11 Automatic Guide Generation

11.1 AutoGuide ... 57
11.2 AutoGuideList 58
11.3 AutoDelta ... 58
11.4 AutoContinuous 59
11.5 AutoMultivariateNormal 60
11.6 AutoDiagonalNormal 60
11.7 AutoLowRankMultivariateNormal 60
11.8 AutoDiscreteParallel 61

12 Gaussian Processes

12.1 Models .. 63
12.2 Kernels .. 74
12.3 Likelihoods ... 81
12.4 Util .. 84

13 Named Data Structures

14 Indices and tables

Python Module Index
1.1 Install from Source

Pyro supports Python 2.7.* and Python 3. To setup, install PyTorch then run:

```
pip install pyro-ppl
```

or install from source:

```
git clone https://github.com/uber/pyro.git
cd pyro
python setup.py install
```
CHAPTER 2

Getting Started

- Install Pyro.
- Learn the basic concepts of Pyro: models and inference.
- Dive in to other tutorials and examples.
sample (name, fn, *args, **kwargs)
Calls the stochastic function fn with additional side-effects depending on name and the enclosing context (e.g. an inference algorithm). See Intro I and Intro II for a discussion.

Parameters
- name – name of sample
- fn – distribution class or function
- obs – observed datum (optional; should only be used in context of inference) optionally specified in kwargs
- infer (dict) – Optional dictionary of inference parameters specified in kwargs. See inference documentation for details.

Returns sample

param (name, *args, **kwargs)
Saves the variable as a parameter in the param store. To interact with the param store or write to disk, see Parameters.

Parameters name – name of parameter

Returns parameter

module (name, nn_module, update_module_params=False)
Takes a torch.nn.Module and registers its parameters with the ParamStore. In conjunction with the ParamStore save() and load() functionality, this allows the user to save and load modules.

Parameters
- name (str) – name of module
- nn_module (torch.nn.Module) – the module to be registered with Pyro
- update_module_params – determines whether Parameters in the PyTorch module get overridden with the values found in the ParamStore (if any). Defaults to False

Returns torch.nn.Module
random_module

(name, nn_module, prior, *args, **kwargs)

Places a prior over the parameters of the module `nn_module`. Returns a distribution (callable) over `nn.Module`'s, which upon calling returns a sampled `nn.Module`.

See the Bayesian Regression tutorial for an example.

Parameters

- **name** *(str)* – name of pyro module
- **nn_module** *(torch.nn.Module)* – the module to be registered with pyro
- **prior** – pyro distribution, stochastic function, or python dict with parameter names as keys and respective distributions/stochastic functions as values.

Returns
a callable which returns a sampled module

class irange

(name, size=None, subsample_size=None, subsample=None, use_cuda=None)

Non-vectorized version of `iarange`. See `iarange` for details.

Parameters

- **name** *(str)* – A name that will be used for this site in a Trace.
- **size** *(int)* – The size of the collection being subsampled (like stop in builtin `range()`).
- **subsample_size** *(int)* – Size of minibatches used in subsampling. Defaults to `size`.
- **subsample** *(Anything supporting `len()`)* – Optional custom subsample for user-defined subsampling schemes. If specified, then `subsample_size` will be set to `len(subsample)`.
- **use_cuda** *(bool)* – Optional bool specifying whether to use cuda tensors for internal `log_prob` computations. Defaults to `torch.Tensor.is_cuda`.

Returns
a reusable iterator yielding a sequence of integers.

Examples:

```python
>>> for i in irange('data', 100, subsample_size=10):
...     if z[i]:  # Prevents vectorization.
...         obs = sample('obs_{}'.format(i), dist.Normal(loc, scale), obs=data[i])
```

See SVI Part II for an extended discussion.

class iarange

(name, size=None, subsample_size=None, subsample=None, use_cuda=None)

Context manager for conditionally independent ranges of variables.

`iarange` is similar to `torch.arange()` in that it yields an array of indices by which other tensors can be indexed. `iarange` differs from `torch.arange()` in that it also informs inference algorithms that the variables being indexed are conditionally independent. To do this, `iarange` is provided as a context manager rather than a function, and users must guarantee that all computation within an `iarange` context is conditionally independent:

```python
with iarange("name", size) as ind:
    # ...do conditionally independent stuff with ind...
```

Additionally, `iarange` can take advantage of the conditional independence assumptions by subsampling the indices and informing inference algorithms to scale various computed values. This is typically used to subsample minibatches of data:
with iarange("data", len(data), subsample_size=100) as ind:
 batch = data[ind]
 assert len(batch) == 100

By default subsample_size=False and this simply yields a torch.arange(0, size). If 0 < subsample_size <= size this yields a single random batch of indices of size subsample_size and scales all log likelihood terms by size/batch_size, within this context.

Warning: This is only correct if all computation is conditionally independent within the context.

Parameters

- **name (str)** – A unique name to help inference algorithms match iarange sites between models and guides.
- **size (int)** – Optional size of the collection being subsampled (like `stop` in builtin `range`).
- **subsample_size (int)** – Size of minibatches used in subsampling. Defaults to `size`.
- **subsample** (Anything supporting `len()`.) – Optional custom subsample for user-defined subsampling schemes. If specified, then `subsample_size` will be set to `len(subsample)`.
- **dim (int)** – An optional dimension to use for this independence index. If specified, `dim` should be negative, i.e. should index from the right. If not specified, `dim` is set to the rightmost dim that is left of all enclosing iarange contexts.
- **use_cuda (bool)** – Optional bool specifying whether to use cuda tensors for `subsample` and `log_prob`. Defaults to `torch.Tensor.is_cuda`.

Returns A reusable context manager yielding a single 1-dimensional `torch.Tensor` of indices.

Examples:

```python
>>> # This version simply declares independence:
>>> with iarange('data'):
...     obs = sample('obs', dist.Normal(loc, scale), obs=data)

>>> # This version subsamples data in vectorized way:
>>> with iarange('data', 100, subsample_size=10) as ind:
...     obs = sample('obs', dist.Normal(loc, scale), obs=data[ind])

>>> # This wraps a user-defined subsampling method for use in pyro:
>>> ind = torch.randint(0, 100, (10,)).long() # custom subsample
>>> with iarange('data', 100, subsample=ind):
...     obs = sample('obs', dist.Normal(loc, scale), obs=data[ind])

>>> # This reuses two different independence contexts.
>>> x_axis = iarange('outer', 320, dim=-1)
>>> y_axis = iarange('inner', 200, dim=-2)
>>> with x_axis:
...     x_noise = sample("x_noise", dist.Normal(loc, scale).expand_
...                    by([320]))
>>> with y_axis:
...     y_noise = sample("y_noise", dist.Normal(loc, scale).expand_
...                    by([200, 1]))
>>> with x_axis, y_axis:
...     xy_noise = sample("xy_noise", dist.Normal(loc, scale).expand_
...                    by([200, 320]))
```
See SVI Part II for an extended discussion.

get_param_store()
Returns the ParamStore

clear_param_store()
Clears the ParamStore. This is especially useful if you’re working in a REPL.

validation_enabled(*args, **kwds)**
Context manager that is useful when temporarily enabling/disabling validation checks.

Parameters **is_validate** (bool) – (optional; defaults to True) temporary validation check override.

enable_validation(is_validate=True)
Enable or disable validation checks in Pyro. Validation checks provide useful warnings and errors, e.g. NaN checks, validating distribution arguments and support values, etc. which is useful for debugging. Since some of these checks may be expensive, we recommend turning this off for mature models.

Parameters **is_validate** (bool) – (optional; defaults to True) whether to enable validation checks.

compile(fn=None, **jit_options)
Drop-in replacement for torch.jit.compile() that works with Pyro functions that call pyro.param().

The actual compilation artifact is stored in the compiled attribute of the output. Call diagnostic methods on this attribute.

Example:

```python
def model(x):
    scale = pyro.param("scale", torch.tensor(0.5), constraint=constraints.positive)
    return pyro.sample("y", dist.Normal(x, scale))

@pyro.ops.jit.compile(nderivs=1)
def model_log_prob_fn(x, y):
    cond_model = pyro.condition(model, data={"y": y})
    tr = pyro.poutine.trace(cond_model).get_trace(x)
    return tr.log_prob_sum()
```

Chapter 3. Primitives
In the context of probabilistic modeling, learning is usually called inference. In the particular case of Bayesian inference, this often involves computing (approximate) posterior distributions. In the case of parameterized models, this usually involves some sort of optimization. Pyro supports multiple inference algorithms, with support for stochastic variational inference (SVI) being the most extensive. Look here for more inference algorithms in future versions of Pyro.

See Intro II for a discussion of inference in Pyro.

4.1 SVI

```python
class SVI(model, guide, optim, loss, loss_and_grads=None, **kwargs)

Bases: object
```

Parameters

- `model` – the model (callable containing Pyro primitives)
- `guide` – the guide (callable containing Pyro primitives)
- `optim` (`pyro.optim.PyroOptim`) – a wrapper for a PyTorch optimizer
- `loss` (`pyro.infer.elbo.ELBO`) – an instance of a subclass of ELBO. Pyro provides three built-in losses: `Trace_ELBO`, `Trace_ELBO`, and `Trace_ELBO`. See the ELBO docs to learn how to implement a custom loss.

A unified interface for stochastic variational inference in Pyro. The most commonly used loss is `loss=Trace_ELBO()`. See the tutorial SVI Part I for a discussion.

```python
evaluate_loss(*args, **kwargs)
```

Returns

- estimate of the loss

Return type

float

Evaluate the loss function. Any args or kwargs are passed to the model and guide.
step (*args, **kwargs)*

- **Returns**: estimate of the loss
- **Return type**: float

Take a gradient step on the loss function (and any auxiliary loss functions generated under the hood by `loss_and_grads`). Any args or kwargs are passed to the model and guide.

4.2 ELBO

class ELBO (*num_particles=1, max iarange nesting=inf, strict enumeration warning=True)*

- **Bases**: object

`ELBO` is the top-level interface for stochastic variational inference via optimization of the evidence lower bound. Most users will not interact with `ELBO` directly; instead they will interact with `SVI`. `ELBO` dispatches to `Trace_ELBO` and `TraceGraph_ELBO`, where the internal implementations live.

Parameters

- **num_particles** – The number of particles/samples used to form the ELBO (gradient) estimators.
- **max iarange nesting** (*int*) – Optional bound on max number of nested `pyro iarange()` contexts. This is only required to enumerate over sample sites in parallel, e.g. if a site sets `infer={"enumerate": "parallel"}`.
- **strict enumeration warning** (*bool*) – Whether to warn about possible misuse of enumeration, i.e. that `pyro.infer.traceenum_elbo.TraceEnum_ELBO` is used iff there are enumerated sample sites.

References

[2] Black Box Variational Inference, Rajesh Ranganath, Sean Gerrish, David M. Blei

class Trace_ELBO (*num_particles=1, max iarange nesting=inf, strict enumeration warning=True)*

- **Bases**: `pyro.infer.elbo.ELBO`

A trace implementation of ELBO-based SVI. The estimator is constructed along the lines of references [1] and [2]. There are no restrictions on the dependency structure of the model or the guide. The gradient estimator includes partial Rao-Blackwellization for reducing the variance of the estimator when non-reparameterizable random variables are present. The Rao-Blackwellization is partial in that it only uses conditional independence information that is marked by `iarange` contexts. For more fine-grained Rao-Blackwellization, see `TraceGraph_ELBO`.

References

[2] Black Box Variational Inference, Rajesh Ranganath, Sean Gerrish, David M. Blei

loss (*model, guide, *args, **kwargs)*

- **Returns**: returns an estimate of the ELBO
- **Return type**: float

Evaluates the ELBO with an estimator that uses `num_particles` many samples/particles.

loss_and_grads (*model, guide, *args, **kwargs)*
Returns

returns an estimate of the ELBO

Return type float

Computes the ELBO as well as the surrogate ELBO that is used to form the gradient estimator. Performs backward on the latter. Num_particle many samples are used to form the estimators.

class JitTrace_ELBO(num_particles=1, max_iarange_nesting=inf, strict EnumerationWarning=True)

Bases: pyro.infer.trace_elbo.Trace_ELBO

Like Trace_ELBO but uses pyro.ops.jit.compile() to compile loss_and_grads().

This works only for a limited set of models:

- Models must have static structure.
- Models must not depend on any global data (except the param store).
- All model inputs that are tensors must be passed in via *args.
- All model inputs that are not tensors must be passed in via *kwargs, and these will be fixed to their values on the first call to jit_loss_and_grads().

Warning: Experimental. Interface subject to change.

loss_and_grads(model, guide, *args, **kwargs)

class TraceGraph_ELBO(num_particles=1, max_iarange_nesting=inf, strict EnumerationWarning=True)

Bases: pyro.infer.elbo.ELBO

A TraceGraph implementation of ELBO-based SVI. The gradient estimator is constructed along the lines of reference [1] specialized to the case of the ELBO. It supports arbitrary dependency structure for the model and guide as well as baselines for non-reparameterizable random variables. Where possible, conditional dependency information as recorded in the Trace is used to reduce the variance of the gradient estimator. In particular three kinds of conditional dependency information are used to reduce variance:

- the sequential order of samples (z is sampled after y => y does not depend on z)
- iarange generators
- irange generators

References

[2] Neural Variational Inference and Learning in Belief Networks Andriy Mnih, Karol Gregor

loss(model, guide, *args, **kwargs)

Returns

returns an estimate of the ELBO

Return type float

Evaluates the ELBO with an estimator that uses num_particles many samples/particles.

loss_and_grads(model, guide, *args, **kwargs)

Returns

returns an estimate of the ELBO

Return type float

Computes the ELBO as well as the surrogate ELBO that is used to form the gradient estimator. Performs backward on the latter. Num_particle many samples are used to form the estimators. If baselines are present, a baseline loss is also constructed and differentiated.
class JitTraceGraph_ELBO(num_particles=1, max_iarange_nesting=inf, strict Enumeration_warning=True)
Bases: pyro.infer.tracegraph_elbo.TraceGraph_ELBO

Like TraceGraph_ELBO but uses torch.jit.compile() to compile loss_and_grads().

This works only for a limited set of models:

- Models must have static structure.
- Models must not depend on any global data (except the param store).
- All model inputs that are tensors must be passed in via *args.
- All model inputs that are not tensors must be passed in via **kwargs, and these will be fixed to their values on the first call to loss_and_grads().

Warning: Experimental. Interface subject to change.

loss_and_grads(model, guide, *args, **kwargs)

class TraceEnum_ELBO(num_particles=1, max_iarange_nesting=inf, strict Enumeration_warning=True)
Bases: pyro.infer.elbo.ELBO

A trace implementation of ELBO-based SVI that supports enumeration over discrete sample sites.

To enumerate over a sample site, the guide’s sample site must specify either infer={‘enumerate’: ‘sequential’} or infer={‘enumerate’: ‘parallel’}. To configure all sites at once, use config Enumeration().

This assumes restricted dependency structure on the model and guide: variables outside of an iarange can never depend on variables inside that iarange.

loss (model, guide, *args, **kwargs)

Returns returns an estimate of the ELBO

Return type float

Estimates the ELBO using num_particles many samples (particles).

loss_and_grads (model, guide, *args, **kwargs)

Returns returns an estimate of the ELBO

Return type float

Estimates the ELBO using num_particles many samples (particles). Performs backward on the ELBO of each particle.

class JitTraceEnum_ELBO(num_particles=1, max_iarange_nesting=inf, strict Enumeration_warning=True)
Bases: pyro.infer.traceenum_elbo.TraceEnum_ELBO

Like TraceEnum_ELBO but uses pyro.ops.jit.compile() to compile loss_and_grads().

This works only for a limited set of models:

- Models must have static structure.
- Models must not depend on any global data (except the param store).
- All model inputs that are tensors must be passed in via *args.
• All model inputs that are *not* tensors must be passed in via *kwargs, and these will be fixed to their values on the first call to jit_loss_and_grads().

Warning: Experimental. Interface subject to change.

```python
loss_and_grads(model, guide, *args, **kwargs)
```

4.3 Importance

```python
class Importance(model, guide=None, num_samples=None)
```

Bases: `pyro.infer.abstract_infer.TracePosterior`

Parameters

- `model` – probabilistic model defined as a function
- `guide` – guide used for sampling defined as a function
- `num_samples` – number of samples to draw from the guide (default 10)

This method performs posterior inference by importance sampling using the guide as the proposal distribution. If no guide is provided, it defaults to proposing from the model’s prior.

4.4 Inference Utilities

```python
class EmpiricalMarginal(trace_posterior, sites=None, validate_args=None)
```

Bases: `pyro.distributions.empirical.Empirical`

Marginal distribution, that wraps over a TracePosterior object to provide a a marginal over one or more latent sites or the return values of the TracePosterior’s model. If multiple sites are specified, they must have the same tensor shape.

Parameters

- `trace_posterior (TracePosterior)` – a TracePosterior instance representing a Monte Carlo posterior.
- `sites (list)` – optional list of sites for which we need to generate the marginal distribution. Note that for multiple sites, the shape for the site values must match (needed by the underlying Empirical class).

```python
class TracePosterior
```

Bases: `object`

Abstract TracePosterior object from which posterior inference algorithms inherit. When run, collects a bag of execution traces from the approximate posterior. This is designed to be used by other utility classes like EmpiricalMarginal, that need access to the collected execution traces.

```python
run(*args, **kwargs)
```

Calls `self.traces` to populate execution traces from a stochastic Pyro model.

Parameters

- `args` – optional args taken by `self.traces`.
- `kwargs` – optional keywords args taken by `self.traces`.
class TracePredictive(model, posterior, num_samples)
 Bases: pyro.infer.abstract_infer.TracePosterior

Generates and holds traces from the posterior predictive distribution, given model execution traces from the
approximate posterior. This is achieved by constraining latent sites to randomly sampled parameter values from
the model execution traces and running the model forward to generate traces with new response ("_RETURN")
sites.

Parameters

- **model** – arbitrary Python callable containing Pyro primitives.
- **posterior** (TracePosterior) – trace posterior instance holding samples from the
 model’s approximate posterior.
- **num_samples** (int) – number of samples to generate.

4.5 MCMC

4.5.1 MCMC

class MCMC(kernel, num_samples, warmup_steps=0)
 Bases: pyro.infer.abstract_infer.TracePosterior

Wrapper class for Markov Chain Monte Carlo algorithms. Specific MCMC algorithms are TraceKernel in-
stances and need to be supplied as a kernel argument to the constructor.

Parameters

- **kernel** – An instance of the TraceKernel class, which when given an execution trace
 returns another sample trace from the target (posterior) distribution.
- **num_samples** (int) – The number of samples that need to be generated, excluding the
 samples discarded during the warmup phase.
- **warmup_steps** (int) – Number of warmup iterations. The samples generated during the
 warmup phase are discarded.

4.5.2 HMC

class HMC(model, step_size=None, trajectory_length=None, num_steps=None, adapt_step_size=False,
 transforms=None)
 Bases: pyro.infer.mcmc.trace_kernel.TraceKernel

Simple Hamiltonian Monte Carlo kernel, where step_size and num_steps need to be explicitly specified
by the user.

References

[1] MCMC Using Hamiltonian Dynamics, Radford M. Neal

Parameters

- **model** – Python callable containing Pyro primitives.
- **step_size** (float) – Determines the size of a single step taken by the verlet integrator
 while computing the trajectory using Hamiltonian dynamics. If not specified, it will be set
to 1.
- **trajectory_length** (*float*) – Length of a MCMC trajectory. If not specified, it will be set to `step_size x num_steps`. In case `num_steps` is not specified, it will be set to 2π.

