

pyret: retinal data analysis in python

pyret [https://github.com/baccuslab/pyret/] is a library for pre-processing, analyzing, and visualizing data from retina electrophysiology experiments.
It was written because we think sharing code and data withing the scientific community is easiest when there are open
standards to adhere to.

	1. Installation

	2. Quickstart

	3. API Reference

	4. Changelog

An example retinal ganglion cell receptive field [https://en.wikipedia.org/wiki/Receptive_field] visualized using pyret:

[image: _images/393ae51326094fb336c517310c5fbeb9fbaaa2a6.gif]
Please report any bugs you encounter through the GitHub issue tracker [https://github.com/baccuslab/pyret/issues/new].

Index of all functions.

1. Installation

1.1. Basic

The fastest way to install is by grabbing the code from Github:

$ git clone https://github.com/baccuslab/pyret.git
$ cd pyret
$ python setup.py install

Pyret supports Python2.7 and Python3.4+.

1.2. Dependencies

Pyret requires the following dependencies:

	numpy

	scipy

	scikit-image

	scikit-learn

	matplotlib

1.3. Development

To contribute to pyret, you’ll need to also install sphinx and numpydoc for documentation and
pytest for testing. We adhere to the NumPy/SciPy documentation standards [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt#docstring-standard].

2. Quickstart

2.1. Overview

Pyret is a Python package that provides tools for analyzing stimulus-evoked
neurophysiology data. The project grew out of work in a retinal neurophsyiology
and computation lab (hence the name), but its functionality should be applicable
to any neuroscience work in which you wish to characterize how neurons behave
in response to an input.

Pyret’s functionality is broken into modules.

	stimulustools: Functions for manipulating input stimuli.

	spiketools: Tools to characterize spikes.

	filtertools: Tools to estimate and characterize linear filters fitted to neural data.

	nonlinearities: Classes for estimating static nonlinearities.

	visualizations: Functions to visualize responses and fitted filters/nonlinearities.

Pyret works on Python3.4+ and Python2.7.

2.2. Demo

2.2.1. Importing pyret

Let’s explore how pyret might be used in a very common analysis pipeline. First, we’ll
import the relevant modules.

>>> import pyret
>>> import numpy as np
>>> import matplotlib.pyplot as plt

For this demo, we’ll be using data from a retinal ganglion cell (RGC), whose spike times were
recorded using a multi-electrode array. (Data courtesy of Lane McIntosh.) We’ll load the
stimulus used in the experiment, as well as the spike times for the cell.

The data is stored in the GitHub repository, in both HDF5 and NumPy’s native .npz formats.
The following code snippets show how to download and load the data in those formats,
respectively. Note that using data in the HDF5 format imposes the additional dependency of
the h5py package, which is available on PyPI.

2.2.2. Loading data from HDF5

To download the data in HDF5 format, use the shell command:

$ wget https://github.com/baccuslab/pyret/raw/master/docs/tutorial-data.h5

To use curl instead of wget, run:

$ curl -L -o tutorial-data.h5 https://github.com/baccuslab/pyret/raw/master/docs/tutorial-data.h5

To load the data, back in the Python shell, run:

>>> data_file = h5py.File('tutorial-data.h5', 'r')
>>> spikes = data_file['spike-times'] # Spike times for one cell
>>> stimulus = data_file['stimulus'].value.astype(np.float64)
>>> frame_rate = data_file['stimulus'].attrs.get('frame-rate')

2.2.3. Loading data from .npz

To download and the data in the .npz file format, use the following command:

$ wget https://github.com/baccuslab/pyret/raw/master/docs/tutorial-data.npz

Or, using curl:

$ curl -L -o tutorial-data.npz https://github.com/baccuslab/pyret/raw/master/docs/tutorial-data.npz

Then, in the Python shell, load the data with:

>>> arrays = np.load('tutorial-data.npz')
>>> spikes, stimulus, frame_rate = arrays['spikes'], arrays['stimulus'].astype(np.float64), arrays['frame_rate'][0]

2.2.4. Estimating firing rates

The stimulus is a spatio-temporal gaussian white noise checkboard, with shape (time, nx, ny).
Each spatial position is drawn independently from a normal distribution on each
temporal frame. We will z-score the stimulus, and create a time-axis for it, to reference
the spike times for this cell to the frames of the stimulus.

