28
LogisticNormal (class in pyro.distributions), 41
LogNormal (class in pyro.distributions), 41
loss() (RenyiELBO method), 18
loss() (Trace_ELBO method), 13
loss() (TraceEnum_ELBO method), 15
loss() (TraceGraph_ELBO method), 14
loss() (TraceMeanField_ELBO method), 16
loss() (TraceTailAdaptive_ELBO method), 17
loss_and_grads() (JitTrace_ELBO method), 13
loss_and_grads() (JitTraceEnum_ELBO method), 16
loss_and_grads() (JitTraceGraph_ELBO method), 14
loss_and_grads() (JitTraceMeanField_ELBO method), 17
loss_and_grads() (RenyiELBO method), 18
loss_and_grads() (Trace_ELBO method), 13
loss_and_grads() (TraceEnum_ELBO method), 15
loss_and_grads() (TraceGraph_ELBO method), 14
loss_and_surrogate_loss() (JitTrace_ELBO method), 13
LowRankMultivariateNormal (class in pyro.distributions), 41
LSH (class in pyro.contrib.tracking.hashing), 184

M
map_estimate() (EasyGuide method), 136
map_estimate() (Group method), 137
marginal() (TracePosterior method), 24
marginal() (TracePredictive method), 25
marginal_eig() (in module pyro.contrib.oed.eig), 171
MarginalAssignment (class in pyro.contrib.tracking.assignment), 175
MarginalAssignmentPersistent (class in pyro.contrib.tracking.assignment), 176
MarginalAssignmentSparse (class in pyro.contrib.tracking.assignment), 175
Object (class in pyro.contrib.autoname.named), 127
observation_nodes (Trace attribute), 101
OIntMultivariateNormal (class in pyro.distributions), 58
OneHotCategorical (class in pyro.distributions), 42

P
pack_tensors () (Trace method), 101
param() (in module pyro), 5
param() (in module pyro.contrib.minipyro), 166
param() (Object method), 128
param_name() (ParamStoreDict method), 81
param_nodes (Trace attribute), 101
param_with_module_name() (in module pyro.params.param_store), 81
Parameterized (class in pyro.contrib.gp.parameterized), 161
ParamStoreDict (class in pyro.params.param_store), 79
Pareto (class in pyro.distributions), 42
Periodic (class in pyro.contrib.gp.kernels), 155
PermuteTransform (class in pyro.distributions.transforms), 64
pi() (in module pyro.ops.stats), 119
PlanarFlow (class in pyro.distributions.transforms), 73
plate (class in pyro), 6
plate() (EasyGuide method), 135
plate() (in module pyro.contrib.minipyro), 166
PlateMessenger (class in pyro.contrib.minipyro), 165
Poisson (class in pyro.contrib.gplikelihoods), 160
Poisson (class in pyro.distributions), 42
Polynomial (class in pyro.contrib.gp.kernels), 156
PolynomialFlow (class in pyro.distributions.transforms), 74
PositionMeasurement (class in pyro.contrib.tracking.measurements), 186
posterior_eig() (in module pyro.contrib.oed.eig), 170
postprocess_message() (Messenger method), 165
postprocess_message() (trace method), 166
potential_grad() (in module pyro.ops.integrator), 110
predecessors() (Trace method), 102
predict() (EKFState method), 183
predictive() (in module pyro.infer.mcmc.util), 30
process_message() (block method), 166
process_message() (Messenger method), 165
process_message() (PlateMessenger method), 165
process_message() (replay method), 166
process_noise_cov() (Ncp method), 180
process_noise_cov() (NcpContinuous method), 181
process_noise_cov() (NcpDiscrete method), 182
process_noise_cov() (Ncv method), 181
process_noise_cov() (NcvContinuous method), 182
process_noise_cov() (NcvDiscrete method), 182
process_noise_dist() (DynamicModel method), 179
Product (class in pyro.contrib.gp.kernels), 156
prune_subsample_sites() (in module pyro.poutine.util), 108
psis_diagnostic() (in module pyro.infer.importance), 18
pyro.contrib.autoname (module), 125
pyro.contrib.autoname.named (module), 127
pyro.contrib.autoname.scoping (module), 129
pyro.contrib.bnn (module), 133
pyro.contrib.bnn.hidden_layer (module), 133
pyro.contrib.easyguide (module), 135
pyro.contrib.glmm (module), 139
pyro.contrib.gp (module), 141
pyro.contrib.gp.kernels (module), 151
pyro.contrib.gp.likelihoods (module), 158
pyro.contrib.gp.models.gpvlm (module), 151
pyro.contrib.gp.models.gpr (module), 144
pyro.contrib.gp.models.gpm (module), 141
pyro.contrib.gp.models.sgpr (module), 146
pyro.contrib.gp.models.vgp (module), 148
pyro.contrib.gp.models.vsgp (module), 149
pyro.contrib.gp.parameterized (module), 161
pyro.contrib.gp.util (module), 162
pyro.contrib.minipyro (module), 163
pyro.contrib.oed (module), 167
pyro.contrib.oed.eig (module), 167
pyro.contrib.tracking (module), 175
pyro.contrib.tracking.assignment (module), 175
pyro.contrib.tracking.distributions (module), 178
pyro.contrib.tracking.dynamic_models (module), 178
pyro.contrib.tracking.extended_kalman_filter (module), 182
pyro.contrib.tracking.hashing (module), 184
pyro.contrib.tracking.measurements (module), 186
pyro.distributions.torch (module), 39
pyro.generic (module), 123
RMSprop() (in module pyro.optim.pytorch_optimizers), 90
Rprop() (in module pyro.optim.pytorch_optimizers), 90
rsample() (AVFMMultivariateNormal method), 47
rsample() (Delta method), 49
rsample() (GaussianScaleMixture method), 55
rsample() (MaskedMixture method), 57
rsample() (MixtureOfDiagNormals method), 57
rsample() (MixtureOfDiagNormalsSharedCovariance method), 58
rsample() (OMT MultivariateNormal method), 58
rsample() (Rejector method), 60
rsample() (RelaxedBernoulliStraightThrough method), 59
rsample() (RelaxedOneHotCategoricalStraightThrough method), 59
run() (MCMC method), 26
run() (SVI method), 12
run() (TracePosterior method), 24