- **num_steps** (*int*) – The number of discrete steps over which to simulate Hamiltonian dynamics. The state at the end of the trajectory is returned as the proposal. This value is always equal to `int(trajectory_length / step_size)`.

- **adapt_step_size** (*bool*) – A flag to decide if we want to adapt step_size during warm-up phase using Dual Averaging scheme.

- **transforms** (*dict*) – Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement `log_abs_det_jacobian`. If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in `torch.distributions.constraint_registry`.

Example:

```python
>>> true_coefs = torch.tensor([1., 2., 3.])
>>> data = torch.randn(2000, 3)
>>> dim = 3
>>> labels = dist.Bernoulli(logits=(true_coefs * data).sum(-1)).sample()

>>> def model(data):
...     coefs_mean = torch.zeros(dim)
...     coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(3)))
...     y = pyro.sample('y', dist.Bernoulli(logits=(coefs * data).sum(-1)), obs=labels)
...     return y

>>> hmc_kernel = HMC(model, step_size=0.0855, num_steps=4)
>>> mcmc_run = MCMC(hmc_kernel, num_samples=500, warmup_steps=100).run(data)
>>> posterior = EmpiricalMarginal(mcmc_run, 'beta')

>>> posterior.mean
    tensor([ 0.9819,  1.9258,  2.9737])
```

cleanup()

diagnostics()

end_warmup()

initial_trace()

sample(trace)

setup(*args, **kwargs)

4.5.3 NUTS

class NUTS (model, step_size=0.0855, adapt_step_size=False, transforms=None)

Bases: `pyro.infer.mcmc.hmc.HMC`

No-U-Turn Sampler kernel, which provides an efficient and convenient way to run Hamiltonian Monte Carlo. The number of steps taken by the integrator is dynamically adjusted on each call to `sample` to ensure an optimal length for the Hamiltonian trajectory [1]. As such, the samples generated will typically have lower autocorrelation than those generated by the `HMC` kernel. Optionally, the NUTS kernel also provides the ability to adapt step size during the warmup phase.
Refer to the baseball example to see how to do Bayesian inference in Pyro using NUTS.

References

[1] The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo, Matthew D. Hoffman, and Andrew Gelman

Parameters

- **model** – Python callable containing Pyro primitives.
- **step_size** (*float*) – Determines the size of a single step taken by the verlet integrator while computing the trajectory using Hamiltonian dynamics. If not specified, it will be set to 1.
- **adapt_step_size** (*bool*) – A flag to decide if we want to adapt step_size during warm-up phase using Dual Averaging scheme.
- **transforms** (*dict*) – Optional dictionary that specifies a transform for a sample site with constrained support to unconstrained space. The transform should be invertible, and implement \(\text{log_abs_det_jacobian}\). If not specified and the model has sites with constrained support, automatic transformations will be applied, as specified in `torch.distributions.constraint_registry`.

Example:

```python
>>> true_coefs = torch.tensor([1., 2., 3.])
>>> data = torch.randn(2000, 3)
>>> dim = 3
>>> labels = dist.Bernoulli(logits=(true_coefs * data).sum(-1)).sample()

>>> def model(data):
...     coefs_mean = torch.zeros(dim)
...     coefs = pyro.sample('beta', dist.Normal(coefs_mean, torch.ones(3)))
...     y = pyro.sample('y', dist.Bernoulli(logits=(coefs * data).sum(-1)), obs=labels)
...     return y

>>> nuts_kernel = NUTS(model, adapt_step_size=True)
>>> mcmc_run = MCMC(nuts_kernel, num_samples=500, warmup_steps=300).run(data)
>>> posterior = EmpiricalMarginal(mcmc_run, 'beta')
>>> posterior.mean
tensor([0.9221, 1.9464, 2.9228])
```

`sample(trace)`
CHAPTER 5

Distributions

5.1 PyTorch Distributions

Most distributions in Pyro are thin wrappers around PyTorch distributions. For details on the PyTorch distribution interface, see `torch.distributions.distribution.Distribution`. For differences between the Pyro and PyTorch interfaces, see `TorchDistributionMixin`.

5.1.1 Bernoulli

```python
class Bernoulli (probs=None, logits=None, validate_args=None)
```

5.1.2 Beta

```python
class Beta (concentration1, concentration0, validate_args=None)
```

5.1.3 Categorical

```python
class Categorical (probs=None, logits=None, validate_args=None)
    Wraps `torch.distributions.categorical.Categorical` with `TorchDistributionMixin`.
```

5.1.4 Cauchy

```python
class Cauchy (loc, scale, validate_args=None)
    Wraps `torch.distributions.cauchy.Cauchy` with `TorchDistributionMixin`.
```
5.1.5 Chi2

```python
class Chi2(df, validate_args=None):
    Wraps `torch.distributions.chi2.Chi2` with `TorchDistributionMixin`.
```

5.1.6 Dirichlet

```python
class Dirichlet(concentration, validate_args=None):
    Wraps `torch.distributions.dirichlet.Dirichlet` with `TorchDistributionMixin`.
```

5.1.7 Exponential

```python
class Exponential(rate, validate_args=None):
    Wraps `torch.distributions.exponential.Exponential` with `TorchDistributionMixin`.
```

5.1.8 ExponentialFamily

```python
class ExponentialFamily(batch_shape=torch.Size([]), event_shape=torch.Size([]), validate_args=None):
    Wraps `torch.distributions.exp_family.ExponentialFamily` with `TorchDistributionMixin`.
```

5.1.9 FisherSnedecor

```python
class FisherSnedecor(df1, df2, validate_args=None):
```

5.1.10 Gamma

```python
class Gamma(concentration, rate, validate_args=None):
    Wraps `torch.distributions.gamma.Gamma` with `TorchDistributionMixin`.
```

5.1.11 Geometric

```python
class Geometric(probs=None, logits=None, validate_args=None):
```

5.1.12 Gumbel

```python
class Gumbel(loc, scale, validate_args=None):
```

5.1.13 Independent

```python
class Independent(base_distribution, reinterpreted_batch_ndims, validate_args=None):
    Wraps `torch.distributions.independent.Independent` with `TorchDistributionMixin`.
```
5.1.14 Laplace

```python
class Laplace(loc, scale, validate_args=None)
    Wraps `torch.distributions.laplace.Laplace` with `TorchDistributionMixin`.
```

5.1.15 LogNormal

```python
class LogNormal(loc, scale, validate_args=None)
    Wraps `torch.distributions.log_normal.LogNormal` with `TorchDistributionMixin`.
```

5.1.16 LogisticNormal

```python
class LogisticNormal(loc, scale, validate_args=None)
    Wraps `torch.distributions.logistic_normal.LogisticNormal` with `TorchDistributionMixin`.
```

5.1.17 Multinomial

```python
class Multinomial(total_count=1, probs=None, logits=None, validate_args=None)
    Wraps `torch.distributions.multinomial.Multinomial` with `TorchDistributionMixin`.
```

5.1.18 MultivariateNormal

```python
class MultivariateNormal(loc, covariance_matrix=None, precision_matrix=None, scale_tril=None, validate_args=None)
```

5.1.19 Normal

```python
class Normal(loc, scale, validate_args=None)
```

5.1.20 OneHotCategorical

```python
class OneHotCategorical(probs=None, logits=None, validate_args=None)
    Wraps `torch.distributions.one_hot_categorical.OneHotCategorical` with `TorchDistributionMixin`.
```

5.1.21 Pareto

```python
class Pareto(scale, alpha, validate_args=None)
    Wraps `torch.distributions.pareto.Pareto` with `TorchDistributionMixin`.
```
5.1.22 Poisson

class Poisson(rate, validate_args=None)
 Wraps torch.distributions.poisson.Poisson with TorchDistributionMixin.

5.1.23 RelaxedBernoulli

class RelaxedBernoulli(temperature, probs=None, logits=None, validate_args=None)
 Wraps torch.distributions.relaxed_bernoulli.RelaxedBernoulli with TorchDistributionMixin.

5.1.24 RelaxedOneHotCategorical

class RelaxedOneHotCategorical(temperature, probs=None, logits=None, validate_args=None)
 Wraps torch.distributions.relaxed_categorical.RelaxedOneHotCategorical with TorchDistributionMixin.

5.1.25 StudentT

class StudentT(df, loc=0.0, scale=1.0, validate_args=None)
 Wraps torch.distributions.studentT.StudentT with TorchDistributionMixin.

5.1.26 TransformedDistribution

class TransformedDistribution(base_distribution, transforms, validate_args=None)
 Wraps torch.distributions.transformed_distribution.TransformedDistribution with TorchDistributionMixin.

5.1.27 Uniform

class Uniform(low, high, validate_args=None)
 Wraps torch.distributions.uniform.Uniform with TorchDistributionMixin.

5.2 Pyro Distributions

5.2.1 Abstract Distribution

class Distribution
 Bases: object

 Base class for parameterized probability distributions.

Distributions in Pyro are stochastic function objects with sample() and log_prob() methods. Distribution are stochastic functions with fixed parameters:

```python
d = dist.Bernoulli(param)
x = d()  # Draws a random sample.
p = d.log_prob(x)  # Evaluates log probability of x.
```
Implementing New Distributions:

Derived classes must implement the methods: `sample()`, `log_prob()`.

Examples:

Take a look at the examples to see how they interact with inference algorithms.

```python
__call__(*args, **kwargs)
```

Samples a random value (just an alias for `.sample(*args, **kwargs)`).

For tensor distributions, the returned tensor should have the same `.shape` as the parameters.

- **Returns**: A random value.
- **Return type**: `torch.Tensor`

```python
enumerate_support()
```

Returns a representation of the parametrized distribution’s support, along the first dimension. This is implemented only by discrete distributions.

Note that this returns support values of all the batched RVs in lock-step, rather than the full cartesian product.

- **Returns**: An iterator over the distribution’s discrete support.
- **Return type**: `iterator`

```python
has.enumerate.support = False
has.rsample = False
```

```python
log_prob(x, *args, **kwargs)
```

Evaluates log probability densities for each of a batch of samples.

- **Parameters**: `x` (*torch.Tensor*) – A single value or a batch of values batched along axis 0.
- **Returns**: log probability densities as a one-dimensional `Tensor` with same batch size as value and params. The shape of the result should be `self.batch_size`.
- **Return type**: `torch.Tensor`

```python
sample(*args, **kwargs)
```

Samples a random value.

For tensor distributions, the returned tensor should have the same `.shape` as the parameters, unless otherwise noted.

- **Parameters**: `sample_shape` (*torch.Size*) – the size of the iid batch to be drawn from the distribution.
- **Returns**: A random value or batch of random values (if parameters are batched). The shape of the result should be `self.shape()`.
- **Return type**: `torch.Tensor`

```python
score_parts(x, *args, **kwargs)
```

Computes ingredients for stochastic gradient estimators of ELBO.

The default implementation is correct both for non-reparameterized and for fully reparameterized distributions. Partially reparameterized distributions should override this method to compute correct `.score.function` and `.entropy.term` parts.

- **Parameters**: `x` (*torch.Tensor*) – A single value or batch of values.
- **Returns**: A `ScoreParts` object containing parts of the ELBO estimator.
Return type ScoreParts

5.2.2 TorchDistributionMixin

class TorchDistributionMixin
 Bases: pyro.distributions.distribution.Distribution

 Mixin to provide Pyro compatibility for PyTorch distributions.

 You should instead use TorchDistribution for new distribution classes.

 This is mainly useful for wrapping existing PyTorch distributions for use in Pyro. Derived classes must
 first inherit from torch.distributions.distribution.Distribution and then inherit from
 TorchDistributionMixin.

 __call__ (sample_shape=torch.Size([]))
 Samples a random value.

 This is reparameterized whenever possible, calling rsample() for reparameterized distributions and
 sample() for non-reparameterized distributions.

 Parameters sample_shape (torch.Size([])) – the size of the iid batch to be drawn from the
 distribution.

 Returns A random value or batch of random values (if parameters are batched). The shape of
 the result should be self.shape().

 Return type torch.Tensor

 event_dim
 Returns Number of dimensions of individual events.

 Return type int

 shape (sample_shape=torch.Size([]))
 The tensor shape of samples from this distribution.

 Samples are of shape:

 d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape

 Parameters sample_shape (torch.Size([])) – the size of the iid batch to be drawn from the
 distribution.

 Returns Tensor shape of samples.

 Return type torch.Size

 expand (batch_shape)
 Expands a distribution to a desired batch_shape.

 Note that this is more general than expand_by() because d.expand_by(sample_shape) can be
 reduced to d.expand(sample_shape + d.batch_shape).

 Parameters batch_shape (torch.Size) – The target batch_shape. This must compat-
 ible with self.batch_shape similar to the requirements of torch.Tensor.
 expand(): the target batch_shape must be at least as long as self.batch_shape,
 and for each non-singleton dim of self.batch_shape, batch_shape must either
 agree or be set to -1.

 Returns An expanded version of this distribution.
Return type `ReshapedDistribution`

expand_by(`sample_shape`)
Expands a distribution by adding `sample_shape` to the left side of its `batch_shape`.

To expand internal dims of `self.batch_shape` from 1 to something larger, use `expand()` instead.

Parameters `sample_shape` (`torch.Size`) – The size of the iid batch to be drawn from the distribution.

Returns An expanded version of this distribution.

Return type `ReshapedDistribution`

reshape(`sample_shape=None`, `extra_event_dims=None`)

independent(`reinterpreted_batch_ndims=None`)
Reinterprets the `n` rightmost dimensions of this distribution's `batch_shape` as event dims, adding them to the left side of `event_shape`.

Example:

```python
>>> [d1.batch_shape, d1.event_shape]
[torch.Size([2, 3]), torch.Size([4, 5])]
>>> d2 = d1.independent(1)
>>> [d2.batch_shape, d2.event_shape]
[torch.Size([2]), torch.Size([3, 4, 5])]
>>> d3 = d1.independent(2)
>>> [d3.batch_shape, d3.event_shape]
[torch.Size([[]]), torch.Size([2, 3, 4, 5])]
```

Parameters `reinterpreted_batch_ndims` (`int`) – The number of batch dimensions to reinterpret as event dimensions.

Returns A reshaped version of this distribution.

Return type `ReshapedDistribution`

mask (`mask`)
Masks a distribution by a zero-one tensor that is broadcastable to the distributions `batch_shape`.

Parameters `mask` (`torch.Tensor`) – A zero-one valued float tensor.

Returns A masked copy of this distribution.

Return type `MaskedDistribution`

5.2.3 TorchDistribution

class TorchDistribution(`batch_shape=torch.Size([])`, `event_shape=torch.Size([])`, `validate_args=None`)

Bases: `torch.distributions.distribution.Distribution`, `pyro.distributions.torch_distribution.TorchDistributionMixin`

Base class for PyTorch-compatible distributions with Pyro support.

This should be the base class for almost all new Pyro distributions.

Note: Parameters and data should be of type `Tensor` and all methods return type `Tensor` unless otherwise noted.
Tensor Shapes:

TorchDistributions provide a method .shape() for the tensor shape of samples:

```python
x = d.sample(sample_shape)
assert x.shape == d.shape(sample_shape)
```

Pyro follows the same distribution shape semantics as PyTorch. It distinguishes between three different roles for tensor shapes of samples:

- **sample shape** corresponds to the shape of the iid samples drawn from the distribution. This is taken as an argument by the distribution’s `sample` method.
- **batch shape** corresponds to non-identical (independent) parameterizations of the distribution, inferred from the distribution’s parameter shapes. This is fixed for a distribution instance.
- **event shape** corresponds to the event dimensions of the distribution, which is fixed for a distribution class. These are collapsed when we try to score a sample from the distribution via `d.log_prob(x)`.

These shapes are related by the equation:

```python
assert d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape
```

Distributions provide a vectorized :meth:`torch.distributions.distribution.Distribution.log_prob` method that evaluates the log probability density of each event in a batch independently, returning a tensor of shape `sample_shape + d.batch_shape`:

```python
x = d.sample(sample_shape)
assert x.shape == d.shape(sample_shape)
log_p = d.log_prob(x)
assert log_p.shape == sample_shape + d.batch_shape
```

Implementing New Distributions:

Derived classes must implement the methods `sample()` (or `rsample()` if `.has_rsample == True`) and `log_prob()`, and must implement the properties `batch_shape`, and `event_shape`. Discrete classes may also implement the `enumerate_support()` method to improve gradient estimates and set `.has_enumeerate_support = True`.

5.2.4 Binomial

class Binomial (total_count=1, probs=None, logits=None, validate_args=None)

Creates a Binomial distribution parameterized by `total_count` and either `probs` or `logits` (but not both). `total_count` must be broadcastable with `probs/logits`.

This is adapted from `torch.distributions.binomial.Binomial`, with the important difference that `total_count` is not limited to being a single `int`, but can be a `torch.Tensor`.

Example:

```python
>>> m = Binomial(100, torch.Tensor([0 , .2, .8, 1]))
>>> m.sample()
0
22
71
100
```
```python
m = Binomial(torch.Tensor([[5.], [10.]]), torch.Tensor([0.5, 0.8]))
m.sample()
```

5.2.5 Delta

```python
class Delta(v, log_density=0.0, event_dim=0, validate_args=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution
```

Degenerate discrete distribution (a single point).

Discrete distribution that assigns probability one to the single element in its support. Delta distribution parameterized by a random choice should not be used with MCMC based inference, as doing so produces incorrect results.

Parameters

- **v** *(torch.Tensor)* – The single support element.
- **log_density** *(torch.Tensor)* – An optional density for this Delta. This is useful to keep the class of Delta distributions closed under differentiable transformation.
- **event_dim** *(int)* – Optional event dimension, defaults to zero.

```python
arg_constraints = {'log_density': <torch.distributions.constraints._Real object>, 'v': <torch.distributions.constraints._Real object>}
```
has_rsample = True

log_prob(x)

mean

rsample(sample_shape=torch.Size([]))

support = <torch.distributions.constraints._Real object>

variance

5.2.6 EmpiricalDistribution

class Empirical (validate_args=None)

Bases: pyro.distributions.torch_distribution.TorchDistribution

Empirical distribution associated with the sampled data.

add(value, weight=None, log_weight=None)

Adds a new data point to the sample. The values in successive calls to add must have the same tensor shape and size. Optionally, an importance weight can be specified via log_weight or weight (default value of 1 is used if not specified).

Parameters

- **value** *(torch.Tensor)* – tensor to add to the sample.
- **weight** *(torch.Tensor)* – log weight (optional) corresponding to the sample.
- **log_weight** *(torch.Tensor)* – weight (optional) corresponding to the sample.

arg_constraints = {}

enumerate_support()

See pyro.distributions.torch_distribution.TorchDistribution.enumerate_support()

event_shape

See pyro.distributions.torch_distribution.TorchDistribution.event_shape()

get_samples_and_weights()

has_enumerate_support = True

log_prob(value)

Returns the log of the probability mass function evaluated at value. Note that this currently only supports scoring values with empty sample_shape, i.e. an arbitrary batched sample is not allowed.

Parameters

- **value** *(torch.Tensor)* – scalar or tensor value to be scored.

mean

See pyro.distributions.torch_distribution.TorchDistribution.mean()

sample(sample_shape=torch.Size([]))

See pyro.distributions.torch_distribution.TorchDistribution.sample()

sample_size

Number of samples that constitute the empirical distribution.

Return int number of samples collected.

support = <torch.distributions.constraints._Real object>
5.2.7 HalfCauchy

class HalfCauchy(loc, scale)
Bases: pyro.distributions.torch.TransformedDistribution

Half-Cauchy distribution.
This is a continuous distribution with lower-bounded domain ($x > loc$). See also the Cauchy distribution.