>>> stimulus -= stimulus.mean()
>>> stimulus /= stimulus.std()
>>> time = np.arange(stimulus.shape[0]) * frame_rate

To begin, let’s look at the spiking behavior of the RGC. We’ll create a peri-stimulus
time histogram, by binning the spike times and smoothing a bit. This is an estimate of the
firing rate of the RGC over time.

>>> binned = pyret.spiketools.binspikes(spikes, time)
>>> rate = pyret.spiketools.estfr(binned, time)
>>> plt.plot(time[:500], rate[:500])
>>> plt.xlabel('Time (s)')
>>> plt.ylabel('Firing rate (Hz)')

[image: Estimated RGC firing rate over time]

2.2.5. Estimating a receptive field

One widely-used and informative description of the cell is its receptive field. This
is a linear approximation to the function of the cell, and captures the average visual
feature to which it responds. Because our data consists of spike times, we’ll compute
the spike-triggered average (STA) for the cell.

>>> filter_length_seconds = 0.5 # 500 ms filter
>>> filter_length = int(filter_length_seconds / frame_rate)
>>> sta, tax = pyret.filtertools.sta(time, stimulus, spikes, filter_length)
>>> fig, axes = pyret.visualizations.plot_sta(tax, sta)
>>> axes[0].set_title('Recovered spatial filter (STA)')
>>> axes[1].set_title('Recovered temporal filter (STA)')
>>> axes[1].set_xlabel('Time relative to spike (s)')
>>> axes[1].set_ylabel('Filter response')

[image: Spatial and temporal RGC filters recovered via STA]

Important

It is common to hear the terms “STA”, “linear filter”, and “receptive field”
used interchangeably. However, this is technically incorrect. The STA is an
unbiased estimate of the time-reverse of a best-fitting linear filter (in
the least-squares sense), assuming the stimulus is uncorrelated. If the
stimulus contains correlations, those will appear in the arrays returned by
both filtertools.sta and filtertools.revcorr. As Gaussian white
noise, which is uncorrelated, is an exceedingly common stimulus, practioners
often loosely refer to the STA as the linear filter, keeping the time-reversing
process implicit. The pyret methods and docstrings strive for the maximal
amount of clarity when refering to these objects, and the documentation should
be heeded about whether a filter or STA is expected.

2.2.6. Estimating a nonlinearity

While the STA gives a lot of information, it is not the whole story. Real RGCs are definitely
not linear. One common way to correct for this fact is to fit a single, time-invariant
(static), point-wise nonlinearity to the data. This is a mapping between the linear response
to the real spiking data; in other words, it captures the difference between how the cell
would response if it were linear and how the cell actually responds.

The first step in computing a nonlinearity is to compute how the recovered linear
filter responds to the input stimulus. This is done via convolution of the linear filter
with the stimulus.

>>> pred = pyret.filtertools.linear_response(sta[::-1], stimulus)
>>> stimulus.shape
(30011, 20, 20)
>>> pred.shape
(30011,)

Important

Note here that we’re flipping the STA before passing it to the
linear_response function. This function expects a true linear filter,
while the arrays returned by sta and revcorr are reverse-
correlations. This must be flipped along the time (zero-th) axis
to arrive at a filter.

We can get a sense for how poor our linear prediction is, simply by plotting the
predicted versus the actual response at each time point.

>>> plt.plot(pred, rate, linestyle='none', marker='o', mew=1, mec='w')
>>> plt.xlabel('Linearly predicted output')
>>> plt.ylabel('True output (Hz)')

[image: Predicted vs true firing rates for one RGC]
It’s clear that there is at least some nonlinear behavior in the cell. For one thing,
firing rates can never be negative, but our linear prediction definitely is.

pyret contains several classes for fitting nonlinearities to data. The simplest is
the Binterp class (a portmanteau of “bin” and “interpolate”), which computes the
average true output in specified bins along the input axis. It uses variable-sized
bins, so that each bin has roughly the same number of data points.

>>> nbins = 50
>>> binterp = pyret.nonlinearities.Binterp(nbins)
>>> binterp.fit(pred, rate)
>>> nonlin_range = (pred.min(), pred.max())
>>> binterp.plot(nonlin_range, linewidth=5, label='Binterp') # Plot nonlinearity over the given range

[image: Predicted vs true firing rates for one RGC]
One can also fit sigmoidal nonlinearities, or a nonlinearity using a Gaussian process
(which has some nice advantages, and returns errorbars automatically). More information
about these can be found in the full documentation.