S
S() (SylvesterFlow method), 76
sample() (BetaBinomial method), 48
sample() (DirichletMultinomial method), 49
sample() (Distribution method), 44
sample() (Empirical method), 51
sample() (GammaPoisson method), 52
sample() (Group method), 137
sample() (HMC method), 28
sample() (in module pyro), 5
sample() (in module pyro.contrib.minipyro), 166
sample() (LKJCorrCholesky method), 56
sample() (MaskedMixture method), 57
sample() (NUTS method), 29
sample() (SpanningTree method), 61
sample() (Unit method), 62
sample() (VonMises method), 62
sample() (ZeroInflatedPoisson method), 63
sample() (Object method), 128
sample_latent() (AutoContinuous method), 34
sample_latent() (AutoGuide method), 31
sample_mask_indices() (in module pyro.nn.auto_reg_nn), 85
sample_posterior() (TraceEnum_ELBO method), 15
sample_saved() (TraceEnumSample_ELBO method), 23
sample_size (Empirical attribute), 51
save() (ParamStoreDict method), 81
save() (PyroOptim method), 87
scale() (in module pyro.poutine), 98
ScaleMessenger (class in module pyro.poutine.scale_messenger), 105
scope() (in module pyro.contrib.autoname), 125
ScopeMessenger (class in module pyro.contrib.autoname.scoping), 129
score_parts() (Distribution method), 129
score_parts() (Rejector method), 60
set_constraint() (Parameterized method), 161
set_data() (GPMultivariate method), 143
set_mode() (Parameterized method), 162
set_prior() (Parameterized method), 162
set_state() (ParamStoreDict method), 81
set_state() (PyroOptim method), 87
setdefault() (ParamStoreDict method), 80
setup() (HMC method), 28
SGD() (in module pyro.optim.pytorch_optimizers), 90
shape() (TorchDistributionMixin method), 45
share_memory() (AdagradRMSProp method), 89
sign (LeakyReLUTransform attribute), 63
sign (LeakyReLUTransform attribute), 64
sign (TanhTransform attribute), 65
site_is_subsample() (in module pyro.poutine.util), 108
SMCFilter (class in pyro.infer.smcfilter), 19
SpanningTree (class in pyro.distributions), 60
SparseAdam() (in module pyro.optim.pytorch_optimizers), 89
SparseGPRegression (class in module pyro.contrib.gp.models.sgpr), 146
split_gelman_rubin() (in module pyro.ops.stats), 118
SteinKernel (class in pyro.infer.svdd), 22
step() (AdagradRMSProp method), 89
step() (ClippedAdam method), 89
step() (DualAveraging method), 110
step() (MixedMultiOptimizer method), 91
step() (MultiOptimizer method), 90
step() (PyroLRScheduler method), 88
step() (PyroMultiOptimizer method), 91
step() (SMCFilter method), 20
step() (SVGD method), 21
step() (SVI method), 12, 165
step_size (HMC attribute), 28
StepLR() (in module pyro.optim.pytorch_optimizers), 90
stochastic_nodes (Trace attribute), 102
StudentT (class in pyro.distributions), 42
successors() (Trace method), 102
Sum (class in pyro.contrib.gp.kernels), 157
summary() (MCMC method), 26
support (BetaBinomial attribute), 48
support (Delta attribute), 49
support (DirichletMultinomial attribute), 49
support (Empirical attribute), 51
support (GammaPoisson attribute), 52