Parameters

- loc (torch.Tensor) – lower bound of the distribution.
- scale (torch.Tensor) – half width at half maximum.

arg_constraints = {'loc': <torch.distributions.constraints._Real object>, 'scale': <torch.distributions.constraints._GreaterThan object>}

entropy()
expand(batch_shape)
loc
log_prob(value)
scale
support

5.2.8 LowRankMultivariateNormal

class LowRankMultivariateNormal(loc, W_term, D_term, trace_term=None)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Low Rank Multivariate Normal distribution.
Implements fast computation for log probability of Multivariate Normal distribution when the covariance matrix has the form:

\[
\text{covariance_matrix} = W^T \otimes W + D.
\]

Here D is a diagonal vector and W is a matrix of size $M \times N$. The computation will be beneficial when $M \ll N$.

Parameters

- loc (torch.Tensor) – Mean. Must be a 1D or 2D tensor with the last dimension of size N.
- D_term (torch.Tensor) – D term of covariance matrix. Must be in 1 dimensional of size N.
- trace_term (float) – A optional term to be added into Mahalanobis term according to $p(y) = N(y|loc, cov).exp(-1/2 * \text{trace_term})$.

arg_constraints = {'loc': <torch.distributions.constraints._Real object>, 'covariance_matrix': <torch.distributions.constraints._GreaterEqual object>, 'scale_tril': <torch.distributions.constraints._LowerTriangular object>}

5.2. Pyro Distributions
has_rsample = True
log_prob(value)
mean
rsample(sample_shape=torch.Size([]))
scale_tril
support = <torch.distributions.constraints._Real object>
variance

5.2.9 OMTMultivariateNormal

class OMTMultivariateNormal(loc, scale_tril)
Bases: pyro.distributions.torch.MultivariateNormal

Multivariate normal (Gaussian) distribution with OMT gradients w.r.t. both parameters. Note the gradient computation w.r.t. the Cholesky factor has cost O(D^3), although the resulting gradient variance is generally expected to be lower.

A distribution over vectors in which all the elements have a joint Gaussian density.

Parameters

- loc(torch.Tensor) – Mean.
- scale_tril(torch.Tensor) – Cholesky of Covariance matrix.

arg_constraints = {'loc': <torch.distributions.constraints._Real object>, 'scale_tril': <torch.distributions.constraints._LowerTriangular object>}
rsample(sample_shape=torch.Size([]))

5.2.10 Rejector

class Rejector(propose, log_prob_accept, log_scale)
Bases: pyro.distributions.torch_distribution.TorchDistribution

Rejection sampled distribution given an acceptance rate function.

Parameters

- propose(Distribution) – A proposal distribution that samples batched proposals via propose(). rsample() supports a sample_shape arg only if propose() supports a sample_shape arg.
- log_prob_accept(callable) – A callable that inputs a batch of proposals and returns a batch of log acceptance probabilities.
- log_scale – Total log probability of acceptance.

has_rsample = True
log_prob(x)
rsample(sample_shape=torch.Size([]))
score_parts(x)
5.2.11 VonMises

class VonMises(loc, concentration, validate_args=None)
 Bases: pyro.distributions.torch_distribution.TorchDistribution

A circular von Mises distribution.
Currently only log_prob() is implemented.

Parameters

- loc (torch.Tensor) – an angle in radians.
- concentration (torch.Tensor) – concentration parameter

arg_constraints = {'loc': <torch.distributions.constraints._Real object>, 'concentration': <torch.distributions.constraints._GreaterThan object>}

expand(batch_shape)
log_prob(value)
support = <torch.distributions.constraints._Real object>

5.3 Transformed Distributions

5.3.1 InverseAutoRegressiveFlow

class InverseAutoregressiveFlow(input_dim, hidden_dim, sigmoid_bias=2.0, permutation=None)
 Bases: torch.distributions.transforms.Transform

An implementation of an Inverse Autoregressive Flow. Together with the TransformedDistribution this provides a way to create richer variational approximations.

Example usage:

```python
>>> base_dist = dist.Normal(torch.zeros(10), torch.ones(10))
>>> iaf = InverseAutoregressiveFlow(10, 40)
>>> iaf_module = pyro.module("my_iaf", iaf.module)
>>> iaf_dist = dist.TransformedDistribution(base_dist, [iaf])
```

Note that this implementation is only meant to be used in settings where the inverse of the Bijector is never explicitly computed (rather the result is cached from the forward call). In the context of variational inference, this means that the InverseAutoregressiveFlow should only be used in the guide, i.e. in the variational distribution. In other contexts the inverse could in principle be computed but this would be a (potentially) costly computation that scales with the dimension of the input (and in any case support for this is not included in this implementation).

Parameters

- input_dim (int) – dimension of input
- hidden_dim (int) – hidden dimension (number of hidden units)
- sigmoid_bias (float) – bias on the hidden units fed into the sigmoid; default='2.0'
- permutation (bool) – whether the order of the inputs should be permuted (by default the conditional dependence structure of the autoregression follows the sequential order)
References:

Return type pyro.nn.AutoRegressiveNN

Return the AutoRegressiveNN associated with the InverseAutoregressiveFlow

log_abs_det_jacobian \((x, y)\)

Calculates the elementwise determinant of the log jacobian
Parameters in Pyro are basically thin wrappers around PyTorch Tensors that carry unique names. As such Parameters are the primary stateful objects in Pyro. Users typically interact with parameters via the Pyro primitive `pyro.param`. Parameters play a central role in stochastic variational inference, where they are used to represent point estimates for the parameters in parameterized families of models and guides.

6.1 ParamStore

class ParamStoreDict

Bases: `object`

Global store for parameters in Pyro. This is basically a key-value store. The typical user interacts with the ParamStore primarily through the primitive `pyro.param`.

See Intro Part II for further discussion and SVI Part I for some examples.

Some things to bear in mind when using parameters in Pyro:

- parameters must be assigned unique names
- the `init_tensor` argument to `pyro.param` is only used the first time that a given (named) parameter is registered with Pyro.
- for this reason, a user may need to use the `clear()` method if working in a REPL in order to get the desired behavior. this method can also be invoked with `pyro.clear_param_store()`.
- the internal name of a parameter within a PyTorch `nn.Module` that has been registered with Pyro is prepended with the Pyro name of the module. so nothing prevents the user from having two different modules each of which contains a parameter named `weight`. by contrast, a user can only have one top-level parameter named `weight` (outside of any module).
- parameters can be saved and loaded from disk using `save` and `load`.

clear()

Clear the ParamStore
get_all_param_names()
Get all parameter names in the ParamStore

get_param(name, init_tensor=None, constraint=<torch.distributions.constraints._Real object>)
Get parameter from its name. If it does not yet exist in the ParamStore, it will be created and stored. The Pyro primitive `pyro.param` dispatches to this method.

- **Parameters**
 - `name (str)` – parameter name
 - `init_tensor (torch.Tensor)` – initial tensor

- **Returns** parameter
- **Return type** `torch.Tensor`

get_state()
Get the ParamStore state.

load(filename)
Loads parameters from disk

- **Parameters** `filename` – file name to load from

named_parameters()
Returns an iterator over tuples of the form (name, parameter) for each parameter in the ParamStore

param_name(p)
Get parameter name from parameter

- **Parameters** `p` – parameter

- **Returns** parameter name

replace_param(param_name, new_param, old_param)
Replace the param `param_name` with current value `old_param` with the new value `new_param`

- **Parameters**
 - `param_name (str)` – parameter name
 - `new_param (torch.Tensor)` – the paramater to be put into the ParamStore
 - `old_param` – the paramater to be removed from the ParamStore

save(filename)
Save parameters to disk

- **Parameters** `filename` – file name to save to

set_state(state)
Set the ParamStore state using state from a previous `get_state()` call

module_from_param_with_module_name(param_name)

param_with_module_name(pyro_name, param_name)

user_param_name(param_name)
The module `pyro.nn` provides implementations of neural network modules that are useful in the context of deep probabilistic programming. None of these modules is really part of the core language.

7.1 AutoRegressiveNN

```python
class AutoRegressiveNN(input_dim, hidden_dim, output_dim_multiplier=1, mask_encoding=None, permutation=None):
    Bases: torch.nn.modules.module.Module

    A simple implementation of a MADE-like auto-regressive neural network.


    Parameters

    * `input_dim (int)` – the dimensionality of the input
    * `hidden_dim (int)` – the dimensionality of the hidden units
    * `output_dim_multiplier (int)` – the dimensionality of the output is given by input_dim x output_dim_multiplier. specifically the shape of the output for a single vector input is [output_dim_multiplier, input_dim]. for any i, j in range(0, output_dim_multiplier) the subset of outputs [i, :] has identical autoregressive structure to [j, :]. defaults to 1
    * `mask_encoding (torch.LongTensor)` – a torch Tensor that controls the autoregressive structure (see reference). by default this is chosen at random.
    * `permutation (torch.LongTensor)` – an optional permutation that is applied to the inputs and controls the order of the autoregressive factorization. in particular for the identity permutation the autoregressive structure is such that the Jacobian is upper triangular. by default this is chosen at random.

    forward(z)

    the forward method
```
get_mask_encoding()
Get the mask encoding associated with the neural network: basically the quantity \(m(k) \) in the MADE paper.

get_permutation()
Get the permutation applied to the inputs (by default this is chosen at random)

class MaskedLinear(in_features, out_features, mask, bias=True)
Bases: torch.nn.modules.linear.Linear

A linear mapping with a given mask on the weights (arbitrary bias)

Parameters

- **in_features** (*int*) – the number of input features
- **out_features** (*int*) – the number of output features
- **mask** (*torch.Tensor*) – the mask to apply to the \(\text{in_features} \times \text{out_features} \) weight matrix
- **bias** (*bool*) – whether or not MaskedLinear should include a bias term. defaults to \(True \)

forward(_input)
the forward method that does the masked linear computation and returns the result
The module `pyro.optim` provides support for optimization in Pyro. In particular it provides `PyroOptim`, which is used to wrap PyTorch optimizers and manage optimizers for dynamically generated parameters (see the tutorial SVI Part I for a discussion). Any custom optimization algorithms are also to be found here.

8.1 Pyro Optimizers

```python
class PyroOptim(optim_constructor, optim_args)
    Bases: object

    A wrapper for torch.optim.Optimizer objects that helps with managing dynamically generated parameters.

    Parameters
    • `optim_constructor` – a torch.optim.Optimizer
    • `optim_args` – a dictionary of learning arguments for the optimizer or a callable that returns such dictionaries

    __call__(params, *args, **kwargs)

        Parameters `params` *(an iterable of strings)* – a list of parameters

        Do an optimization step for each param in params. If a given param has never been seen before, initialize an optimizer for it.

    get_state()

        Get state associated with all the optimizers in the form of a dictionary with key-value pairs (parameter name, optim state dicts)

    set_state(state_dict)

        Set the state associated with all the optimizers using the state obtained from a previous call to get_state()

    save(filename)

        Parameters `filename` – file name to save to
```
Save optimizer state to disk

```python
load(filename)
```

Parameters

- `filename` – file name to load from

Load optimizer state from disk

```python
AdagradRMSProp(optim_args)
```

A wrapper for an optimizer that is a mash-up of Adagrad and RMSprop.

```python
ClippedAdam(optim_args)
```

A wrapper for a modification of the Adam optimization algorithm that supports gradient clipping.

```python
class PyroLRScheduler(scheduler_constructor, optim_args)
```

A wrapper for torch.optim.lr_scheduler objects that adjust learning rates for dynamically generated parameters.

Parameters

- `optim_constructor` – a torch.optim.lr_scheduler
- `optim_args` – a dictionary of learning arguments for the optimizer or a callable that returns such dictionaries. must contain the key ‘optimizer’ with pytorch optimizer value

Example:

```python
optimizer = torch.optim.SGD
pyro_scheduler = pyro.optim.ExponentialLR({'optimizer': optimizer, 'optim_args': {'lr': 0.01}, 'gamma': 0.1})
```

set_epoch(epoch)

8.2 PyTorch Optimizers

```python
LBFGS(optim_args)
```

Wraps torch.optim.LBFGS with PyroOptim.

```python
Adamax(optim_args)
```

Wraps torch.optim.Adamax with PyroOptim.

```python
Adagrad(optim_args)
```

Wraps torch.optim.Adagrad with PyroOptim.

```python
SGD(optim_args)
```

Wraps torch.optim.SGD with PyroOptim.

```python
Adam(optim_args)
```

Wraps torch.optim.Adam with PyroOptim.

```python
Rprop(optim_args)
```

Wraps torch.optim.Rprop with PyroOptim.

```python
ASGD(optim_args)
```

Wraps torch.optim.ASGD with PyroOptim.

```python
RMSprop(optim_args)
```

Wraps torch.optim.RMSprop with PyroOptim.

```python
SparseAdam(optim_args)
```

Wraps torch.optim.SparseAdam with PyroOptim.
Adadelta

Wraps `torch.optim.Adadelta` with `PyroOptim`.

MultiStepLR

Wraps `torch.optim.MultiStepLR` with `PyroLRScheduler`.

ReduceLROnPlateau

Wraps `torch.optim.ReduceLROnPlateau` with `PyroLRScheduler`.

StepLR

Wraps `torch.optim.StepLR` with `PyroLRScheduler`.

CosineAnnealingLR

Wraps `torch.optim.CosineAnnealingLR` with `PyroLRScheduler`.

LambdaLR

Wraps `torch.optim.LambdaLR` with `PyroLRScheduler`.

ExponentialLR

Wraps `torch.optim.ExponentialLR` with `PyroLRScheduler`.

8.3 Higher-Order Optimizers

class MultiOptimizer

Bases: object

Base class of optimizers that make use of higher-order derivatives.

Higher-order optimizers generally use `torch.autograd.grad()` rather than `torch.Tensor.backward()`, and therefore require a different interface from usual Pyro and PyTorch optimizers. In this interface, the `step()` method inputs a loss tensor to be differentiated, and backpropagation is triggered one or more times inside the optimizer.

Derived classes must implement `step()` to compute derivatives and update parameters in-place.

Example:

```python
tr = poutine.trace(model).get_trace(*args, **kwargs)
loss = -tr.log_prob()
params = {name: pyro.param(name).unconstrained()
    for name in pyro.get_param_store().get_all_param_names()}
optim.step(loss, params)
```

`step(loss, params)`

Performs an in-place optimization step on parameters given a differentiable loss tensor.

Note that this detaches the updated tensors.

Parameters

- **loss** (*torch.Tensor*) – A differentiable tensor to be minimized. Some optimizers require this to be differentiable multiple times.

- **params** (*dict*) – A dictionary mapping param name to unconstrained value as stored in the param store.

`get_step(loss, params)`

Computes an optimization step of parameters given a differentiable loss tensor, returning the updated values.

Note that this preserves derivatives on the updated tensors.
Parameters

- **loss** (*torch.Tensor*) – A differentiable tensor to be minimized. Some optimizers require this to be differentiable multiple times.

- **params** (*dict*) – A dictionary mapping param name to unconstrained value as stored in the param store.

Returns A dictionary mapping param name to updated unconstrained value.

Return type *dict*

class PyroMultiOptimizer(*optim*)

Bases: *pyro.optim.multi.MultiOptimizer*

Facade to wrap *PyroOptim* objects in a *MultiOptimizer* interface.

step (*loss, params*)

class TorchMultiOptimizer(*optim_constructor, optim_args*)

Bases: *pyro.optim.multi.PyroMultiOptimizer*

Facade to wrap *Optimizer* objects in a *MultiOptimizer* interface.

class MixedMultiOptimizer(*parts*)

Bases: *pyro.optim.multi.MultiOptimizer*

Container class to combine different *MultiOptimizer* instances for different parameters.

Parameters *parts* (*list*) – A list of *(names, optim)* pairs, where each *names* is a list of parameter names, and each *optim* is a *MultiOptimizer* object to be used for the named parameters. Together the *names* should partition up all desired parameters to optimize.

step (*loss, params*)

get_step (*loss, params*)

class Newton2d(*trust_radii={}*)

Bases: *pyro.optim.multi.MultiOptimizer*

Implementation of *MultiOptimizer* that performs a Newton update on batched 2d variables, optionally regularizing via a per-parameter *trust_radius*. See *newton_step_2d()* for details.

Parameters *trust_radii* (*dict*) – a dict mapping parameter name to radius of trust region.

Missing names will use unregularized Newton update, equivalent to infinite trust radius.

get_step (*loss, params*)
Beneath the built-in inference algorithms, Pyro has a library of composable effect handlers for creating new inference algorithms and working with probabilistic programs. Pyro’s inference algorithms are all built by applying these handlers to stochastic functions.

9.1 Handlers

Poutine is a library of composable effect handlers for recording and modifying the behavior of Pyro programs. These lower-level ingredients simplify the implementation of new inference algorithms and behavior.

Handlers can be used as higher-order functions, decorators, or context managers to modify the behavior of functions or blocks of code:

For example, consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

We can mark sample sites as observed using `condition`, which returns a callable with the same input and output signatures as `model`:

```python
>>> conditioned_model = poutine.condition(model, data={"z": 1.0})
```

We can also use handlers as decorators:

```python
>>> @pyro.condition(data={"z": 1.0})
... def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

Or as context managers:
>>> with pyro.condition(data={"z": 1.0}):
... s = pyro.param("s", torch.tensor(0.5))
... z = pyro.sample("z", dist.Normal(0., s))
... y = z ** 2

Handlers compose freely:

```python
>>> conditioned_model = poutine.condition(model, data={"z": 1.0})
>>> traced_model = poutine.trace(conditioned_model)
```

Many inference algorithms or algorithmic components can be implemented in just a few lines of code:

```python
guide_tr = poutine.trace(guide).get_trace(...)
model_tr = poutine.trace(poutine.replay(conditioned_model, trace=tr)).get_trace(...)
monte_carlo_elbo = model_tr.log_prob_sum() - guide_tr.log_prob_sum()
```

```python
block(fn=None, hide=None, expose=None, hide_types=None, expose_types=None)
```
This handler selectively hides Pyro primitive sites from the outside world. Default behavior: block everything.

A site is hidden if at least one of the following holds:

1. msg["name"] in hide
2. msg["type"] in hide_types
3. msg["name"] not in expose and msg["type"] not in expose_types
4. hide, hide_types, and expose_types are all None

For example, suppose the stochastic function fn has two sample sites “a” and “b”. Then any effect outside of BlockMessenger(fn, hide=["a"]) will not be applied to site “a” and will only see site “b”:

```python
>>> def fn():
... a = pyro.sample("a", dist.Normal(0., 1.))
... return pyro.sample("b", dist.Normal(a, 1.))
>>> fn_inner = trace(fn)
>>> fn_outer = trace(block(fn_inner, hide=["a"]))
```

```text
Parameters
• fn – a stochastic function (callable containing Pyro primitive calls)
• hide – list of site names to hide
• expose – list of site names to be exposed while all others hidden
• hide_types – list of site types to be hidden
• expose_types – list of site types to be exposed while all others hidden

Returns stochastic function decorated with a BlockMessenger
```
broadcast \((fn=None)\)
Automatically broadcasts the batch shape of the stochastic function at a sample site when inside a single or nested iarange context. The existing \(batch_shape\) must be broadcastable with the size of the \(iarange\) contexts installed in the \(cond_indeped\) stack.

Notice how \(model_automatic_broadcast\) below automates expanding of distribution batch shapes. This makes it easy to modularize a Pyro model as the sub-components are agnostic of the wrapping \(iarange\) contexts.