We can now compare how well the full LN model captures the cell’s response characteristics.

>>> predicted_rate = binterp.predict(pred)
>>> plt.figure()
>>> plt.plot(time[:500], rate[:500], linewidth=5, color=(0.75,) * 3, alpha=0.7, label='True rate')
>>> plt.plot(time[:500], predicted_rate[:500], linewidth=2, color=(0.75, 0.1, 0.1), label='LN predicted rate')
>>> plt.legend()
>>> plt.xlabel('Time (s)')
>>> plt.ylabel('Firing rate (Hz)')
>>> np.corrcoef(rate, predicted_rate)[0, 1] # Correlation coefficient on training data
0.70315310866999448

[image: True firing rate with LN model prediction for one RGC]

3. API Reference

3.1. filtertools

Tools and utilities for computing spike-triggered averages (filters),
finding spatial and temporal components of
spatiotemporal filters, and basic filter signal processing.

	
pyret.filtertools.ste(time, stimulus, spikes, nsamples_before, nsamples_after=0)

	Constructs an iterator over spike-triggered stimuli.

	Parameters

	
	time (ndarray) – The time array corresponding to the stimulus.

	stimulus (ndarray) – A spatiotemporal or temporal stimulus array, where time is the
first dimension.

	spikes (iterable) – A list or ndarray of spike times.

	nsamples_before (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to include in the STE before the spike.

	nsamples_after (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to include in the STE after the spike,
which defaults to 0.

	Returns

	ste – A generator that yields samples from the spike-triggered ensemble.

	Return type

	generator

Notes

The spike-triggered ensemble (STE) is the set of all stimuli immediately
surrounding a spike. If the full stimulus distribution is p(s), the STE
is p(s | spike).

	
pyret.filtertools.sta(time, stimulus, spikes, nsamples_before, nsamples_after=0)

	Compute a spike-triggered average.

	Parameters

	
	time (ndarray) – The time array corresponding to the stimulus

	stimulus (ndarray) – A spatiotemporal or temporal stimulus array
(where time is the first dimension)

	spikes (iterable) – A list or ndarray of spike times

	nsamples_before (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to include in the STA before the spike

	nsamples_after (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to include in the STA after the spike (default: 0)

	Returns

	
	sta (ndarray) – The spatiotemporal spike-triggered average. Note that time
increases with increasing array index, i.e. time of the spike is
at the index for which tax == 0.

	tax (ndarray) – A time axis corresponding to the STA, giving the time relative
to the spike for each time point of the STA.

Notes

The spike-triggered average (STA) is the averaged stimulus feature
conditioned on the presence of a spike. This is widely-used method
for estimating a neuron’s receptive field, and captures the average
stimulus feature to which the neuron responds.

Formally, the STA is defined as the function [1]:

\[C(\tau) = \frac{1}{N} \sum_{i=1}^{N} s(t_i - \tau)\]

where \(\tau\) is time preceding the spike, and \(t_i\) is
the time of the ith spike.

The STA is often used to estimate a linear filter which captures
a neuron’s responses. If the stimulus is uncorrelated (spherical),
the STA is unbiased and proportional to the time-reverse of the
linear filter.

Note that the tax time values returned by this method are
formally given by t_i - \tau, i.e., they are the actual
time relative to the spike of each corresponding point in the STA.

References

[1] Dayan, P. and L.F. Abbott. Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems. 2001.

	
pyret.filtertools.stc(time, stimulus, spikes, nsamples_before, nsamples_after=0)

	Compute the spike-triggered covariance.

	Parameters

	
	time (ndarray) – The time array corresponding to the stimulus, where time is the
first dimension.

	stimulus (ndarray) – A spatiotemporal or temporal stimulus array.

	spikes (iterable) – A list or ndarray of spike times.

	nsamples_before (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to include in the STC before the spike.

	nsamples_after (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples to include in the STC after the spike,
which defaults to 0.

	Returns

	stc – The spike-triggered covariance (STC) matrix.

	Return type

	ndarray

	
pyret.filtertools.lowranksta(sta_orig, k=10)

	Constructs a rank-k approximation to the given spatiotemporal STA.
This is useful for estimating a spatial and temporal kernel for an
STA or for denoising.