Index
support (InverseGamma attribute), 55
support (LKJCorrCholesky attribute), 56
support (MaskedMixture attribute), 57
support (SpanningTree attribute), 61
support (Unit attribute), 62
support (VonMises attribute), 62
support (VonMises3D attribute), 63
support (ZeroInflatedPoisson attribute), 63
support() (Marginals method), 24
SVGD (class in pyro.infer.svgd), 21
SVI (class in pyro.infer.minipyro), 165
SVI (class in pyro.infer.minipyro.svi), 11
SylvesterFlow (class in pyro.distributions.transforms), 76
symbolize_dims() (Trace method), 102

T
TanhTransform (class in pyro.distributions.transforms), 65
time (EKFState attribute), 183
time (Measurement attribute), 186
to_event() (TorchDistributionMixin method), 45
topological_sort() (Trace method), 102
TorchDistribution (class in pyro.distributions), 46
TorchDistributionMixin (class in pyro.distributions.torch_distribution), 44
TorchMultiOptimizer (class in pyro.optim.multi), 91
trace (class in pyro.contrib.minipyro), 166
Trace (class in pyro.poutine), 100
trace (TraceHandler attribute), 106
trace() (in module pyro.ops.jit), 8
trace() (in module pyro.poutine), 99
Trace_ELBO (class in pyro.infer.trace_elbo), 12
Trace_ELBO() (in module pyro.contrib.minipyro), 165
TraceEnum_ELBO (class in pyro.infer.traceenum_elbo), 14
TraceEnumSample_ELBO (class in pyro.infer.discrete), 22
TraceGraph_ELBO (class in pyro.infer.tracegraph_elbo), 13
TraceHandler (class in pyro.poutine.trace_messenger), 106
TraceMeanField_ELBO (class in pyro.infer.trace_mean_field_elbo), 16
TraceMessenger (class in pyro.poutine.trace_messenger), 106
TracePosterior (class in pyro.infer.abstract_infer), 24
TracePredictive (class in pyro.infer.abstract_infer), 24
TraceTailAdaptive_ELBO (class in pyro.infer.trace_tail_adaptive_elbo), 17
train() (in module pyro.contrib.minipyro.util), 163

TransformedDistribution (class in pyro.distributions), 43
Transforming (class in pyro.contrib.gp.kernels), 157
TransformModule (class in pyro.distributions), 77
try_add() (ApproxSet method), 185

U
u() (HouseholderFlow method), 70
ubersum() (in module pyro.ops.contract), 116
Uniform (class in pyro.distributions), 43
Unit (class in pyro.distributions), 61
unregister() (pyro.poutine.messenger.Messenger class method), 103
update() (EKFState method), 184
update() (WelfordCovariance method), 111
user_param_name() (in module pyro.params.Covariance, 81

V
validate_edges() (SpanningTree method), 61
validation_enabled() (in module pyro), 8
values() (ParamStoreDict method), 80
variance (BetaBinomial attribute), 48
variance (Delta attribute), 49
variance (DirichletMultinomial attribute), 49
variance (Empirical attribute), 51
variance (GammaPoisson attribute), 52
variance (MaskedMixture attribute), 57
variance (VonMises attribute), 62
variance (ZeroInflatedPoisson attribute), 63
VariationalGP (class in pyro.contrib.gp.models.vgp), 148
VariationalSparseGP (class in pyro.contrib.gp.models.vsgp), 149
vectorize() (in module pyro.infer.svgd), 22
vectorized (CondIndepStackFrame attribute), 104
vectorized_importance_weights() (in module pyro.infer.importance), 19
velocity_verlet() (in module pyro.ops.integrator), 110
VerticalScaling (class in pyro.contrib.gp.kernels), 157
vi_eig() (in module pyro.contrib.oed.eig), 168
Vindex (class in pyro.ops.indexing), 114
vindex() (in module pyro.ops.indexing), 113
vnmc_eig() (in module pyro.contrib.oed.eig), 172
volume_preserving (HouseholderFlow attribute), 65
volume_preserving (PermuteTransform attribute), 70
VonMises (class in pyro.distributions), 62
VonMises3D (class in pyro.distributions), 62
W
waic() (in module pyro.ops.stats), 120
Warping (class in pyro.contrib.gp.kernels), 157
Weibull (class in pyro.distributions), 43
WelfordCovariance (class in pyro.ops.welford), 110
WhiteNoise (class in pyro.contrib.gp.kernels), 158

Z
ZeroInflatedPoisson (class in pyro.distributions), 63