```python
>>> def model_broadcast_by_hand():
...     with pyro.iarange("batch", 100, dim=-2):
...         with pyro.iarange("components", 3, dim=-1):
...             sample = pyro.sample("sample", dist.Bernoulli(torch.ones(3) * 0.5)
...             .expand_by(100))
...             assert sample.shape == torch.Size((100, 3))
...             return sample

>>> @poutine.broadcast
... def model_automatic_broadcast():
...     with pyro.iarange("batch", 100, dim=-2):
...         with pyro.iarange("components", 3, dim=-1):
...             sample = pyro.sample("sample", dist.Bernoulli(torch.tensor(0.5)))
...             assert sample.shape == torch.Size((100, 3))
...             return sample
```

condition \((fn=None, data=None)\)
Given a stochastic function with some sample statements and a dictionary of observations at names, change the sample statements at those names into observes with those values.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

To observe a value for site \(z\), we can write

```python
>>> conditioned_model = condition(model, data={"z": torch.tensor(1.)})
```

This is equivalent to adding \(obs=value\) as a keyword argument to \(pyro.sample("z", ...\) in \(model\).

Parameters
- \(fn\) – a stochastic function (callable containing Pyro primitive calls)
- \(data\) – a dict or a \(Trace\)

Returns stochastic function decorated with a \(ConditionMessenger\)

do \((fn=None, data=None)\)
Given a stochastic function with some sample statements and a dictionary of values at names, set the return values of those sites equal to the values and hide them from the rest of the stack as if they were hard-coded to those values by using \(block\).

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```
To intervene with a value for site z, we can write

```python
>>> intervened_model = do(model, data={"z": torch.tensor(1.)})
```

This is equivalent to replacing $z = \text{pyro.sample("z", \ldots)}$ with $z = \text{value}$.

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `data` – a dict or a `Trace`

Returns stochastic function decorated with a `BlockMessenger` and `pyro.poutine.condition_messenger.ConditionMessenger`

enum *(fn=None, first_available_dim=None)*

Enumerates in parallel over discrete sample sites marked `infer={"enumerate": "parallel"}`.

Parameters

- `first_available_dim` *(int)* – The first tensor dimension (counting from the right) that is available for parallel enumeration. This dimension and all dimensions left may be used internally by Pyro.

escape *(fn=None, escape_fn=None)*

Given a callable that contains Pyro primitive calls, evaluate escape_fn on each site, and if the result is True, raise a `NonlocalExit` exception that stops execution and returns the offending site.

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `escape_fn` – function that takes a partial trace and a site, and returns a boolean value to decide whether to exit at that site

Returns stochastic function decorated with `EscapeMessenger`

indep *(fn=None, name=None, size=None, dim=None)*

This messenger keeps track of stack of independence information declared by nested `irange` and `iarange` contexts. This information is stored in a `cond_indep_stack` at each sample/observe site for consumption by `TraceMessenger`.

infer_config *(fn=None, config_fn=None)*

Given a callable that contains Pyro primitive calls and a callable taking a trace site and returning a dictionary, updates the value of the infer kwarg at a sample site to `config_fn(site)`.

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `config_fn` – a callable taking a site and returning an infer dict

Returns stochastic function decorated with `InferConfigMessenger`

lift *(fn=None, prior=None)*

Given a stochastic function with param calls and a prior distribution, create a stochastic function where all param calls are replaced by sampling from prior. Prior should be a callable or a dict of names to callables.

Consider the following Pyro program:
```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
>>> lifted_model = lift(model, prior={"s": dist.Exponential(0.3)})
```

`lift` makes `param` statements behave like `sample` statements using the distributions in `prior`. In this example, site `s` will now behave as if it was replaced with `s = pyro.sample("s", dist.Exponential(0.3))`:

```python
>>> tr = trace(lifted_model).get_trace(0.0)
>>> tr.nodes["s"]["type"] == "sample"
True
>>> tr2 = trace(lifted_model).get_trace(0.0)
>>> bool((tr2.nodes["s"]["value"] == tr.nodes["s"]["value"]).all())
False
```

Parameters

- `fn` – function whose parameters will be lifted to random values
- `prior` – prior function in the form of a Distribution or a dict of stochastic fns

Returns `fn` decorated with a `LiftMessenger`

```python
replay(fn=None, trace=None, params=None)
```

Given a callable that contains Pyro primitive calls, return a callable that runs the original, reusing the values at sites in trace at those sites in the new trace

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

`replay` makes `sample` statements behave as if they had sampled the values at the corresponding sites in the trace:

```python
>>> old_trace = trace(model).get_trace(1.0)
>>> replayed_model = replay(model, trace=old_trace)
>>> bool(replayed_model(0.0) == old_trace.nodes["_RETURN"]["value"])
True
```

Parameters

- `fn` – a stochastic function (callable containing Pyro primitive calls)
- `trace` – a `Trace` data structure to replay against
- `params` – dict of names of param sites and constrained values in fn to replay against

Returns a stochastic function decorated with a `ReplayMessenger`

```python
queue(fn=None, queue=None, max_tries=None, extend_fn=None, escape_fn=None, num_samples=None)
```

Used in sequential enumeration over discrete variables.

Given a stochastic function and a queue, return a return value from a complete trace in the queue.

Parameters
• **fn** – a stochastic function (callable containing Pyro primitive calls)
• **queue** – a queue data structure like multiprocessing.Queue to hold partial traces
• **max_tries** – maximum number of attempts to compute a single complete trace
• **extend_fn** – function (possibly stochastic) that takes a partial trace and a site, and returns a list of extended traces
• **escape_fn** – function (possibly stochastic) that takes a partial trace and a site, and returns a boolean value to decide whether to exit
• **num_samples** – optional number of extended traces for extend_fn to return

Returns stochastic function decorated with poutine logic

scale *(fn=None, scale=None)*

Given a stochastic function with some sample statements and a positive scale factor, scale the score of all sample and observe sites in the function.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s), obs=1.0)
...     return z ** 2
```

`scale` multiplicatively scales the log-probabilities of sample sites:

```python
>>> scaled_model = scale(model, scale=0.5)
>>> scaled_tr = trace(scaled_model).get_trace(0.0)
>>> unscaled_tr = trace(model).get_trace(0.0)
>>> bool((scaled_tr.log_prob_sum() == 0.5 * unscaled_tr.log_prob_sum()).all())
True
```

Parameters

• **fn** – a stochastic function (callable containing Pyro primitive calls)
• **scale** – a positive scaling factor

Returns stochastic function decorated with a `ScaleMessenger`

trace *(fn=None, graph_type=None, param_only=None)*

Return a handler that records the inputs and outputs of primitive calls and their dependencies.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

We can record its execution using `trace` and use the resulting data structure to compute the log-joint probability of all of the sample sites in the execution or extract all parameters.

```python
>>> trace = trace(model).get_trace(0.0)
>>> logp = trace.log_prob_sum()
>>> params = [trace.nodes[name]["value"].unconstrained() for name in trace.param_nodes]
```
Parameters

- **fn** – a stochastic function (callable containing Pyro primitive calls)
- **graph_type** – string that specifies the kind of graph to construct
- **param_only** – if true, only records params and not samples

Returns stochastic function decorated with a `TraceMessenger`

9.2 Trace

class Trace(*args, **kwargs)

Bases: `object`

Execution trace data structure built on top of `networkx.DiGraph`.

An execution trace of a Pyro program is a record of every call to `pyro.sample()` and `pyro.param()` in a single execution of that program. Traces are directed graphs whose nodes represent primitive calls or input/output, and whose edges represent conditional dependence relationships between those primitive calls. They are created and populated by `poutine.trace`.

Each node (or site) in a trace contains the name, input and output value of the site, as well as additional metadata added by inference algorithms or user annotation. In the case of `pyro.sample`, the trace also includes the stochastic function at the site, and any observed data added by users.

Consider the following Pyro program:

```python
>>> def model(x):
...     s = pyro.param("s", torch.tensor(0.5))
...     z = pyro.sample("z", dist.Normal(x, s))
...     return z ** 2
```

We can record its execution using `pyro.poutine.trace` and use the resulting data structure to compute the log-joint probability of all of the sample sites in the execution or extract all parameters.

```python
>>> trace = pyro.poutine.trace(model).get_trace(0.0)
>>> logp = trace.log_prob_sum()
>>> params = [trace.nodes[name]["value"].unconstrained() for name in trace.param_nodes]
```

We can also inspect or manipulate individual nodes in the trace. `trace.nodes` contains a `collections.OrderedDict` of site names and metadata corresponding to `x`, `s`, `z`, and the return value:

```python
>>> list(name for name in trace.nodes.keys())
["_INPUT", "s", "z", "_RETURN"]
```

As in `networkx.DiGraph`, values of `trace.nodes` are dictionaries of node metadata:

```python
>>> trace.nodes["z"]
{'type': 'sample', 'name': 'z', 'is_observed': False, 'fn': Normal(), 'value': tensor(0.6480), 'args': {}, 'kwargs': {}, 'infer': {}, 'scale': 1.0, 'cond_indep_stack': (), 'done': True, 'stop': False, 'continuation': None}
```

'`infer' is a dictionary of user- or algorithm-specified metadata. 'args' and 'kwargs' are the arguments passed via `pyro.sample` to `fn.__call__` or `fn.log_prob`. 'scale' is used to scale the
log-probability of the site when computing the log-joint. 'cond_indep_stack' contains data structures corresponding to `pyro.irange` contexts appearing in the execution. 'done', 'stop', and 'continuation' are only used by Pyro's internals.

add_edge
Identical to `networkx.DiGraph.add_edge()`

add_node
```
(site_name, *args, **kwargs)
```

Parameters
- `site_name` *(string)* – the name of the site to be added

Adds a site to the trace.

Identical to `networkx.DiGraph.add_node()` but raises an error when attempting to add a duplicate node instead of silently overwriting.

compute_log_prob
```
(site_filter=<function <lambda>>)
```

Compute the site-wise log probabilities of the trace. Each `log_prob` has shape equal to the corresponding `batch_shape`. Each `log_prob_sum` is a scalar. Both computations are memoized.

compute_score_parts

Compute the batched local score parts at each site of the trace. Each `log_prob` has shape equal to the corresponding `batch_shape`. Each `log_prob_sum` is a scalar. All computations are memoized.

copy

Makes a shallow copy of self with nodes and edges preserved. Identical to `networkx.DiGraph.copy()`, but preserves the type and the self.graph_type attribute

edges

Identical to `networkx.DiGraph.edges`

graph

Identical to `networkx.DiGraph.graph`

in_degree

Identical to `networkx.DiGraph.in_degree()`

is_directed

Identical to `networkx.DiGraph.is_directed`

iter_stochastic_nodes

Returns an iterator over stochastic nodes in the trace.

log_prob_sum
```
(site_filter=<function <lambda>>)
```

Compute the site-wise log probabilities of the trace. Each `log_prob` has shape equal to the corresponding `batch_shape`. Each `log_prob_sum` is a scalar. The computation of `log_prob_sum` is memoized.

Returns
- total log probability.

Return type
- `torch.Tensor`

nodes

Identical to `networkx.DiGraph.nodes`

nonreparam_stochastic_nodes

Returns a list of names of sample sites whose stochastic functions are not reparameterizable primitive distributions

observation_nodes

Returns a list of names of observe sites

param_nodes
Returns a list of names of param sites

remove_node
Identical to networkx.DiGraph.remove_node()

reparameterized_nodes
Returns a list of names of sample sites whose stochastic functions are reparameterizable primitive distributions

stochastic_nodes
Returns a list of names of sample sites

successors
Identical to networkx.DiGraph.successors()

9.3 Messengers

Messenger objects contain the implementations of the effects exposed by handlers. Advanced users may modify the implementations of messengers behind existing handlers or write new messengers that implement new effects and compose correctly with the rest of the library.

9.3.1 Messenger

class Messenger

Context manager class that modifies behavior and adds side effects to stochastic functions i.e. callables containing Pyro primitive statements.

This is the base Messenger class. It implements the default behavior for all Pyro primitives, so that the joint distribution induced by a stochastic function fn is identical to the joint distribution induced by Messenger()(fn).

Class of transformers for messages passed during inference. Most inference operations are implemented in subclasses of this.

9.3.2 BlockMessenger

class BlockMessenger

This Messenger selectively hides Pyro primitive sites from the outside world. Default behavior: block everything. BlockMessenger has a flexible interface that allows users to specify in several different ways which sites should be hidden or exposed.

A site is hidden if at least one of the following holds:

1. msg[“name"] in hide
2. msg[“type"] in hide_types
3. msg[“name"] not in expose and msg[“type"] not in expose_types
4. hide_all == True and hide, hide_types, and expose_types are all None
For example, suppose the stochastic function \(fn \) has two sample sites “a” and “b”. Then any poutine outside of \(\text{BlockMessenger}(fn, \text{hide}=["a"]) \) will not be applied to site “a” and will only see site “b”:

```python
>>> def fn():
...     a = pyro.sample("a", dist.Normal(0., 1.))
...     return pyro.sample("b", dist.Normal(a, 1.))
```

```python
>>> fn_inner = TraceMessenger()(fn)
>>> fn_outer = TraceMessenger()(BlockMessenger(hide=["a"])(TraceMessenger()(fn)))
>>> trace_inner = fn_inner.get_trace()
>>> trace_outer = fn_outer.get_trace()
```

See the constructor for details.

Parameters

- \(\text{hide_all} \) (bool) – hide all sites
- \(\text{expose_all} \) (bool) – expose all sites normally
- \(\text{hide} \) (list) – list of site names to hide, rest will be exposed normally
- \(\text{expose} \) (list) – list of site names to expose, rest will be hidden
- \(\text{hide_types} \) (list) – list of site types to hide, rest will be exposed normally
- \(\text{expose_types} \) (list) – list of site types to expose normally, rest will be hidden

9.3.3 BroadcastMessenger

class BroadcastMessenger

Bases: `pyro.poutine.messenger.Messenger`

`BroadcastMessenger` automatically broadcasts the batch shape of the stochastic function at a sample site when inside a single or nested `irange` context. The existing `batch_shape` must be broadcastable with the size of the `irange` contexts installed in the `cond_indep_stack`.

9.3.4 ConditionMessenger

class ConditionMessenger

\(data \)

Bases: `pyro.poutine.messenger.Messenger`

Adds values at observe sites to condition on data and override sampling

9.3.5 EscapeMessenger

class EscapeMessenger

\(escape_fn \)

Bases: `pyro.poutine.messenger.Messenger`

Messenger that does a nonlocal exit by raising a `util.NonlocalExit` exception
9.3.6 IndepMessenger

class CondIndepStackFrame
 Bases: pyro.poutine.indep_messenger.CondIndepStackFrame

 vectorized

class IndepMessenger(name, size, dim=None)
 Bases: pyro.poutine.messenger.Messenger

 This messenger keeps track of stack of independence information declared by nested irange and iarange contexts. This information is stored in a cond_indep_stack at each sample/observe site for consumption by TraceMessenger.

 next_context()
 Increments the counter.

9.3.7 LiftMessenger

class LiftMessenger(prior)
 Bases: pyro.poutine.messenger.Messenger

 Messenger which “lifts” parameters to random samples. Given a stochastic function with param calls and a prior, creates a stochastic function where all param calls are replaced by sampling from prior.

 Prior should be a callable or a dict of names to callables.

9.3.8 ReplayMessenger

class ReplayMessenger(trace=None, params=None)
 Bases: pyro.poutine.messenger.Messenger

 Messenger for replaying from an existing execution trace.

9.3.9 ScaleMessenger

class ScaleMessenger(scale)
 Bases: pyro.poutine.messenger.Messenger

 This messenger rescales the log probability score.

 This is typically used for data subsampling or for stratified sampling of data (e.g. in fraud detection where negatives vastly outnumber positives).

 Parameters scale(float or torch.Tensor) – a positive scaling factor

9.3.10 TraceMessenger

class TraceHandler(msngr, fn)
 Bases: object

 Execution trace poutine.

 A TraceHandler records the input and output to every Pyro primitive and stores them as a site in a Trace(). This should, in theory, be sufficient information for every inference algorithm (along with the implicit computational graph in the Variables?)
We can also use this for visualization.

```python
get_trace(*args, **kwargs)
```

Returns data structure

Return type `pyro.poutine.Trace`

Helper method for a very common use case. Calls this poutine and returns its trace instead of the function’s return value.

```python
trace
```

class `TraceMessenger`(`graph_type=None, param_only=None)`

Bases: `pyro.poutine.messenger.Messenger`

Execution trace messenger.

A TraceMessenger records the input and output to every Pyro primitive and stores them as a site in a Trace(). This should, in theory, be sufficient information for every inference algorithm (along with the implicit computational graph in the Variables?)

We can also use this for visualization.

```python
get_trace()
```

Returns data structure

Return type `pyro.poutine.Trace`

Helper method for a very common use case. Returns a shallow copy of `self.trace`.

```python
identify_dense_edges(trace)
```

Modifies a trace in-place by adding all edges based on the `cond_indep_stack` information stored at each site.

9.4 Runtime

exception `NonlocalExit`(`site, *args, **kwargs)`

Bases: `exceptions.Exception`

Exception for exiting nonlocally from poutine execution.

Used by `poutine.EscapeMessenger` to return site information.

```python
reset_stack()
```

Reset the state of the frames remaining in the stack. Necessary for multiple re-executions in `poutine.queue`.

```python
am_i_wrapped()
```

Checks whether the current computation is wrapped in a `poutine`. **returns:** bool

```python
apply_stack(initial_msg)
```

Execute the effect stack at a single site according to the following scheme:

1. For each `Messenger` in the stack from bottom to top, execute `Messenger._process_message` with the message; if the message field “stop” is True, stop; otherwise, continue
2. Apply default behavior (`default_process_message`) to finish remaining site execution
3. For each `Messenger` in the stack from top to bottom, execute `_postprocess_message` to update the message and internal messenger state with the site results
4. If the message field “continuation” is not `None`, call it with the message

Parameters `initial_msg(dict)` — the starting version of the trace site
Returns None

default_process_message(msg)
Default method for processing messages in inference. :param msg: a message to be processed :returns: None

validate_message(msg)
Asserts that the message has a valid format. :returns: None

9.5 Utilities

all_escape(trace, msg)
Parameters
• trace – a partial trace
• msg – the message at a Pyro primitive site
Returns boolean decision value
Utility function that checks if a site is not already in a trace.
Used by EscapeMessenger to decide whether to do a nonlocal exit at a site. Subroutine for approximately integrating out variables for variance reduction.

discrete_escape(trace, msg)
Parameters
• trace – a partial trace
• msg – the message at a Pyro primitive site
Returns boolean decision value
Utility function that checks if a sample site is discrete and not already in a trace.
Used by EscapeMessenger to decide whether to do a nonlocal exit at a site. Subroutine for integrating out discrete variables for variance reduction.

enum_extend(trace, msg, num_samples=None)
Parameters
• trace – a partial trace
• msg – the message at a Pyro primitive site
• num_samples – maximum number of extended traces to return.
Returns a list of traces, copies of input trace with one extra site
Utility function to copy and extend a trace with sites based on the input site whose values are enumerated from the support of the input site’s distribution.
Used for exact inference and integrating out discrete variables.

mc_extend(trace, msg, num_samples=None)
Parameters
• trace – a partial trace
• msg – the message at a Pyro primitive site
• num_samples – maximum number of extended traces to return.
Returns a list of traces, copies of input trace with one extra site

Utility function to copy and extend a trace with sites based on the input site whose values are sampled from the input site’s function.

Used for Monte Carlo marginalization of individual sample sites.

`prune_subsample_sites(trace)`
Copies and removes all subsample sites from a trace.

`site_is_subsample(site)`
Determines whether a trace site originated from a subsample statement inside an `iarange`.