	Parameters

	
	sta_orig (array_like) – 3D STA to be separated, shaped as (time, space, space).

	k (int [https://docs.python.org/3/library/functions.html#int]) – Number of components to keep (rank of the reduced STA).

	Returns

	
	sk (array_like) – The rank-k estimate of the original STA.

	u (array_like) – The top k temporal components (each column is a component).

	s (array_like) – The top k singular values.

	v (array_like) – The top k spatial components (each row is a component). These
components have all spatial dimensions collapsed to one.

Notes

This method requires that the STA be 3D. To decompose a STA into a
temporal and 1-dimensional spatial component, simply promote the STA
to 3D before calling this method.

Despite the name this method accepts both an STA or a linear filter.
The components estimated for one will be flipped versions of the other.

	
pyret.filtertools.decompose(sta)

	Decomposes a spatiotemporal STA into a spatial and temporal kernel.

	Parameters

	sta (array_like) – The full 3-dimensional STA to be decomposed, of shape (t, nx, ny).

	Returns

	
	s (array_like) – The spatial kernel, with shape (nx * ny,).

	t (array_like) – The temporal kernel, with shape (t,).

	
pyret.filtertools.filterpeak(sta)

	Find the peak (single point in space/time) of a smoothed STA or
linear filter.

	Parameters

	sta (array_like) – STA or filter for which to find the peak. It should be shaped as
(time, ...), where ellipses indicate any spatial dimensions
to the array.

	Returns

	
	linear_index (int) – Linear index of the maximal point, i.e. treating the array as
flattened.

	sidx (1- or 2-element tuple) – Spatial index of the maximal point. This returns a tuple with the
same number of elements as the filter has spatial dimensions.

	tidx (int) – Temporal index of the maximal point.

	
pyret.filtertools.smooth(f, spacesig=0.5, timesig=1)

	Smooths a 3D spatiotemporal STA or linear filter using a multi-dimensional
Gaussian filter with the given properties.

	Parameters

	
	f (array_like) – 3D STA or filter to be smoothed.

	spacesig (float [https://docs.python.org/3/library/functions.html#float]) – The standard deviation of the spatial Gaussian smoothing kernel.

	timesig (float [https://docs.python.org/3/library/functions.html#float]) – The standard deviation of the temporal Gaussian smoothing kernel.

	Returns

	fsmooth – The smoothed filter, with the same shape as the input.

	Return type

	array_like

	
pyret.filtertools.cutout(arr, idx=None, width=5)

	Cut out a chunk of the given stimulus or filter.

	Parameters

	
	arr (array_like) – Stimulus, STA, or filter array from which the chunk is cut out. The
array should be shaped as (time, spatial, spatial).

	idx (array_like, optional) – 2D array specifying the row and column indices of the center of the
section to be cut out (if None, the indices are taken from
filterpeak).

	width (int [https://docs.python.org/3/library/functions.html#int], optional) – The size of the chunk to cut out from the start indices. Defaults
to 5 samples.

	Returns

	cut – The cut out section of the given stimulus, STA, or filter.

	Return type

	array_like

Notes

This method can be useful to reduce the space and time costs of computations
involving stimuli and/or filters. For example, a neuron’s receptive field is
often much smaller than the stimulus, but this method can be used to only
compare the relevant portions of the stimulus and receptive field.

	
pyret.filtertools.resample(arr, scale_factor)

	Resamples a 1-D or 2-D array by the given scale.

	Parameters

	
	arr (array_like) – The original array to be resampled.

	scale_factor (int_like) – The factor by which arr will be resampled. For example, a
factor of 2 results in an of twice the size in each dimension,
with points interpolated between existing points.

	Returns

	res – The resampled array. If arr has shape (M,N), res has
shape (scale_factor*M, scale_factor*N).

	Return type

	array_like

	Raises

	
	An AssertionError is raised if the scale factor is <= 0.

	A ValueError is raised if the input array is not 1- or 2-dimensional.

	
pyret.filtertools.flat2d(x)

	Flattens all dimensions after the first of the given array

Useful for collapsing spatial dimensions in a spatiotemporal
stimulus or filter.

	
pyret.filtertools.get_ellipse(spatial_filter, sigma=2.0)

	Get the parameters of an ellipse fit to a spatial STA or linear filter.