The `pyro.ops` module implements high-level utilities that are mostly independent of the rest of Pyro.

class DualAveraging

```python
prox_center=0, t0=10, kappa=0.75, gamma=0.05
```

Bases: `object`

Dual Averaging is a scheme to solve convex optimization problems. It belongs to a class of subgradient methods which uses subgradients to update parameters (in primal space) of a model. Under some conditions, the averages of generated parameters during the scheme are guaranteed to converge to an optimal value. However, a counter-intuitive aspect of traditional subgradient methods is “new subgradients enter the model with decreasing weights” (see [1]). Dual Averaging scheme solves that phenomenon by updating parameters using weights equally for subgradients (which lie in a dual space), hence we have the name “dual averaging”.

This class implements a dual averaging scheme which is adapted for Markov chain Monte Carlo (MCMC) algorithms. To be more precise, we will replace subgradients by some statistics calculated during an MCMC trajectory. In addition, introducing some free parameters such as `t0` and `kappa` is helpful and still guarantees the convergence of the scheme.

References

Parameters

- `prox_center (float)` – A “prox-center” parameter introduced in [1] which pulls the primal sequence towards it.
- `t0 (float)` – A free parameter introduced in [2] that stabilizes the initial steps of the scheme.
- `kappa (float)` – A free parameter introduced in [2] that controls the weights of steps of the scheme. For a small `kappa`, the scheme will quickly forget states from early steps. This should be a number in (0.5, 1].
- `gamma (float)` – A free parameter which controls the speed of the convergence of the scheme.
step(g)

Updates states of the scheme given a new statistic/subgradient g.

Parameters g (**float**) – A statistic calculated during an MCMC trajectory or subgradient.

get_state()

Returns the latest x_t and average of $\{x_i\}_{i=1}^t$ in primal space.

velocity_verlet($z, r, potential_fn, step_size, num_steps=1$)

Second order symplectic integrator that uses the velocity verlet algorithm.

Parameters

- z (**dict**) – dictionary of sample site names and their current values (type **Tensor**).
- r (**dict**) – dictionary of sample site names and corresponding momenta (type **Tensor**).
- $potential_fn$ (**callable**) – function that returns potential energy given z for each sample site. The negative gradient of the function with respect to z determines the rate of change of the corresponding sites’ momenta r.
- $step_size$ (**float**) – step size for each time step iteration.
- num_steps (**int**) – number of discrete time steps over which to integrate.

Return tuple ($z_{\text{next}}, r_{\text{next}}$) final position and momenta, having same types as (z, r).

single_step_velocity_verlet($z, r, potential_fn, step_size, z_grads=None$)

A special case of **velocity_verlet** integrator where $num_steps=1$. It is particular helpful for NUTS kernel.

Parameters z_grads (**torch.Tensor**) – optional gradients of potential energy at current z.

Return tuple ($z_{\text{next}}, r_{\text{next}}, z_grads, potential_energy$) next position and momenta, together with the potential energy and its gradient w.r.t. z_{next}.

newton_step_2d($loss, x, trust_radius=None$)

Performs a Newton update step to minimize loss on a batch of 2-dimensional variables, optionally regularizing to constrain to a trust region.

$loss$ must be twice-differentiable as a function of x. If $loss$ is $2+d$-times differentiable, then the return value of this function is d-times differentiable.

When $loss$ is interpreted as a negative log probability density, then the return value of this function can be used to construct a Laplace approximation $\text{MultivariateNormal}(\text{mode}, \text{cov})$.

Warning: Take care to detach the result of this function when used in an optimization loop. If you forget to detach the result of this function during optimization, then backprop will propagate through the entire iteration process, and worse will compute two extra derivatives for each step.

Example use inside a loop:

```python
x = torch.zeros(1000, 2)  # arbitrary initial value
for step in range(100):
    x = x.detach()  # block gradients through previous steps
    x.requires_grad = True  # ensure loss is differentiable wrt x
    loss = my_loss_function(x)
    x = newton_step_2d(loss, x, trust_radius=1.0)
# the final x is still differentiable
```

Parameters
- **loss** (*torch.Tensor*) – A scalar function of \(x \) to be minimized.

- **\(x \)** (*torch.Tensor*) – A dependent variable with rightmost size of 2.

- **trust_radius** (*float*) – An optional trust region trust_radius. The updated value mode of this function will be within trust_radius of the input \(x \).

Returns A pair (mode, cov) where mode is an updated tensor of the same shape as the original value \(x \), and cov is an estimate of the covariance 2x2 matrix with cov.shape == x.shape[:-1] + (2,2).

Return type tuple
Automatic Guide Generation

The `pyro.contrib.autoguide` module provides algorithms to automatically generate guides from simple models, for use in `SVI`. For example to generate a mean field Gaussian guide:

```python
def model():
    ...

guide = AutoDiagonalNormal(model)   # a mean field guide
svi = SVI(model, guide, Adam({'lr': 1e-3}), Trace_ELBO())
```

Automatic guides can also be combined using `pyro.poutine.block()` and `AutoGuideList`.

11.1 AutoGuide

```python
class AutoGuide(model, prefix='auto')
    Bases: object

    Base class for automatic guides.

    Derived classes must implement the `__call__()` method.

    Auto guides can be used individually or combined in an `AutoGuideList` object.

    Parameters

    * model (callable) – a pyro model
    * prefix (str) – a prefix that will be prefixed to all param internal sites

    __call__(*args, **kwargs)

    A guide with the same *args, **kwargs as the base model.

    Returns

    A dict mapping sample site name to sampled value.

    Return type  dict
```
sample_latent(*args, **kwargs)
 Samples an encoded latent given the same *args, **kwargs as the base model.

11.2 AutoGuideList

class AutoGuideList(model, prefix='auto')
 Bases: pyro.contrib.autoguide.AutoGuide
 Container class to combine multiple automatic guides.
 Example usage:

    ```python
    guide = AutoGuideList(model)
    guide.add(AutoDiagonalNormal(poutine.block(model, hide=['assignment'])))
    guide.add(AutoDiscreteParallel(poutine.block(model, expose=['assignment'])))
    svi = SVI(model, guide, optim, Trace_ELBO())
    ```

 Parameters
 - model (callable) – a Pyro model
 - prefix (str) – a prefix that will be prefixed to all param internal sites

 __call__(*args, **kwargs)
 A composite guide with the same *args, **kwargs as the base model.
 Returns A dict mapping sample site name to sampled value.
 Return type dict

 add(part)
 Add an automatic guide for part of the model. The guide should have been created by blocking the model
 to restrict to a subset of sample sites. No two parts should operate on any one sample site.
 Parameters part (AutoGuide) – a partial guide to add

11.3 AutoDelta

class AutoDelta(model, prefix='auto')
 Bases: pyro.contrib.autoguide.AutoGuide
 This implementation of AutoGuide uses Delta distributions to construct a MAP guide over the entire latent
 space. The guide does not depend on the model’s *args, **kwargs.
 Usage:

    ```python
    guide = AutoDelta(model)
    svi = SVI(model, guide, optim, ...)  
    ```

 By default latent variables are randomly initialized by the model. To change this default behavior the user should
 call `pyro.param()` before beginning inference, with "auto_" prefixed to the targetd sample site names e.g. for
 sample sites named “level” and “concentration”, initialize via:

    ```python
    pyro.param("auto_level", torch.tensor([-1., 0., 1.]))
    pyro.param("auto_concentration", torch.ones(k),
             constraint=constraints.positive)
    ```
__call__(*args, **kwargs)
An automatic guide with the same *args, **kwargs as the base model.

Returns A dict mapping sample site name to sampled value.

Return type dict

median(*args, **kwargs)
Returns the posterior median value of each latent variable.

Returns A dict mapping sample site name to median tensor.

Return type dict

11.4 AutoContinuous

class AutoContinuous(model, prefix='auto')
Bases: pyro.contrib.autoguide.AutoGuide

Base class for implementations of continuous-valued Automatic Differentiation Variational Inference [1]. Each derived class implements its own sample latent() method.

Assumes model structure and latent dimension are fixed, and all latent variables are continuous.

Parameters model (callable) – a Pyro model

Reference:

__call__(*args, **kwargs)
An automatic guide with the same *args, **kwargs as the base model.

Returns A dict mapping sample site name to sampled value.

Return type dict

median(*args, **kwargs)
Returns the posterior median value of each latent variable.

Returns A dict mapping sample site name to median tensor.

Return type dict

quintiles(quantiles, *args, **kwargs)
Returns posterior quantiles each latent variable. Example:

print(guide.quantiles([0.05, 0.5, 0.95]))

Parameters quantiles (torch.Tensor or list) – A list of requested quantiles between 0 and 1.

Returns A dict mapping sample site name to a list of quantile values.

Return type dict

sample_latent(*args, **kwargs)
Samples an encoded latent given the same *args, **kwargs as the base model.
11.5 AutoMultivariateNormal

class AutoMultivariateNormal(model, prefix='auto')
 Bases: pyro.contrib.autoguide.AutoContinuous

This implementation of AutoContinuous uses a Cholesky factorization of a Multivariate Normal distribution to construct a guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.

Usage:

```python
guide = AutoMultivariateNormal(model)
svi = SVI(model, guide, ...)
```

By default the mean vector is initialized to zero and the Cholesky factor is initialized to the identity. To change this default behavior the user should call `pyro.param()` before beginning inference, e.g.:

```python
latent_dim = 10
pyro.param("auto_loc", torch.randn(latent_dim))
pyro.param("auto_scale_tril", torch.tril(torch.rand(latent_dim)),
    constraint=constraints.lower_cholesky)
```

`sample_latent(*args, **kwargs)`
Samples the (single) multivariate normal latent used in the auto guide.

11.6 AutoDiagonalNormal

class AutoDiagonalNormal(model, prefix='auto')
 Bases: pyro.contrib.autoguide.AutoContinuous

This implementation of AutoContinuous uses a Normal distribution with a diagonal covariance matrix to construct a guide over the entire latent space. The guide does not depend on the model’s *args, **kwargs.

Usage:

```python
guide = AutoDiagonalNormal(model)
svi = SVI(model, guide, ...)
```

By default the mean vector is initialized to zero and the scale is initialized to the identity. To change this default behavior the user should call `pyro.param()` before beginning inference, e.g.:

```python
latent_dim = 10
pyro.param("auto_loc", torch.randn(latent_dim))
pyro.param("auto_scale", torch.ones(latent_dim),
    constraint=constraints.positive)
```

`sample_latent(*args, **kwargs)`
Samples the (single) diagonal normal latent used in the auto guide.

11.7 AutoLowRankMultivariateNormal

class AutoLowRankMultivariateNormal(model, prefix='auto', rank=1)
 Bases: pyro.contrib.autoguide.AutoContinuous
This implementation of *AutoContinuous* uses a low rank plus diagonal Multivariate Normal distribution to construct a guide over the entire latent space. The guide does not depend on the model's *args, **kwargs*.

Usage:

```python
guide = AutoLowRankMultivariateNormal(model, rank=10)
svi = SVI(model, guide, ...)
```

By default the D_{term} is initialized to $1/2$ and the W_{term} is initialized randomly such that $W_{\text{term}}.t() \cdot W_{\text{term}}$ is half the identity matrix. To change this default behavior the user should call `pyro.param()` before beginning inference, e.g.:

```python
latent_dim = 10
pyro.param("auto_loc", torch.randn(latent_dim))
pyro.param("auto_W_term", torch.randn(latent_dim))
pyro.param("auto_D_term", torch.randn(latent_dim).exp()),
        constraint=constraints.positive)
```

Parameters

- `model (callable)` – a generative model
- `rank (int)` – the rank of the low-rank part of the covariance matrix
- `prefix (str)` – a prefix that will be prefixed to all param internal sites

sample_latent (*args, **kwargs)

Samples the (single) multivariate normal latent used in the auto guide.

11.8 AutoDiscreteParallel

class AutoDiscreteParallel *(model, prefix='auto')*

Bases: *pyro.contrib.autoguide.AutoGuide*

A discrete mean-field guide that learns a latent discrete distribution for each discrete site in the model.

```
__call__(*args, **kwargs)
```

An automatic guide with the same *args, **kwargs as the base model.

Returns A dict mapping sample site name to sampled value.

Return type *dict*
Gaussian Processes

See the Gaussian Processes tutorial for an introduction.

12.1 Models

12.1.1 GPModel

class GPModel(X, y, kernel, mean_function=None, jitter=1e-06, name=None)

Bases: pyro.contrib.gp.util.Parameterized

Base class for Gaussian Process models.

The core of a Gaussian Process is a covariance function \(k \) which governs the similarity between input points. Given \(k \), we can establish a distribution over functions \(f \) by a multivariate normal distribution

\[
p(f(X)) = \mathcal{N}(0, k(X, X)),
\]

where \(X \) is any set of input points and \(k(X, X) \) is a covariance matrix whose entries are outputs \(k(x, z) \) of \(k \) over input pairs \((x, z)\). This distribution is usually denoted by

\[
f \sim \mathcal{GP}(0, k).
\]

Note: Generally, beside a covariance matrix \(k \), a Gaussian Process can also be specified by a mean function \(m \) (which is a zero-value function by default). In that case, its distribution will be

\[
p(f(X)) = \mathcal{N}(m(X), k(X, X)).
\]

Gaussian Process models are Parameterized subclasses. So its parameters can be learned, set priors, or fixed by using corresponding methods from Parameterized. A typical way to define a Gaussian Process model is
```python
>>> X = torch.tensor([[1., 5, 3], [4, 3, 7]])
>>> y = torch.tensor([2., 1])
>>> kernel = gp.kernels.RBF(input_dim=3)
>>> kernel.set_prior("variance", dist.Uniform(torch.tensor(0.5), torch.tensor(1.0)))
>>> kernel.set_prior("lengthscale", dist.Uniform(torch.tensor(1.0), torch.tensor(3.0)))
>>> gpr = gp.models.GPRegression(X, y, kernel)
```

There are two ways to train a Gaussian Process model:

- Using an MCMC algorithm (in module `pyro.infer.mcmc`) on `model()` to get posterior samples for the Gaussian Process's parameters. For example:

  ```python
  >>> hmc_kernel = HMC(gpr.model)
  >>> mcmc_run = MCMC(hmc_kernel, num_samples=10)
  >>> posterior_ls_trace = []  # store lengthscale trace
  >>> ls_name = param_with_module_name(gpr.kernel.name, "lengthscale")
  >>> for trace, _ in mcmc_run._traces():
  ...     posterior_ls_trace.append(trace.nodes[ls_name]["value"])
  ```

- Using a variational inference (e.g. `SVI`) on the pair `model()`, `guide()` as in SVI tutorial:

  ```python
  >>> optimizer = pyro.optim.Adam({"lr": 0.01})
  >>> svi = SVI(gpr.model, gpr.guide, optimizer, loss=Trace_ELBO())
  >>> for i in range(1000):
  ...     svi.step()
  ```

To give a prediction on new dataset, simply use `forward()` like any PyTorch `torch.nn.Module`:

```python
>>> Xnew = torch.tensor([[2., 3, 1]])
>>> f_loc, f_cov = gpr(Xnew, full_cov=True)
```

Reference:

Parameters

- **X** (*torch.Tensor*) – A input data for training. Its first dimension is the number of data points.
- **y** (*torch.Tensor*) – An output data for training. Its last dimension is the number of data points.
- **kernel** (*Kernel*) – A Pyro kernel object, which is the covariance function k.
- **mean_function** (*callable*) – An optional mean function m of this Gaussian process. By default, we use zero mean.
- **jitter** (*float*) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.
- **name** (*str*) – Name of this model.

model()

A “model” stochastic function. If `self.y` is `None`, this method returns mean and variance of the Gaussian Process prior.
guide()
A “guide” stochastic function to be used in variational inference methods. It also gives posterior information to the method forward() for prediction.

forward(Xnew, full_cov=False)
Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \(X_{new}\):

\[
p(f^* | X_{new}, X, y, k, \theta),
\]

where \(\theta\) are parameters of this model.

Note: Model’s parameters \(\theta\) together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- **Xnew** (torch.Tensor) – A input data for testing. Note that Xnew.shape[1:] must be the same as X.shape[1:].
- **full_cov** (bool) – A flag to decide if we want to predict full covariance matrix or just variance.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{new}))\)

Return type tuple(torch.Tensor, torch.Tensor)

set_data(X, y=None)
Sets data for Gaussian Process models.

Some examples to utilize this method are:

- Batch training on a sparse variational model:

```python
>>> Xu = torch.tensor([[[1., 0, 2]]])  # inducing input
>>> likelihood = gp.likelihoods.Gaussian()
>>> vsgp = gp.models.VariationalSparseGP(X, y, kernel, Xu, likelihood)
>>> svi = SVI(vsgp.model, vsgp.guide, optimizer, Trace_ELBO())
>>> batched_X, batched_y = X.split(split_size=10), y.split(split_size=10)
>>> for Xi, yi in zip(batched_X, batched_y):
...    vsgp.set_data(Xi, yi)
...    svi.step()
```

- Making a two-layer Gaussian Process stochastic function:

```python
>>> gpr1 = gp.models.GPRegression(X, None, kernel, name="GPR1")
>>> Z, _ = gpr1.model()
>>> gpr2 = gp.models.GPRegression(Z, y, kernel, name="GPR2")
>>> def two_layer_model():
...    Z, _ = gpr1.model()
...    gpr2.set_data(Z, y)
...    return gpr2.model()
```

References:

Parameters

- \(\mathbf{X} (\text{torch.Tensor}) \) – A input data for training. Its first dimension is the number of data points.
- \(\mathbf{y} (\text{torch.Tensor}) \) – An output data for training. Its last dimension is the number of data points.

\texttt{optimize}(\text{optimizer}=\text{None}, \text{loss}=\text{None}, \text{num}_\text{steps}=1000)

A convenient method to optimize parameters for the Gaussian Process model using SVI.

Parameters

- \texttt{optimizer}(\text{PyroOptim}) – A Pyro optimizer.
- \texttt{loss}(\text{ELBO}) – A Pyro loss instance.
- \texttt{num_steps}(\text{int}) – Number of steps to run SVI.

Returns

a list of losses during the training procedure

Return type

list

12.1.2 GPRegression

\texttt{class \textit{GPRegression}(X, y, kernel, noise=\text{None}, mean_function=\text{None}, jitter=1e-06, name=’GP_R’)}

\texttt{Bases: pyro.contrib.gp.models.model.GPModel}

Gaussian Process Regression model.

The core of a Gaussian Process is a covariance function \(k \) which governs the similarity between input points. Given \(k \), we can establish a distribution over functions \(f \) by a multivariate normal distribution

\[p(f(X)) = \mathcal{N}(0, k(X, X)), \]

where \(X \) is any set of input points and \(k(X, X) \) is a covariance matrix whose entries are outputs \(k(x, z) \) of \(k \) over input pairs \((x, z) \). This distribution is usually denoted by

\[f \sim \mathcal{GP}(0, k). \]

\textbf{Note:} Generally, beside a covariance matrix \(k \), a Gaussian Process can also be specified by a mean function \(m \) (which is a zero-value function by default). In that case, its distribution will be

\[p(f(X)) = \mathcal{N}(m(X), k(X, X)). \]

Given inputs \(X \) and their noisy observations \(y \), the Gaussian Process Regression model takes the form

\[f \sim \mathcal{GP}(0, k(X, X)), \]
\[y \sim f + \epsilon, \]

where \(\epsilon \) is Gaussian noise.

\textbf{Note:} This model has \(\mathcal{O}(N^3) \) complexity for training, \(\mathcal{O}(N^3) \) complexity for testing. Here, \(N \) is the number of train inputs.