	Parameters

	
	spatial_filter (array_like) – The spatial receptive field to which the ellipse should be fit.

	sigma (float [https://docs.python.org/3/library/functions.html#float], optional) – Determines the size of the ellipse contour, in units of standard
deviations. (Default: 2)

	Returns

	
	center ((float,float)) – The receptive field center (location stored as an (x,y) tuple).

	widths ([float,float]) – Two-element list of the size of each principal axis of the RF ellipse.

	theta (float) – angle of rotation of the ellipse from the vertical axis, in radians.

	
pyret.filtertools.get_regionprops(spatial_filter, percentile=0.95)

	Gets region properties of a 2D spatial STA or linear filter.

This returns various attributes of the non-zero area of the given
spatial filter, such as its area, centroid, eccentricity, etc.

>>> regions = get_regionprops(sta_spatial)
>>> print(regions[0].area) # prints the area of the first region

	Parameters

	
	spatial_filter (array_like) – The spatial linear filter to which the ellipse should be fit.

	percentile (float [https://docs.python.org/3/library/functions.html#float], optional) – The cutoff percentile at which the contour is taken. Defaults
to 0.95.

	Returns

	regions – List of region properties (see skimage.measure.regionprops
for more information).

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pyret.filtertools.normalize_spatial(frame, scale_factor=1.0, clip_negative=False)

	Normalizes a spatial frame, for example of a stimulus or STA, by
doing the following:

	mean subtraction using a robust estimate of the mean (ignoring outliers).

	scaling such that the std. dev. of the pixel values is 1.0.

	Parameters

	
	frame (array_like) – The spatial frame to be normalized.

	scale_factor (float [https://docs.python.org/3/library/functions.html#float], optional) – The given frame is resampled at a sampling rate of this ratio times
the original sampling rate (Default: 1.0).

	clip_negative (boolean, optional) – Whether or not to clip negative values to 0. (Default: False).

	Returns

	resampled – The normalized (and potentially resampled) frame.

	Return type

	array_like

	
pyret.filtertools.linear_response(filt, stim, nsamples_after=0)

	Compute the response of a linear filter to a stimulus.

	Parameters

	
	filt (array_like) – The linear filter whose response is to be computed. The array should
have shape (t, ...), where t is the number of time points in
the filter and the ellipsis indicates any remaining spatial dimenions.
The number of dimensions and the sizes of the spatial dimensions
must match that of stim.

	stim (array_like) – The stimulus to which the predicted response is computed. The array
should have shape (T,...), where T is the number of time points
in the stimulus and the ellipsis indicates any remaining spatial
dimensions. The number of dimensions and the sizes of the spatial
dimenions must match that of filt.

	nsamples_after (int [https://docs.python.org/3/library/functions.html#int], optional) – The number of acausal points in the filter. Defaults to 0.

	Returns

	pred – The predicted linear response, of shape (t,).

	Return type

	array_like

	Raises

	ValueError : If the number of dimensions of ``stim`` and ``filt`` do not – match, or if the spatial dimensions differ.

Notes

Note that the first parameter is a linear filter. The values returned by
filtertools.sta and filtertools.revcorr are proportional to the
time-reverse of the linear filter, so to use those values in this function,
they must be flipped along the first dimension.

Both filtertools.sta and filtertools.revcorr can estimate “acausal”
components, such as points in the stimulus occuring after a spike. The
value passed as parameter nsamples_after must match that value used
when calling filtertools.sta or filtertools.revcorr.

	
pyret.filtertools.revcorr(stimulus, response, nsamples_before, nsamples_after=0)

	Compute the reverse-correlation between a stimulus and a response.

	Parameters

	
	stimulus (array_like) – A input stimulus correlated with the response. Must be of shape
(t, ...), where t is the time and ... indicates any spatial
dimensions.

	response (array_like) – A continuous output response correlated with stimulus. Must
be one-dimensional, of size t, the same size as stimulus
along the first axis. Note that the first history points of
the response are ignored, where history = nsamples_before +
nsamples_after, in order to only return the portion of the
correlation during which the stimulus and response
completely overlap.

	nsamples_before (int [https://docs.python.org/3/library/functions.html#int]) – The maximum negative lag for the correlation between stimulus and
response, in samples.

	nsamples_after (int [https://docs.python.org/3/library/functions.html#int], optional) – The maximum positive lag for the correlation between stimulus and
response, in samples. Defaults to 0.

	Returns

	
	rc (array_like) – An array of shape (nsamples_before + nsamples_after, ...)
containing the best-fitting linear filter which predicts the response
from the stimulus. The ellipses indicates spatial dimensions of the
filter.

	lags (array_like) – An array of shape (nsamples_before + nsamples_after,), which gives
the lags, in samples, between stimulus and response for the
correlation returned in rc. This can be converted to an axis of time
(like that returned from filtertools.sta) by multiplying by the
sampling period.

	Raises

	
	ValueError : If the stimulus and response arrays do not match in

	size along the first dimension.

Notes

The response and stimulus arrays must share the same sampling
rate. As the stimulus often has a lower sampling rate, one can use
stimulustools.upsample to upsample it.

Reverse correlation is a method analogous to spike-triggered averaging for
continuous response variables, such as a membrane voltage recording. It
estimates the stimulus feature that most strongly correlates with the
response on average.

It is the time-reverse of the standard cross-correlation function, and is defined
as:

\[c[-k] = \sum_{n} s[n] r[n - k]\]

The parameter k is the lag between the two signals in samples. The range
of lags computed in this method are determined by nsamples_before and
nsamples_after.

Note that, as with filtertools.sta, the values (samples) in the lags
array increase with increasing array index. This means that time is moving
forward with increasing array index.

Also note that this method assumes an uncorrelated stimulus. If the
stimulus is correlated, those will bias the estimated reverse correlation.

3.2. nonlinearities

Tools for fitting nonlinear functions to data

	
class pyret.nonlinearities.Sigmoid(baseline=0.0, peak=1.0, slope=1.0, threshold=0.0)

	Bases: sklearn.base.BaseEstimator, sklearn.base.RegressorMixin, pyret.nonlinearities.NonlinearityMixin

	
fit(x, y, **kwargs)

	

	
predict(x)

	

	
class pyret.nonlinearities.Binterp(nbins, method='linear', fill_value='extrapolate')

	Bases: sklearn.base.BaseEstimator, sklearn.base.RegressorMixin, pyret.nonlinearities.NonlinearityMixin

	
fit(x, y)

	

	
predict(x)

	Placeholder, this method gets overwritten when fit() is called

	
class pyret.nonlinearities.GaussianProcess(**kwargs)

	Bases: sklearn.gaussian_process.gpr.GaussianProcessRegressor, pyret.nonlinearities.NonlinearityMixin

	
fit(x, y)

	Fit Gaussian process regression model.

	Parameters

	
	X (array-like, shape = (n_samples, n_features)) – Training data

	y (array-like, shape = (n_samples, [n_output_dims])) – Target values

	Returns

	self

	Return type

	returns an instance of self.

	
predict(x, **kwargs)

	Predict using the Gaussian process regression model

We can also predict based on an unfitted model by using the GP prior.
In addition to the mean of the predictive distribution, also its
standard deviation (return_std=True) or covariance (return_cov=True).
Note that at most one of the two can be requested.

	Parameters

	
	X (array-like, shape = (n_samples, n_features)) – Query points where the GP is evaluated

	return_std (bool [https://docs.python.org/3/library/functions.html#bool], default: False) – If True, the standard-deviation of the predictive distribution at
the query points is returned along with the mean.

	return_cov (bool [https://docs.python.org/3/library/functions.html#bool], default: False) – If True, the covariance of the joint predictive distribution at
the query points is returned along with the mean

	Returns

	
	y_mean (array, shape = (n_samples, [n_output_dims])) – Mean of predictive distribution a query points

	y_std (array, shape = (n_samples,), optional) – Standard deviation of predictive distribution at query points.
Only returned when return_std is True.

	y_cov (array, shape = (n_samples, n_samples), optional) – Covariance of joint predictive distribution a query points.
Only returned when return_cov is True.

3.3. spiketools

Tools for spike train analysis

Includes an object class, SpikingEvent, that is useful for detecting and
analyzing firing events within a spike raster. Also provides functions for
binning spike times into a histogram (binspikes) and a function
for smoothing a histogram into a firing rate (estfr)

	
pyret.spiketools.binspikes(spk, time)

	Bin spike times at the given resolution. The function has two forms.