Reference:

Parameters

- \(X (\text{torch.Tensor}) \) – A input data for training. Its first dimension is the number of data points.
- \(y (\text{torch.Tensor}) \) – An output data for training. Its last dimension is the number of data points.
- \(\text{kernel} (\text{Kernel}) \) – A Pyro kernel object, which is the covariance function \(k \).
- \(\text{noise} (\text{torch.Tensor}) \) – Variance of Gaussian noise of this model.
- \(\text{mean_function} (\text{callable}) \) – An optional mean function \(m \) of this Gaussian process. By default, we use zero mean.
- \(\text{jitter} (\text{float}) \) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.
- \(\text{name} (\text{str}) \) – Name of this model.

model ()
guide ()

forward (Xnew, full_cov=False, noiseless=True)
Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \(X_{\text{new}} \):

\[
P(f^* | X_{\text{new}}, X, y, k, \epsilon) = N(\text{loc}, \text{cov}).
\]

Note: The noise parameter \(\text{noise} (\epsilon) \) together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- \(\text{Xnew} (\text{torch.Tensor}) \) – A input data for testing. Note that \(\text{Xnew}.\text{shape}[1:] \) must be the same as \(\text{self.X}.\text{shape}[1:] \).
- \(\text{full_cov} (\text{bool}) \) – A flag to decide if we want to predict full covariance matrix or just variance.
- \(\text{noiseless} (\text{bool}) \) – A flag to decide if we want to include noise in the prediction output or not.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{\text{new}})) \)

Return type tuple(\text{torch.Tensor}, \text{torch.Tensor})

12.1.3 SparseGPRegression
class SparseGPRegression (X, y, kernel, Xu, noise=None, mean_function=None, approx=None, jitter=1e-06, name='SGPR')
Bases: pyro.contrib.gp.models.model.GPModel

Sparse Gaussian Process Regression model.

In \text{GPRegression} model, when the number of input data \(X \) is large, the covariance matrix \(k(X, X) \) will require a lot of computational steps to compute its inverse (for log likelihood and for prediction). By introducing
an additional inducing-input parameter X_u, we can reduce computational cost by approximate $k(X, X)$ by a low-rank Nymström approximation Q (see reference [1]), where

$$Q = k(X, X_u)k(X, X)^{-1}k(X_u, X).$$

Given inputs X, their noisy observations y, and the inducing-input parameters X_u, the model takes the form:

$$
\begin{align*}
 u & \sim \mathcal{GP}(0, k(X_u, X_u)), \\
 f & \sim q(f \mid X, X_u) = \mathbb{E}_{p(u)}q(f \mid X, X_u, u), \\
 y & \sim f + \epsilon,
\end{align*}
$$

where ϵ is Gaussian noise and the conditional distribution $q(f \mid X, X_u, u)$ is an approximation of

$$p(f \mid X, X_u, u) = \mathcal{N}(m, k(X, X) - Q),$$

whose terms m and $k(X, X) - Q$ is derived from the joint multivariate normal distribution:

$$[f, u] \sim \mathcal{GP}(0, k([X, X_u], [X, X_u])).$$

This class implements three approximation methods:

- **Deterministic Training Conditional (DTC):**

 $$q(f \mid X, X_u, u) = \mathcal{N}(m, 0),$$

 which in turns will imply

 $$f \sim \mathcal{N}(0, Q).$$

- **Fully Independent Training Conditional (FITC):**

 $$q(f \mid X, X_u, u) = \mathcal{N}(m, \text{diag}(k(X, X) - Q)),$$

 which in turns will correct the diagonal part of the approximation in DTC:

 $$f \sim \mathcal{N}(0, Q + \text{diag}(k(X, X) - Q)).$$

- **Variational Free Energy (VFE),** which is similar to DTC but has an additional *trace_term* in the model’s log likelihood. This additional term makes “VFE” equivalent to the variational approach in `SparseVariationalGP` (see reference [2]).

Note: This model has $O(NM^2)$ complexity for training, $O(NM^2)$ complexity for testing. Here, N is the number of train inputs, M is the number of inducing inputs.

References:

Parameters

- **X** (*torch.Tensor*) – A input data for training. Its first dimension is the number of data points.
- **y** (*torch.Tensor*) – An output data for training. Its last dimension is the number of data points.
- **kernel** (*Kernel*) – A Pyro kernel object, which is the covariance function \(k \).
- **Xu** (*torch.Tensor*) – Initial values for inducing points, which are parameters of our model.
- **noise** (*torch.Tensor*) – Variance of Gaussian noise of this model.
- **mean_function** (*callable*) – An optional mean function \(m \) of this Gaussian process. By default, we use zero mean.
- **approx** (*str*) – One of approximation methods: “DTC”, “FITC”, and “VFE” (default).
- **jitter** (*float*) – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.
- **name** (*str*) – Name of this model.

```
model()
guide()
forward(Xnew, full_cov=False, noiseless=True)
```

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \(X_{new} \):

\[
p(f^* \mid X_{new}, X, y, k, X_u, \epsilon) = \mathcal{N}(loc, cov).
\]

Note: The noise parameter **noise** (\(\epsilon \)), the inducing-point parameter **Xu**, together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- **Xnew** (*torch.Tensor*) – A input data for testing. Note that Xnew.shape[1:] must be the same as self.X.shape[1:].
- **full_cov** (*bool*) – A flag to decide if we want to predict full covariance matrix or just variance.
- **noiseless** (*bool*) – A flag to decide if we want to include noise in the prediction output or not.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{new})) \)

Return type tuple(*torch.Tensor, torch.Tensor*)

12.1.4 VariationalGP

```
class VariationalGP(X, y, kernel, likelihood, mean_function=None, latent_shape=None, whiten=False, jitter=1e-06, name='VGP')
Bases: pyro.contrib.gp.models.model.GPModel
```

Variational Gaussian Process model.
This model deals with both Gaussian and non-Gaussian likelihoods. Given inputs X and their noisy observations y, the model takes the form

$$f \sim \mathcal{GP}(0, k(X, X)),$$
$$y \sim p(y) = p(y \mid f)p(f),$$

where $p(y \mid f)$ is the likelihood.

We will use a variational approach in this model by approximating $q(f)$ to the posterior $p(f \mid y)$. Precisely, $q(f)$ will be a multivariate normal distribution with two parameters f_{loc} and $f_{\text{scale_tril}}$, which will be learned during a variational inference process.

Note: This model can be seen as a special version of `SparseVariationalGP` model with $X_u = X$.

Note: This model has $O(N^3)$ complexity for training, $O(N^3)$ complexity for testing. Here, N is the number of train inputs. Size of variational parameters is $O(N^2)$.

Parameters

- **X** (`torch.Tensor`) – A input data for training. Its first dimension is the number of data points.
- **y** (`torch.Tensor`) – An output data for training. Its last dimension is the number of data points.
- **kernel** (`Kernel`) – A Pyro kernel object, which is the covariance function k.
- **Likelihood likelihood** (`likelihood`) – A likelihood object.
- **mean_function** (`callable`) – An optional mean function m of this Gaussian process. By default, we use zero mean.
- **latent_shape** (`torch.Size`) – Shape for latent processes (`batch_shape` of $q(f)$). By default, it equals to output batch shape $y.shape[-1]$. For the multi-class classification problems, `latent_shape[-1]` should corresponse to the number of classes.
- **whiten** (`bool`) – A flag to tell if variational parameters f_{loc} and $f_{\text{scale_tril}}$ are transformed by the inverse of Lff, where Lff is the lower triangular decomposition of $kernel(X, X)$. Enable this flag will help optimization.
- **jitter** (`float`) – A small positive term which is added into the diagonal part of a covariance matrix to help stablize its Cholesky decomposition.
- **name** (`str`) – Name of this model.

model()

guide()

forward(*Xnew*, *full_cov=False*)

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data X_{new}:

$$p(f^* \mid X_{\text{new}}, X, y, k, f_{\text{loc}}, f_{\text{scale_tril}}) = \mathcal{N}(\text{loc}, \text{cov}).$$
Variational parameters f_{loc}, f_{scale}, together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- X_{new} (torch.Tensor) – A input data for testing. Note that $X_{\text{new}}.\text{shape}[1:]$ must be the same as self.X.shape[1:].

- full_cov (bool) – A flag to decide if we want to predict full covariance matrix or just variance.

Returns loc and covariance matrix (or variance) of $p(f^*(X_{\text{new}}))$

Return type tuple(torch.Tensor, torch.Tensor)

12.1.5 VariationalSparseGP

class VariationalSparseGP (X, y, kernel, X_u, likelihood, mean_function=None, latent_shape=None, num_data=None, whiten=False, jitter=1e-06, name=’SVGP’)

Bases: pyro.contrib.gp.models.model.GPModel

Variational Sparse Gaussian Process model.

In VariationalGP model, when the number of input data X is large, the covariance matrix $k(X, X)$ will require a lot of computational steps to compute its inverse (for log likelihood and for prediction). This model introduces an additional inducing-input parameter X_u to solve that problem. Given inputs X, their noisy observations y, and the inducing-input parameters X_u, the model takes the form:

$$[f, u] \sim \mathcal{GP}(0, k([X, X_u], [X, X_u])),\]
$$

$$y \sim p(y \mid f)p(f),$$

where $p(y \mid f)$ is the likelihood.

We will use a variational approach in this model by approximating $q(f, u)$ to the posterior $p(f, u \mid y)$. Precisely, $q(f) = p(f \mid u)q(u)$, where $q(u)$ is a multivariate normal distribution with two parameters u_{loc} and u_{scale}, which will be learned during a variational inference process.

Note: This model can be learned using MCMC method as in reference [2]. See also GPModel.

Note: This model has $O(NM^2)$ complexity for training, $O(M^3)$ complexity for testing. Here, N is the number of train inputs, M is the number of inducing inputs. Size of variational parameters is $O(M^2)$.

References:

Parameters

- X (torch.Tensor) – A input data for training. Its first dimension is the number of data points.
Pyro Documentation, Release

- **\(y(\text{torch.Tensor}) \)** – An output data for training. Its last dimension is the number of data points.

- **kernel (\text{Kernel})** – A Pyro kernel object, which is the covariance function \(k \).

- **\(X_u(\text{torch.Tensor}) \)** – Initial values for inducing points, which are parameters of our model.

- **Likelihood likelihood (\text{likelihood})** – A likelihood object.

- **mean_function (\text{callable})** – An optional mean function \(m \) of this Gaussian process. By default, we use zero mean.

- **latent_shape (\text{torch.Size})** – Shape for latent processes (\text{batch_shape} of \(q(u) \)). By default, it equals to output batch shape \(y.shape[:-1] \). For the multi-class classification problems, \(\text{latent.shape[-1]} \) should correspond to the number of classes.

- **num_data (\text{int})** – The size of full training dataset. It is useful for training this model with mini-batch.

- **whiten (\text{bool})** – A flag to tell if variational parameters \(u_{\text{loc}} \) and \(u_{\text{scale.tril}} \) are transformed by the inverse of \(\text{Luu} \), where \(\text{Luu} \) is the lower triangular decomposition of \(\text{kernel}(X_u, X_u) \). Enable this flag will help optimization.

- **jitter (\text{float})** – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

- **name (\text{str})** – Name of this model.

```
model()
guide()
forward(Xnew, full_cov=False)
```

Computes the mean and covariance matrix (or variance) of Gaussian Process posterior on a test input data \(X_{\text{new}} \):

\[
p(f^* \mid X_{\text{new}}, X, y, k, X_u, u_{\text{loc}}, u_{\text{scale.tril}}) = N(\text{loc}, \text{cov}).
\]

Note: Variational parameters \(u_{\text{loc}}, u_{\text{scale.tril}} \), the inducing-point parameter \(X_u \), together with kernel’s parameters have been learned from a training procedure (MCMC or SVI).

Parameters

- **\(X_{\text{new}}(\text{torch.Tensor}) \)** – A input data for testing. Note that \(X_{\text{new}}.\text{shape}[1:] \) must be the same as \(\text{self.X.shape}[1:] \).

- **full_cov (\text{bool})** – A flag to decide if we want to predict full covariance matrix or just variance.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{\text{new}})) \)

Return type tuple(\text{torch.Tensor}, \text{torch.Tensor})

class GPLVM (\text{base_model}, name=’GPLVM’)

Bases: \text{pyro.contrib.gp.util.Parameterized}

Gaussian Process Latent Variable Model (GPLVM) model.

GPLVM is a Gaussian Process model with its train input data is a latent variable. This model is useful for dimensional reduction of high dimensional data. Assume the mapping from low dimensional latent variable to...
is a Gaussian Process instance. Then the high dimensional data will play the role of train output y and our target is to learn latent inputs which best explain y. For the purpose of dimensional reduction, latent inputs should have lower dimensions than y.

We follows reference [1] to put a unit Gaussian prior to the input and approximate its posterior by a multivariate normal distribution with two variational parameters: X_{loc} and $X_{\text{scale_tril}}$.

For example, we can do dimensional reduction on Iris dataset as follows:

```python
>>> # With $y$ as the 2D Iris data of shape 150x4 and we want to reduce its dimension
>>> # to a tensor $X$ of shape 150x2, we will use GPLVM.
>>> # First, define the initial values for $X_{\text{loc}}$ parameter:
>>> X_loc = torch.zeros(150, 2)
>>> # Then, define a Gaussian Process model with input $X_{\text{loc}}$ and output $y$:
>>> kernel = gp.kernels.RBF(input_dim=2, lengthscale=torch.ones(2))
>>> Xu = torch.zeros(20, 2)  # initial inducing inputs of sparse model
>>> gpmodel = gp.models.SparseGPRegression(X_loc, y, kernel, Xu)
>>> # Finally, wrap gpmodel by GPLVM, optimize, and get the "learned" mean of $X$:
>>> gplvm = gp.models.GPLVM(gpmodel)
>>> gplvm.optimize()
>>> X = gplvm.get_param("X_loc")
```

Reference:

Parameters

- **base_model** (GPModel) – A Pyro Gaussian Process model object. Note that base_model.X will be the initial value for the variational parameter X_{loc}.

- **name** (str) – Name of this model.

model() guide() forward(**kwargs) optimize(optimizer=<pyro.optim.optim.PyroOptim object>, num_steps=1000) A convenient method to optimize parameters for GPLVM model using SVI.

Parameters

- **optimizer** (PyroOptim) – A Pyro optimizer.

- **num_steps** (int) – Number of steps to run SVI.

Returns a list of losses during the training procedure

Return type list
12.2 Kernels

12.2.1 Brownian

class Brownian (input_dim, variance=None, active_dims=None, name='Brownian')
Bases: pyro.contrib.gp.kernels.kernel.Kernel

This kernel corresponds to a two-sided Brownian motion (Wiener process):

\[k(x, z) = \begin{cases} \sigma^2 \min(|x|, |z|), & \text{if } x \cdot z \geq 0 \\ 0, & \text{otherwise} \end{cases} \]

Note that the input dimension of this kernel must be 1.

Reference:

forward (X, Z=None, diag=False)

12.2.2 Combination

class Combination (kern0, kern1, name=None)
Bases: pyro.contrib.gp.kernels.kernel.Kernel

Base class for kernels derived from a combination of kernels.

Parameters

• kern0 (Kernel) – First kernel to combine.
• kern1 (Kernel or numbers.Number) – Second kernel to combine.

12.2.3 Constant

class Constant (input_dim, variance=None, active_dims=None, name='Constant')
Bases: pyro.contrib.gp.kernels.kernel.Kernel

Implementation of Constant kernel:

\[k(x, z) = \sigma^2. \]

forward (X, Z=None, diag=False)

12.2.4 Coregionalize

class Coregionalize (input_dim, rank=None, components=None, diagonal=None, active_dims=None, name='coregionalize')
Bases: pyro.contrib.gp.kernels.kernel.Kernel

A kernel for the linear model of coregionalization \(k(x, z) = x^T(WW^T + D)z \) where \(W \) is an input_dim-by-rank matrix and typically rank < input_dim, and \(D \) is a diagonal matrix.

This generalizes the Linear kernel to multiple features with a low-rank-plus-diagonal weight matrix. The typical use case is for modeling correlations among outputs of a multi-output GP, where outputs are coded as distinct data points with one-hot coded features denoting which output each datapoint represents.
If only `rank` is specified, the kernel \((W W^T + D)\) will be randomly initialized to a matrix with expected value the identity matrix.

References:

Parameters

- `input_dim (int)` – Number of feature dimensions of inputs.
- `rank (int)` – Optional rank. This is only used if `components` is unspecified. If neither `rank` nor `components` is specified, then `rank` defaults to `input_dim`.
- `components (torch.Tensor)` – An optional \((input_dim, rank)\) shaped matrix that maps features to \(rank\)-many components. If unspecified, this will be randomly initialized.
- `diagonal (torch.Tensor)` – An optional vector of length `input_dim`. If unspecified, this will be set to constant 0.5.
- `active_dims (list)` – List of feature dimensions of the input which the kernel acts on.
- `name (str)` – Name of the kernel.

```python
forward(X, Z=None, diag=False)
```

12.2.5 Cosine

class Cosine (`input_dim, variance=None, lengthscale=None, active_dims=None, name='Cosine'`)
Bases: `pyro.contrib.gp.kernels.isotropic.Isotropy`

Implementation of Cosine kernel:

\[
k(x, z) = \sigma^2 \cos \left(\frac{|x-z|}{l} \right).
\]

Parameters `lengthscale (torch.Tensor)` – Length-scale parameter of this kernel.

```python
forward(X, Z=None, diag=False)
```

12.2.6 DotProduct

class DotProduct (`input_dim, variance=None, active_dims=None, name=None`)
Bases: `pyro.contrib.gp.kernels.kernel.Kernel`

Base class for kernels which are functions of \(x \cdot z\).

12.2.7 Exponent

class Exponent (`kern, name=None`)
Bases: `pyro.contrib.gp.kernels.kernel.Transforming`

Creates a new kernel according to

\[
k_{\text{new}}(x, z) = \exp(k(x, z)).
\]

```python
forward(X, Z=None, diag=False)
```

12.2. Kernels
12.2.8 Exponential

class Exponential(input_dim, variance=None, lengthscale=None, active_dims=None, name='Exponential')
Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of Exponential kernel:
\[k(x, z) = \sigma^2 \exp\left(\frac{-|x-z|}{l}\right). \]
forward(X, Z=None, diag=False)

12.2.9 Isotropy

class Isotropy(input_dim, variance=None, lengthscale=None, active_dims=None, name=None)
Bases: pyro.contrib.gp.kernels.kernel.Kernel

Base class for a family of isotropic covariance kernels which are functions of the distance \(|x - z|/l\), where \(l\) is the length-scale parameter.

By default, the parameter lengthscale has size 1. To use the isotropic version (different lengthscale for each dimension), make sure that lengthscale has size equal to input_dim.

Parameters lengthscale (torch.Tensor) – Length-scale parameter of this kernel.

12.2.10 Kernel

class Kernel(input_dim, active_dims=None, name=None)
Bases: pyro.contrib.gp.util.Parameterized

Base class for kernels used in this Gaussian Process module.

Every inherited class should implement a forward() pass which takes inputs X, Z and returns their covariance matrix.

To construct a new kernel from the old ones, we can use methods add(), mul(), exp(), warp(), vertical_scale().

References:

Parameters

• input_dim (int) – Number of feature dimensions of inputs.
• variance (torch.Tensor) – Variance parameter of this kernel.
• active_dims (list) – List of feature dimensions of the input which the kernel acts on.
• name (str) – Name of the kernel.

forward(X, Z=None, diag=False)
Calculates covariance matrix of inputs on active dimensionals.

Parameters

• X (torch.Tensor) – A 2D tensor with shape \(N \times \text{input_dim}\).
• Z (torch.Tensor) – An (optional) 2D tensor with shape \(M \times \text{input_dim}\).
• **diag**(bool) – A flag to decide if we want to return full covariance matrix or just its diagonal part.

Returns covariance matrix of X and Z with shape $N \times M$

Return type `torch.Tensor`

add(other, name=None)

Creates a new kernel from a sum/direct sum of this kernel object and `other`.