	Parameters

	
	spk (array_like) – Array of spike times

	time (array_like) – The left edges of the time bins.

	Returns

	bspk – Binned spike times

	Return type

	array_like

	
pyret.spiketools.estfr(bspk, time, sigma=0.01)

	Estimate the instantaneous firing rates from binned spike counts.

	Parameters

	
	bspk (array_like) – Array of binned spike counts (e.g. from binspikes)

	time (array_like) – Array of time points corresponding to bins

	sigma (float [https://docs.python.org/3/library/functions.html#float], optional) – The width of the Gaussian filter, in seconds (Default: 0.01 seconds)

	Returns

	rates – Array of estimated instantaneous firing rate

	Return type

	array_like

	
pyret.spiketools.detectevents(spk, threshold=(0.3, 0.05))

	Detects spiking events given a PSTH and spike times for multiple trials

>> events = detectevents(spikes, threshold=(0.1, 0.005))

	Parameters

	
	spk (array_like) – An (n by 2) array of spike times, indexed by trial / condition.
The first column is the set of spike times in the event and the second
column is a list of corresponding trial/cell/condition indices
for each spike.

	threshold ((float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]), optional) – A tuple of two floats that are used as thresholds for detecting firing
events. Default: (0.1, 0.005) see peakdet for more info

	Returns

	events – A list of ‘spikingevent’ objects, one for each firing event detected.
See the spikingevent class for more info.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
pyret.spiketools.peakdet(v, delta, x=None)

	Converted from MATLAB script at http://billauer.co.il/peakdet.html

Returns two arrays containing the maxima and minima of a 1D signal

	Parameters

	
	v (array_like) – The input signal (array) to find the peaks of

	delta (float [https://docs.python.org/3/library/functions.html#float]) –
	The threshold for peak detection. A point is considered a maxima

	(or minima) if it is at least delta larger (or smaller) than
its neighboring points

	x (array_like, optional) – If given, the locations of the peaks are given as the corresponding
values in x. Otherwise, the locations are given as indices

	Returns

	
	maxtab (array_like) – An (N x 2) array containing the indices or locations (left column)
of the local maxima in v along with the corresponding maximum
values (right column).

	mintab (array_like) – An (M x 2) array containing the indices or locations (left column)
of the local minima in v along with the corresponding minimum
values (right column).

	
class pyret.spiketools.SpikingEvent(start_time, stop_time, spikes)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

	
jitter()

	Computes the jitter (standard deviation) in the time to first spike

>> sigma = spkevent.jitter()

	
plot(sort=False, ax=None, color='SlateGray')

	Plots this event, as a spike raster

>> spkevent.plot()

	Parameters

	
	sort (boolean, optional) – Whether or not to sort by the time to first spike (Default: False)

	ax (matplotlib Axes object, optional) – If None, creates a new figure (Default: None)

	color (string) – The color of the points in the raster (Default: ‘SlateGray’)

	
sort()

	Sort trial indices by the time to first spike

>> sortedspikes = spkevent.sort()

	
stats()

	Compute statistics (mean and standard deviation) across spike counts

>> mu, sigma = spkevent.event_stats()

	
trial_counts()

	Count the number of spikes per trial

	
ttfs()

	Computes the time to first spike for each trial, ignoring trials that
had zero spikes

>> times = spkevent.ttfs()

3.4. stimulustools

Tools for dealing with spatiotemporal stimuli

	
pyret.stimulustools.upsample(stim, upsample_factor, time=None)

	Upsample the given stimulus by the given factor.

	Parameters

	
	stim (array_like) – The actual stimulus to be upsampled. dimensions: (time, space, space)

	upsample_factor (int [https://docs.python.org/3/library/functions.html#int]) – The upsample factor.

	time (array_like, optional) – The time axis of the original stimulus.

	Returns

	
	stim_us (array_like) – The upsampled stimulus array

	time_us (array_like) – the upsampled time vector

	
pyret.stimulustools.downsample(stim, downsample_factor, time=None)

	Downsample the given stimulus by the given factor.