Parameters

• **other** (Kernel or numbers.Number) – A kernel to be combined with this kernel object.

• **name** (str) – An optional name for the derived kernel.

Returns a Sum kernel

Return type `Sum`

mul(other, name=None)

Creates a new kernel from a product/tensor product of this kernel object and `other`.

Parameters

• **other** (Kernel or numbers.Number) – A kernel to be combined with this kernel object.

• **name** (str) – An optional name for the derived kernel.

Returns a Product kernel

Return type `Product`

exp(name=None)

Creates a new kernel according to

$k_{new}(x, z) = \exp(k(x, z))$.

Parameters **name** (str) – An optional name for the derived kernel.

Returns an Exponent kernel

Return type `Exponent`

vertical_scale(vscaling_fn, name=None)

Creates a new kernel according to

$k_{new}(x, z) = f(x)k(x, z)f(z)$,

where f is a function.

Parameters

• **vscaling_fn** (callable) – A vertical scaling function f.

• **name** (str) – An optional name for the derived kernel.

Returns a vertical scaled kernel

Return type `VerticalScaling`

warp(i warping_fn=None, owarping_coef=None, name=None)

Creates a new kernel according to

$k_{new}(x, z) = q(k(f(x), f(z)))$, 12.2. Kernels
where f is an function and q is a polynomial with non-negative coefficients owarping_coef.

Parameters

- $\text{iwarping}_\text{fn}$ (Callable) – An input warping function f.
- $\text{owarping}_\text{coef}$ (List) – A list of coefficients of the output warping polynomial. These coefficients must be non-negative.
- name (str) – An optional name for the derived kernel.

Returns a warped kernel

Return type Warping

get_subkernel (name)

Returns the subkernel corresponding to name.

Parameters name (str) – Name of the subkernel.

Returns A subkernel.

Return type Kernel

12.2.11 Linear

class Linear (input_dim, variance=None, active_dims=None, name='Linear')

Bases: pyro.contrib.gp.kernels.dot_product.DotProduct

Implementation of Linear kernel:

$$k(x,z) = \sigma^2 x \cdot z.$$ Doing Gaussian Process regression with linear kernel is equivalent to doing a linear regression.

Note: Here we implement the homogeneous version. To use the inhomogeneous version, consider using Polynomial kernel with $\text{degree}=1$ or making a Sum with a Bias kernel.

forward (X, Z=None, diag=False)

12.2.12 Matern32

class Matern32 (input_dim, variance=None, lengthscale=None, active_dims=None, name='Matern32')

Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of Matern32 kernel:

$$k(x,z) = \sigma^2 \left(1 + \sqrt{3} \times \frac{|x-z|}{l} \right) \exp \left(-\sqrt{3} \times \frac{|x-z|}{l} \right).$$

forward (X, Z=None, diag=False)

12.2.13 Matern52

class Matern52 (input_dim, variance=None, lengthscale=None, active_dims=None, name='Matern52')

Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of Matern52 kernel:

$$k(x,z) = \sigma^2 \left(1 + \sqrt{5} \times \frac{|x-z|}{l} + \frac{5}{3} \times \frac{|x-z|^2}{l^2} \right) \exp \left(-\sqrt{5} \times \frac{|x-z|}{l} \right).$$
forward \((X, Z=None, \text{diag}=\text{False})\)

12.2.14 Periodic

class Periodic \((\text{input_dim}, \text{variance}=\text{None}, \text{lengthscale}=\text{None}, \text{period}=\text{None}, \text{active_dims}=\text{None}, \text{name}=\text{\texttt{Periodic}})\)

Bases: pyro.contrib.gp.kernels.kernel.Kernel

Implementation of Periodic kernel:

\[
k(x, z) = \sigma^2 \exp \left(-2 \times \frac{\sin^2(\pi(x-z)/p)}{l^2} \right),
\]

where \(p\) is the \textit{period} parameter.

References:

[1] \textit{Introduction to Gaussian processes}, David J.C. MacKay

Parameters

- \texttt{lengthscale (torch.Tensor)} – Length scale parameter of this kernel.
- \texttt{period (torch.Tensor)} – Period parameter of this kernel.

forward \((X, Z=None, \text{diag}=\text{False})\)

12.2.15 Polynomial

class Polynomial \((\text{input_dim}, \text{variance}=\text{None}, \text{bias}=\text{None}, \text{degree}=1, \text{active_dims}=\text{None}, \text{name}=\text{\texttt{Polynomial}})\)

Bases: pyro.contrib.gp.kernels.dot_product.DotProduct

Implementation of Polynomial kernel:

\[
k(x, z) = \sigma^2 (\text{bias} + x \cdot z)^d.
\]

Parameters

- \texttt{bias (torch.Tensor)} – Bias parameter of this kernel. Should be positive.
- \texttt{degree (int)} – Degree \(d\) of the polynomial.

forward \((X, Z=None, \text{diag}=\text{False})\)

12.2.16 Product

class Product \((\text{kern0, kern1}, \text{name}=\text{None})\)

Bases: pyro.contrib.gp.kernels.kernel.Combination

Returns a new kernel which acts like a product/tensor product of two kernels. The second kernel can be a constant.

forward \((X, Z=None, \text{diag}=\text{False})\)
12.2.17 RBF

class RBF(input_dim, variance=None, lengthscale=None, active_dims=None, name='RBF')

Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of Radial Basis Function kernel:

\[k(x, z) = \sigma^2 \exp \left(-0.5 \times \frac{|x-z|^2}{\ell^2} \right). \]

Note: This kernel also has name Squared Exponential in literature.

forward(X, Z=None, diag=False)

12.2.18 RationalQuadratic

class RationalQuadratic(input_dim, variance=None, lengthscale=None, scale_mixture=None, active_dims=None, name='RationalQuadratic')

Bases: pyro.contrib.gp.kernels.isotropic.Isotropy

Implementation of RationalQuadratic kernel:

\[k(x, z) = \sigma^2 \left(1 + 0.5 \times \frac{|x-z|^2}{\ell^2} \right)^{-\alpha}. \]

Parameters scale_mixture (torch.Tensor) – Scale mixture (\(\alpha\)) parameter of this kernel. Should have size 1.

forward(X, Z=None, diag=False)

12.2.19 Sum

class Sum(kern0, kern1, name=None)

Bases: pyro.contrib.gp.kernels.kernel.Combination

Returns a new kernel which acts like a sum/direct sum of two kernels. The second kernel can be a constant.

forward(X, Z=None, diag=False)

12.2.20 Transforming

class Transforming(kern, name=None)

Bases: pyro.contrib.gp.kernels.kernel.Kernel

Base class for kernels derived from a kernel by some transforms such as warping, exponent, vertical scaling.

Parameters kern (Kernel) – The original kernel.

12.2.21 VerticalScaling

class VerticalScaling(kern, vscaling_fn, name=None)

Bases: pyro.contrib.gp.kernels.kernel.Transforming

Creates a new kernel according to

\[k_{\text{new}}(x, z) = f(x)k(x, z)f(z), \]
where f is a function.

Parameters

- `vscaling_fn (callable)` - A vertical scaling function f.

forward $(X, Z=None, diag=False)$

12.2.22 Warping

class Warping $(kern, iwarping_fn=None, owarping_coef=None, name=None)$

Bases: `pyro.contrib.gp.kernels.kernel.Transforming`

 Creates a new kernel according to

$$k_{new}(x, z) = q(k(f(x), f(z)))$$

where f is a function and q is a polynomial with non-negative coefficients `owarping_coef`.

We can take advantage of f to combine a Gaussian Process kernel with a deep learning architecture. For example:

```python
>>> linear = torch.nn.Linear(10, 3)
>>> # register its parameters to Pyro's ParamStore and wrap it by lambda
>>> # to call the primitive pyro.module each time we use the linear function
>>> pyro_linear_fn = lambda x: pyro.module("linear", linear)(x)
>>> kernel = gp.kernels.Matern52(input_dim=3, lengthscale=torch.ones(3))
>>> warped_kernel = gp.kernels.Warping(kernel, pyro_linear_fn)
```

Reference:

Parameters

- `iwarping_fn (callable)` - An input warping function f.
- `owarping_coef (list)` - A list of coefficients of the output warping polynomial. These coefficients must be non-negative.

forward $(X, Z=None, diag=False)$

12.2.23 WhiteNoise

class WhiteNoise $(input_dim, variance=None, active_dims=None, name='WhiteNoise')$

Bases: `pyro.contrib.gp.kernels.kernel.Kernel`

Implementation of WhiteNoise kernel:

$$k(x, z) = \sigma^2 \delta(x, z),$$

where δ is a Dirac delta function.

forward $(X, Z=None, diag=False)$

12.3 Likelihoods

12.3.1 Binary

class Binary $(response_function=None, name='Binary')$

Bases: `pyro.contrib.gp.likelihoods.likelihood.Likelihood`
Implementation of Binary likelihood, which is used for binary classification problems.

Binary likelihood uses Bernoulli distribution, so the output of response_function should be in range \((0, 1)\). By default, we use sigmoid function.

Parameters

- **response_function** (*callable*) – A mapping to correct domain for Binary likelihood.

forward (*f_loc*, *f_var*, *y=None*)

Samples \(y\) given \(f_{loc}, f_{var}\) according to

\[
\begin{align*}
 f & \sim \mathcal{N}(f_{loc}, f_{var}), \\
 y & \sim \mathcal{B}(f).
\end{align*}
\]

Note: The log likelihood is estimated using Monte Carlo with 1 sample of \(f\).

Parameters

- **f_loc** (*torch.Tensor*) – Mean of latent function output.
- **f_var** (*torch.Tensor*) – Variance of latent function output.
- **y** (*torch.Tensor*) – Training output tensor.

Returns

- A tensor sampled from likelihood

Return type

- torch.Tensor

12.3.2 Gaussian

class **Gaussian** (*variance=None, name='Gaussian'*)

Bases: pyro.contrib.gp.likelihoods.likelihood.Likelihood

Implementation of Gaussian likelihood, which is used for regression problems.

Gaussian likelihood uses Normal distribution.

Parameters

- **variance** (*torch.Tensor*) – A variance parameter, which plays the role of noise in regression problems.

forward (*f_loc*, *f_var*, *y=None*)

Samples \(y\) given \(f_{loc}, f_{var}\) according to

\[
y \sim \mathcal{N}(f_{loc}, f_{var} + \epsilon),
\]

where \(\epsilon\) is the variance parameter of this likelihood.

Parameters

- **f_loc** (*torch.Tensor*) – Mean of latent function output.
- **f_var** (*torch.Tensor*) – Variance of latent function output.
- **y** (*torch.Tensor*) – Training output tensor.

Returns

- A tensor sampled from likelihood

Return type

- torch.Tensor
12.3.3 Likelihood

class Likelihood(name=None)
 Bases: pyro.contrib.gp.util.Parameterized

 Base class for likelihoods used in Gaussian Process.
 Every inherited class should implement a forward pass which takes an input \(f \) and returns a sample \(y \).

 forward(f_loc, f_var, y=None)
 Samples \(y \) given \(f_{\text{loc}}, f_{\text{var}} \).

 Parameters
 - f_loc (torch.Tensor) – Mean of latent function output.
 - f_var (torch.Tensor) – Variance of latent function output.
 - y (torch.Tensor) – Training output tensor.

 Returns a tensor sampled from likelihood

 Return type torch.Tensor

12.3.4 MultiClass

class MultiClass(num_classes, response_function=None, name='MultiClass')
 Bases: pyro.contrib.gp.likelihoods.likelihood.Likelihood

 Implementation of MultiClass likelihood, which is used for multi-class classification problems.
 MultiClass likelihood uses Categorical distribution, so response_function should normalize its input's rightmost axis. By default, we use softmax function.

 Parameters
 - num_classes (int) – Number of classes for prediction.
 - response_function (callable) – A mapping to correct domain for MultiClass likelihood.

 forward(f_loc, f_var, y=None)
 Samples \(y \) given \(f_{\text{loc}}, f_{\text{var}} \) according to

 \[
 f \sim \mathcal{N}(f_{\text{loc}}, f_{\text{var}}),
 y \sim \mathcal{C}(f).
 \]

 Note: The log likelihood is estimated using Monte Carlo with 1 sample of \(f \).

 Parameters
 - f_loc (torch.Tensor) – Mean of latent function output.
 - f_var (torch.Tensor) – Variance of latent function output.
 - y (torch.Tensor) – Training output tensor.

 Returns a tensor sampled from likelihood

 Return type torch.Tensor
12.3.5 Poisson

class Poisson(response_function=None, name='Poisson')
 Bases: pyro.contrib.gp.likelihoods.likelihood.Likelihood

Implementation of Poisson likelihood, which is used for count data.

Poisson likelihood uses the `Poisson` distribution, so the output of `response_function` should be positive. By default, we use `torch.exp()` as response function, corresponding to a log-Gaussian Cox process.

Parameters `response_function` (callable) – A mapping to positive real numbers.

`forward(f_loc, f_var, y=None)`
 Samples \(y \) given \(f_{\text{loc}}, f_{\text{var}} \) according to

 \[
 f \sim \mathcal{N}(f_{\text{loc}}, f_{\text{var}}), \\
 y \sim \mathcal{P} \times \mathcal{E}(\exp(f)).
 \]

Note: The log likelihood is estimated using Monte Carlo with 1 sample of \(f \).

Parameters
 - `f_loc` (`torch.Tensor`) – Mean of latent function output.
 - `f_var` (`torch.Tensor`) – Variance of latent function output.
 - `y` (`torch.Tensor`) – Training output tensor.

Returns a tensor sampled from likelihood

Return type `torch.Tensor`

12.4 Util

class Parameterized(name=None)
 Bases: torch.nn.modules.module.Module

Base class for other modules in Gaussian Process module.

Parameters of this object can be set priors, set constraints, or fixed to a specific value.

By default, data of a parameter is a float `torch.Tensor` (unless we use `torch.set_default_tensor_type()` to change default tensor type). To cast these parameters to a correct data type or GPU device, we can call methods such as `double()` or `cuda()`. See `torch.nn.Module` for more information.

Parameters `name` (str) – Name of this object.

`set_prior(param, prior)`
 Sets a prior to a parameter.

Parameters
 - `param` (str) – Name of the parameter.
 - `prior` (Distribution) – A Pyro prior distribution.
set_constraint(param, constraint)
Sets a constraint to a parameter.

Parameters

- **param (str)** – Name of the parameter.
- **constraint (Constraint)** – A PyTorch constraint. See `torch.distributions.constraints` for a list of constraints.

fix_param(param, value=None)
Fixes a parameter to a specific value. If value=None, fixes the parameter to the default value.

Parameters

- **param (str)** – Name of the parameter.
- **value (torch.Tensor)** – Fixed value.

set_mode(mode, recursive=True)
Sets mode of this object to be able to use its parameters in stochastic functions. If mode="model", a parameter with prior will get its value from the primitive `pyro.sample()`. If mode="guide" or there is no prior on a parameter, `pyro.param()` will be called.

This method automatically sets mode for submodules which belong to Parameterized class unless recursive=False.

Parameters

- **mode (str)** – Either “model” or “guide”.
- **recursive (bool)** – A flag to tell if we want to set mode for all submodules.

get_param(param)
Gets the current value of a parameter. The correct behavior will depend on mode of this object (see `set_mode()` method).

Parameters **param (str)** – Name of the parameter.

conditional(Xnew, X, kernel, f_loc, f_scale_tril=None, Lff=None, full_cov=False, whiten=False, jitter=1e-06)
Given Xnew, predicts loc and covariance matrix of the conditional multivariate normal distribution

\[p(f^*(X_{new}) | X, k, f_{loc}, f_{scale_tril}). \]

Here f_loc and f_scale_tril are variation parameters of the variational distribution

\[q(f | f_{loc}, f_{scale_tril}) \sim p(f|X, y), \]

where f is the function value of the Gaussian Process given input X

\[p(f(X)) \sim N(0, k(X, X)) \]

and y is computed from f by some likelihood function p(y|f).

In case f_scale_tril=None, we consider \(f = f_{loc} \) and computes

\[p(f^*(X_{new}) | X, k, f). \]

In case f_scale_tril is not None, we follow the derivation from reference [1]. For the case f_scale_tril=None, we follow the popular reference [2].

References:

[1] Sparse GPs: approximate the posterior, not the model
Parameters

- \texttt{Xnew (torch.Tensor)} – A new input data.
- \texttt{X (torch.Tensor)} – An input data to be conditioned on.
- \texttt{kernel (Kernel)} – A Pyro kernel object.
- \texttt{f_loc (torch.Tensor)} – Mean of \(q(f) \). In case \(f_scale_tril=\text{None}, f_loc = f \).
- \texttt{f_scale_tril (torch.Tensor)} – Lower triangular decomposition of covariance matrix of \(q(f) \)'s.
- \texttt{Lff (torch.Tensor)} – Lower triangular decomposition of \(kernel(X, X) \) (optional).
- \texttt{full_cov (bool)} – A flag to decide if we want to return full covariance matrix or just variance.
- \texttt{whiten (bool)} – A flag to tell if \(f_loc \) and \(f_scale_tril \) are already transformed by the inverse of \(Lff \).
- \texttt{jitter (float)} – A small positive term which is added into the diagonal part of a covariance matrix to help stabilize its Cholesky decomposition.

Returns loc and covariance matrix (or variance) of \(p(f^*(X_{new})) \)

Return type tuple(torch.Tensor, torch.Tensor)
The `pyro.contrib.named` module is a thin syntactic layer on top of Pyro. It allows Pyro models to be written to look like programs with operating on Python data structures like `latent.x.sample_(...)`, rather than programs with string-labeled statements like `x = pyro.sample("x", ...)`. This module provides three container data structures `named.Object`, `named.List`, and `named.Dict`. These data structures are intended to be nested in each other. Together they track the address of each piece of data in each data structure, so that this address can be used as a Pyro site. For example:

```python
>>> state = named.Object("state")
>>> print(str(state))
state

>>> z = state.x.y.z  # z is just a placeholder.
>>> print(str(z))
state.x.y.z

>>> state.xs = named.List()  # Create a contained list.
>>> x0 = state.xs.add()
>>> print(str(x0))
state.xs[0]

>>> state.ys = named.Dict()
>>> foo = state.ys['foo']
>>> print(str(foo))
state.ys['foo']
```

These addresses can now be used inside `sample`, `observe` and `param` statements. These named data structures even provide in-place methods that alias Pyro statements. For example:

```python
>>> state = named.Object("state")
>>> loc = state.loc.param_(torch.zeros(1, requires_grad=True))
>>> scale = state.scale.param_(torch.ones(1, requires_grad=True))
>>> z = state.z.sample_(dist.Normal(loc, scale))
>>> obs = state.x.sample_(dist.Normal(loc, scale), obs=z)
```
For deeper examples of how these can be used in model code, see the Tree Data and Mixture examples.

Authors: Fritz Obermeyer, Alexander Rush

class Object (name)
 Bases: object

 Object to hold immutable latent state.

 This object can serve either as a container for nested latent state or as a placeholder to be replaced by a tensor via a named.sample, named.observe, or named.param statement. When used as a placeholder, Object objects take the place of strings in normal pyro.sample statements.

 Parameters name (str) – The name of the object.

 Example:

 state = named.Object("state")
 state.x = 0
 state.ys = named.List()
 state.zs = named.Dict()
 state.a.b.c.d.e.f.g = 0 # Creates a chain of named.Objects.

 Warning: This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.

 sample_ (fn, *args, **kwargs)
 Calls the stochastic function fn with additional side-effects depending on name and the enclosing context (e.g. an inference algorithm). See Intro I and Intro II for a discussion.

 Parameters

 • name – name of sample
 • fn – distribution class or function
 • obs – observed datum (optional; should only be used in context of inference) optionally specified in kwargs
 • infer (dict) – Optional dictionary of inference parameters specified in kwargs. See inference documentation for details.

 Returns sample

 param_ (*args, **kwargs)
 Saves the variable as a parameter in the param store. To interact with the param store or write to disk, see Parameters.

 Parameters name – name of parameter

 Returns parameter

class List (name=None)
 Bases: list

 List-like object to hold immutable latent state.

 This must either be given a name when constructed:

 latent = named.List("root")

 or must be immediately stored in a named.Object:
latent = named.Object("root")
latent.xs = named.List() # Must be bound to a Object before use.

Warning: This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.

```
def add()
    Append one new named.Object.
    
    **Returns** a new latent object at the end
    
    **Return type** named.Object
```

```py
class Dict(name=None)
    Bases: dict
    
    Dict-like object to hold immutable latent state.
    
    This must either be given a name when constructed:
    
    latent = named.Dict("root")
```

or must be immediately stored in a named.Object:

```
latent = named.Object("root")
latent.xs = named.Dict() # Must be bound to a Object before use.
```

Warning: This data structure is write-once: data may be added but may not be mutated or removed. Trying to mutate this data structure may result in silent errors.
CHAPTER 14

Indices and tables

- genindex
- search
<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyro.contrib.autoguide</td>
<td>57</td>
</tr>
<tr>
<td>pyro.contrib.gp</td>
<td>63</td>
</tr>
<tr>
<td>pyro.contrib.gp.kernels</td>
<td>74</td>
</tr>
<tr>
<td>pyro.contrib.gp.likelihoods</td>
<td>81</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.gplvm</td>
<td>72</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.gpr</td>
<td>66</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.models</td>
<td>63</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.sgp</td>
<td>67</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.vgp</td>
<td>69</td>
</tr>
<tr>
<td>pyro.contrib.gp.models.vsgp</td>
<td>71</td>
</tr>
<tr>
<td>pyro.contrib.gp.util</td>
<td>84</td>
</tr>
<tr>
<td>pyro.contrib.named</td>
<td>86</td>
</tr>
<tr>
<td>pyro.distributions.torch</td>
<td>17</td>
</tr>
<tr>
<td>pyro.infer.abstract_infer</td>
<td>13</td>
</tr>
<tr>
<td>pyro.infer.elbo</td>
<td>10</td>
</tr>
<tr>
<td>pyro.infer.importance</td>
<td>13</td>
</tr>
<tr>
<td>pyro.infer.svi</td>
<td>9</td>
</tr>
<tr>
<td>pyro.infer.trace_elbo</td>
<td>10</td>
</tr>
<tr>
<td>pyro.infer.traceenum_elbo</td>
<td>12</td>
</tr>
<tr>
<td>pyro.infer.tracegraph_elbo</td>
<td>11</td>
</tr>
<tr>
<td>pyro.nn.auto_reg(nn)</td>
<td>33</td>
</tr>
<tr>
<td>pyro.ops.dual_averaging</td>
<td>53</td>
</tr>
<tr>
<td>pyro.ops.integrator</td>
<td>54</td>
</tr>
<tr>
<td>pyro.ops.newton</td>
<td>54</td>
</tr>
<tr>
<td>pyro.optim.lr_scheduler</td>
<td>36</td>
</tr>
<tr>
<td>pyro.optim.multi</td>
<td>37</td>
</tr>
<tr>
<td>pyro.optim.optim</td>
<td>35</td>
</tr>
<tr>
<td>pyro.optim.pytorch_optimizers</td>
<td>36</td>
</tr>
<tr>
<td>pyro.params.param_store</td>
<td>31</td>
</tr>
<tr>
<td>pyro.poutine.block_messenger</td>
<td>47</td>
</tr>
<tr>
<td>pyro.poutine.broadcast_messenger</td>
<td>48</td>
</tr>
<tr>
<td>pyro.poutine.condition_messenger</td>
<td>48</td>
</tr>
<tr>
<td>pyro.poutine.escape_messenger</td>
<td>48</td>
</tr>
<tr>
<td>pyro.poutine.handlers</td>
<td>39</td>
</tr>
<tr>
<td>pyro.poutine.indep_messenger</td>
<td>49</td>
</tr>
<tr>
<td>pyro.poutine.lift_messenger</td>
<td>49</td>
</tr>
<tr>
<td>pyro.poutine.messenger</td>
<td>47</td>
</tr>
<tr>
<td>pyro.poutine.replay_messenger</td>
<td>49</td>
</tr>
<tr>
<td>pyro.poutine.runtime</td>
<td>50</td>
</tr>
<tr>
<td>pyro.poutine.scale_messenger</td>
<td>49</td>
</tr>
<tr>
<td>pyro.poutine.trace_messenger</td>
<td>49</td>
</tr>
<tr>
<td>pyro.poutine.util</td>
<td>51</td>
</tr>
</tbody>
</table>
Symbols

__call__() (AutoContinuous method), 59
__call__() (AutoDelta method), 58
__call__() (AutoDiscreteParallel method), 61
__call__() (AutoGuide method), 57
__call__() (AutoGuideList method), 58
__call__() (Distribution method), 21
__call__() (PyroOptim method), 35
__call__() (TorchDistributionMixin method), 22

A
Adadelta() (in module pyro.optim.pytorch_optimizers), 36
Adagrad() (in module pyro.optim.pytorch_optimizers), 36
AdagradRMSProp() (in module pyro.optim.optim), 36
Adam() (in module pyro.optim.pytorch_optimizers), 36
Adamax() (in module pyro.optim.pytorch_optimizers), 36
add() (AutoGuideList method), 58
add() (Empirical method), 26
add() (Kernel method), 77
add() (List method), 89
add_edge (Trace attribute), 46
add_node() (Trace method), 46
all_escape() (in module pyro.poutine.util), 51
am_i_wrapped() (in module pyro.poutine.runtime), 50
apply_stack() (in module pyro.poutine.runtime), 50
arg_constraints (Binomial attribute), 25
arg_constraints (Delta attribute), 25
arg_constraints (Empirical attribute), 26
arg_constraints (HalfCauchy attribute), 27
arg_constraints (LowRankMultivariateNormal attribute), 27
arg_constraints (OMTMultivariateNormal attribute), 28
arg_constraints (VonMises attribute), 29
arn (InverseAutoregressiveFlow attribute), 30
ASGD() (in module pyro.optim.pytorch_optimizers), 36
AutoContinuous (class in pyro.contrib.autoguide), 59
AutoDelta (class in pyro.contrib.autoguide), 58
AutoDiagonalNormal (class in pyro.contrib.autoguide), 60
AutoDiscreteParallel (class in pyro.contrib.autoguide), 61
AutoGuide (class in pyro.contrib.autoguide), 57
AutoGuideList (class in pyro.contrib.autoguide), 58
AutoLowRankMultivariateNormal (class in pyro.contrib.autoguide), 60
AutoMultivariateNormal (class in pyro.contrib.autoguide), 60
AutoRegressiveNN (class in pyro.nn.auto_reg_nn), 33

B
Bernoulli (class in pyro.distributions), 17
Beta (class in pyro.distributions), 17
Binary (class in pyro.contrib.gp.likelihoods), 81
Binomial (class in pyro.distributions), 24
block() (in module pyro.poutine), 40
BlockMessenger (class in pyro.poutine.block_messenger), 47
broadcast() (in module pyro.poutine), 40
BroadcastMessenger (class in pyro.poutine.broadcast_messenger), 48
Brownian (class in pyro.contrib gp.kernels), 74

C
Categorical (class in pyro.distributions), 17
Cauchy (class in pyro.distributions), 17
Chi2 (class in pyro.distributions), 18
cleanup() (HMC method), 15
clear() (ParamStoreDict method), 31
clear_param_store() (in module pyro), 8
ClippedAdam() (in module pyro.optim.optim), 36
Combination (class in pyro.contrib gp.kernels), 74
compile() (in module pyro.ops.jit), 8
compute_log_prob() (Trace method), 46
compute_score_parts() (Trace method), 46
CondIndepStackFrame (class in pyro.poutine.indep_messenger), 49
condition() (in module pyro.poutine), 41
conditional() (in module pyro.contrib.gp.util), 85
ConditionMessenger (class in pyro.poutine.condition_messenger), 48
Constant (class in pyro.contrib.gp.kernels), 74
copy() (Trace method), 46
Coregionalize (class in pyro.contrib.gp.kernels), 74
Cosine (class in pyro.contrib.gp.kernels), 75
CosineAnnealingLR() (in module pyro.optim.pytorch_optimizers), 37
default_process_message() (in module pyro.poutine.runtime), 51
Delta (class in pyro.distributions), 25
diagnostics() (HMC method), 15
Dirichlet (class in pyro.contrib.named), 89
Dirichlet (class in pyro.distributions), 18
discrete_escape() (in module pyro.poutine.util), 51
Distribution (class in pyro.distributions), 20
do() (in module pyro.poutine), 41
DotProduct (class in pyro.contrib.gp.kernels), 75
DualAveraging (class in pyro.ops.dual_averaging), 53
edges (Trace attribute), 46
ELBO (class in pyro.infer.elbo), 10
Empirical (class in pyro.distributions), 26
EmpiricalMarginal (class in pyro.infer.abstract_infer), 13
enable_validation() (in module pyro), 8
diag() (HMC method), 15
denomExt() (in module pyro.poutine.util), 51
denom_support() (Binomial method), 25
denom_support() (Distribution method), 21
denom_support() (Empirical method), 26
descent() (module pyro.poutine), 42
EscapeMessenger (class in pyro.poutine.escape_messenger), 48
evaluate_loss() (SVI method), 9
event_dim (TorchDistributionMixin attribute), 22
event_shape (Empirical attribute), 26
exp() (Kernel method), 77
expand() (Binomial method), 25
expand() (Delta method), 25
expand() (HalfCauchy method), 27
expand() (TorchDistributionMixin method), 22
expand() (VonMises method), 29
expand_by() (TorchDistributionMixin method), 23
Exponent (class in pyro.contrib.gp.kernels), 75
Exponential (class in pyro.contrib.gp.kernels), 76
Exponential (class in pyro.distributions), 18
ExponentialFamily (class in pyro.distributions), 18
ExponentialLR() (in module pyro.optim.pytorch_optimizers), 37
FisherSnedecor (class in pyro.distributions), 18
fix_param() (Parameterized method), 85
forward() (AutoRegressiveNN method), 33
forward() (Binary method), 82
forward() (Brownian method), 74
forward() (Constant method), 74
forward() (Coregionalize method), 75
forward() (Cosine method), 75
forward() (Exponent method), 75
forward() (Exponential method), 76
forward() (Gaussian method), 82
forward() (GPLVM method), 73
forward() (GPModel method), 65
forward() (GPRegression method), 67
forward() (Kernel method), 76
forward() (Likelihood method), 83
forward() (Linear method), 78
forward() (MaskedLinear method), 34
forward() (Matern32 method), 78
forward() (Matern52 method), 79
forward() (MultiClass method), 83
forward() (Periodic method), 79
forward() (Poisson method), 84
forward() (Polynomial method), 79
forward() (Product method), 79
forward() (RationalQuadratic method), 80
forward() (RBF method), 80
forward() (SGPRegression method), 69
forward() (Sum method), 80
forward() (VariationalGP method), 70
forward() (VariationalSparseGP method), 72
forward() (VerticalScaling method), 81
forward() (Warping method), 81
forward() (WhiteNoise method), 81
Gamma (class in pyro.distributions), 18
Gaussian (class in pyro.contrib.gp.likelihoods), 82
Geometric (class in pyro.distributions), 18
get_all_param_names() (ParamStoreDict method), 31
get_mask_encoding() (AutoRegressiveNN method), 33
get_param() (Parameterized method), 85
get_param() (ParamStoreDict method), 32
get_param_store() (in module pyro), 8
get_permutation() (AutoRegressiveNN method), 34
get_samples_and_weights() (Empirical method), 26
get_state() (DualAveraging method), 54
get_state() (ParamStoreDict method), 32
get_state() (PyroOptim method), 35
get_step() (MixedMultiOptimizer method), 38
median() (AutoContinuous method), 59
median() (AutoDelta method), 59
Messenger (class in pyro.poutine.messenger), 47
MixedMultiOptimizer (class in pyro.optim.multi), 38
model() (GPLVM method), 73
model() (GPModel method), 64
model() (GPRegression method), 67
model() (VariationalGP method), 70
model() (VariationalSparseGP method), 72
module() (in module pyro), 5
module_from_param_with_module_name() (in module pyro.params.param_store), 32
mul() (Kernel method), 77
MultiClass (class in pyro.contrib.gp.likelihoods), 83
Multinomial (class in pyro.distributions), 19
MultiOptimizer (class in pyro.optim.multi), 37
MultiStepLR() (in module pyro.optim.pytorch_optimizers), 37
MultivariateNormal (class in pyro.distributions), 19

N
named_parameters() (ParamStoreDict method), 32
Newton2d (class in pyro.optim.multi), 38
newton_step_2d() (in module pyro.ops.newton), 54
next_context() (IndepMessenger method), 49
nodes (Trace attribute), 46
NonlocalExit, 50
nonreparam_stochastic_nodes (Trace attribute), 46
Normal (class in pyro.distributions), 19
NUTS (class in pyro.infer.mcmc), 15

O
Object (class in pyro.contrib.named), 88
observation_nodes (Trace attribute), 46
OMTMultivariateNormal (class in pyro.distributions), 28
OneHotCategorical (class in pyro.distributions), 19
optimize() (GPLVM method), 73
optimize() (GPModel method), 66

P
param() (in module pyro), 5
param_() (Object method), 88
param_name() (ParamStoreDict method), 32
param_nodes (Trace attribute), 46
param_shape (Binomial attribute), 25
param_with_module_name() (in module pyro.params.param_store), 32
Parameterized (class in pyro.contrib.gp.kernels), 79
ParamStoreDict (class in pyro.params.param_store), 84
Pareto (class in pyro.distributions), 19
Periodic (class in pyro.contrib.gp.kernels), 79
Poisson (class in pyro.contrib.gp.likelihoods), 84
Poisson (class in pyro.distributions), 20
Polynomial (class in pyro.contrib.gp.kernels), 79
probs (Binomial attribute), 25
Product (class in pyro.contrib.gp.kernels), 79
prune_subsample_sites() (in module pyro.poutine.util), 52
pyro.contrib.autoguide (module), 57
pyro.contrib gp (module), 63
pyro.contrib gp.kernels (module), 74
pyro.contrib gp.likelihoods (module), 81
pyro.contrib gp.models.gplvm (module), 72
pyro.contrib gp.models.gpr (module), 66
pyro.contrib gp.models.model (module), 63
pyro.contrib gp.models.sgp (module), 67
pyro.contrib gp.models.vgp (module), 69
pyro.contrib gp.models.vsgp (module), 71
pyro.contrib gp.util (module), 84
pyro.contrib.named (module), 86
pyro.distributions.torch (module), 17
pyro.infer.abstract_infer (module), 13
pyro.infer.elbo (module), 10
pyro.infer.importance (module), 13
pyro.infer.svi (module), 9
pyro.infer.trace_elbo (module), 10
pyro.infer.traceenum_elbo (module), 12
pyro.infer.tracegraph_elbo (module), 11
pyro.nn.auto_reg nn (module), 33
pyro.ops.dual_averaging (module), 53
pyro.ops.integrator (module), 54
pyro.ops.newton (module), 54
pyro.optim.lr_scheduler (module), 36
pyro.optim.multi (module), 37
pyro.optim.optim (module), 35
pyro.optim.pytorch_optimizers (module), 36
pyro.poutine.block_messenger (module), 47
pyro.poutine.broadcast_messenger (module), 48
pyro.poutine.condition_messenger (module), 48
pyro.poutine.escape_messenger (module), 48
pyro.poutine.handlers (module), 39
pyro.poutine.indep_messenger (module), 49
pyro.poutine.lift_messenger (module), 49
pyro.poutine.messenger (module), 47
pyro.poutine.replay_messenger (module), 49
pyro.poutine.runtime (module), 50
pyro.poutine.scale_messenger (module), 49
pyro.poutine.trace_messenger (module), 49
pyro.poutine.util (module), 51
PyroLRScheduler (class in pyro.optim.lr_scheduler), 36
PyroMultiOptimizer (class in pyro.optim.multi), 38
PyroOptim (class in pyro.optim.optim), 35

Q
quantiles() (AutoContinuous method), 59
queue() (in module pyro.poutine), 43
set_model() (Parameterized method), 85
set_prior() (Parameterized method), 84
set_state() (ParamStoreDict method), 32
set_state() (PyroOptim method), 35
setup() (HMC method), 15
SGD() (module pyro.optim.pytorch_optimizers), 36
shape() (TorchDistributionMixin method), 22
single_step_velocity_verlet() (module pyro.ops.integrator), 54
site_is_subsample() (module pyro.poutine.util), 52
SparseAdam() (module pyro.optim.pytorch_optimizers), 36
SparseGPRegression (class in pyro.contrib.gp.models.sgpr), 67
step() (DualAveraging method), 53
step() (MixedMultiOptimizer method), 38
step() (MultiOptimizer method), 37
step() (PyroMultiOptimizer method), 38
step() (SVI method), 9
StepLR() (module pyro.optim.pytorch_optimizers), 37
stochastic_nodes (Trace attribute), 47
StudentT (class in pyro.distributions), 20
successors (Trace attribute), 47
Sum (class in pyro.contrib.gp.kernels), 80
support (Binomial attribute), 25
support (Delta attribute), 26
support (Empirical attribute), 26
support (HalfCauchy attribute), 27
support (LowRankMultivariateNormal attribute), 28
support (VonMises attribute), 29
SVI (class in pyro.infer.svi), 9

T

TorchDistribution (class in pyro.distributions), 23
TorchDistributionMixIn (class in pyro.distributions.torch_distribution), 22
TorchMultiOptimizer (class in pyro.optim.multi), 38
Trace (class in pyro.poutine), 45
trace (TraceHandler attribute), 50
trace() (module pyro.poutine), 44
Trace_ELBO (class in pyro.infer.trace_elbo), 10
TraceEnum_ELBO (class in pyro.infer.traceenum_elbo), 12
TraceGraph_ELBO (class in pyro.infer.tracegraph_elbo), 11
TraceHandler (class in pyro.poutine.trace_messenger), 49
TraceMessenger (class in pyro.poutine.trace_messenger), 50
TracePosterior (class in pyro.infer.abstract_infer), 13
TracePredictive (class in pyro.infer.abstract_infer), 13
TransformedDistribution (class in pyro.distributions), 20
Transforming (class in pyro.contrib.gp.kernels), 80
U
Uniform (class in pyro.distributions), 20
user_param_name() (in module pyro.params.param_store), 32

V
validate_message() (in module pyro.poutine.runtime), 51
validation_enabled() (in module pyro), 8
variance (Binomial attribute), 25
variance (Delta attribute), 26
variance (Empirical attribute), 26
variance (LowRankMultivariateNormal attribute), 28
VariationalGP (class in pyro.contrib.gp.models.vgp), 69
VariationalSparseGP (class in pyro.contrib.gp.models.vsgp), 71
vectorized (CondIndepStackFrame attribute), 49
velocity_verlet() (in module pyro.ops.integrator), 54
vertical_scale() (Kernel method), 77
VerticalScaling (class in pyro.contrib.gp.kernels), 80
VonMises (class in pyro.distributions), 29

W
warp() (Kernel method), 77
Warping (class in pyro.contrib.gp.kernels), 81
WhiteNoise (class in pyro.contrib.gp.kernels), 81