	Parameters

	
	stim (array_like) – The original stimulus array

	downsample_factor (int [https://docs.python.org/3/library/functions.html#int]) – The factor by which the stimulus will be downsampled

	time (array_like, optional) – The time axis of the original stimulus

	Returns

	
	stim_ds (array_like) – The downsampled stimulus array

	time_ds (array_like) – The downsampled time vector

	
pyret.stimulustools.slicestim(stimulus, nsamples_before, nsamples_after=0)

	Slices a spatiotemporal stimulus array (over time) into overlapping frames.

	Parameters

	
	stimulus (array_like) – The spatiotemporal or temporal stimulus to slice. Should have shape
(t, ...), so that the time axis is first. The ellipses indicate the
spatial dimensions of the stimulus, if any.

	nsamples_before (int [https://docs.python.org/3/library/functions.html#int]) – Integer number of time points before a hypothetical center.
See Notes section for more details.

	nsamples_after (int [https://docs.python.org/3/library/functions.html#int], optional) – Integer number of time points before a hypothetical center.
See Notes section for more details.

	Returns

	slices – A view onto the original stimulus array, giving the overlapping slices
of the stimulus. The full shape of the returned array is:
(stimulus.shape[0] - history + 1, history ...), where
history == nsamples_before + nafter. As above, the ellipses
indicate any spatial dimensions to the stimulus.

	Return type

	array_like

Examples

>>> x = np.arange(15).reshape((5, 3))
>>> slicestim(x, 3)
array([[[0, 1, 2],
 [3, 4, 5]],

	[[3, 4, 5],

	[6, 7, 8]],

	[[6, 7, 8],

	[9, 10, 11]],

	[[9, 10, 11],

	[12, 13, 14]]])

Calculate rolling mean of last dimension:

>>> np.mean(slicestim(x, 3), -1)
 array([[1., 4.],
 [4., 7.],
 [7., 10.],
 [10., 13.]])

Notes

stimulustools.slicestim is used to create a Toeplitz matrix from a
multi-dimensional stimulus. This simplifies performing certain operations
such as filtering, as it allows us to express the operation as a matrix
product rather than via convolution.

However, this product only works when the sliced stimulus and filter are
temporally aligned. Because filtertools.sta and filtertools.revcorr
allow computing acausal components of an STA (points after a spike occurs),
this method must also allow that in order to keep the temporal alignment.

Practically this means that one must always pass the same value for the
nsamples_after argument as is passed to filtertools.sta or
filtertools.revcorr.

	
pyret.stimulustools.cov(stimulus, history, nsamples=None, verbose=False)

	Computes a stimulus covariance matrix

Warning

This is computationally expensive for large stimuli

	Parameters

	
	stimulus (array_like) – The spatiotemporal or temporal stimulus to slices. Should have shape
(t, …), where the ellipses indicate any spatial dimensions.

	history (int [https://docs.python.org/3/library/functions.html#int]) – Integer number of time points to keep in each slice.

	Returns

	stim_cov – Covariance matrix

	Return type

	array_like

	
pyret.stimulustools.flat2d(x)

	Flattens all dimensions after the first of the given array

Useful for collapsing spatial dimensions in a spatiotemporal
stimulus or filter.

3.5. visualizations

Visualization functions for displaying spikes, filters, and cells.

	
pyret.visualizations.raster(*args, **kwargs)

	Plot a raster of spike times.

	Parameters

	
	spikes (array_like) – An array of spike times.

	labels (array_like) – An array of labels corresponding to each spike in spikes. For example,
this can indicate which cell or trial each spike came from. Spike times
are plotted on the x-axis, and labels on the y-axis.

	title (string, optional) – An optional title for the plot (Default: ‘Spike raster’).

	marker_string (string, optional) – The marker string passed to matplotlib’s plot function (Default: ‘ko’).

	ax (matplotlib.axes.Axes instance, optional) – An optional axes onto which the data is plotted.

	fig (matplotlib.figure.Figure instance, optional) – An optional figure onto which the data is plotted.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Optional keyword arguments are passed to matplotlib’s plot function.

	Returns

	
	fig (matplotlib.figure.Figure) – Matplotlib Figure object into which raster is plotted.

	ax (matplotlib.axes.Axes) – Matplotlib Axes object into which raster is plotted.

	
pyret.visualizations.psth(*args, **kwargs)

	Plot a PSTH from the given spike times.

	Parameters

	
	spikes (array_like) – An array of spike times.

	trial_length (float [https://docs.python.org/3/library/functions.html#float]) – The length of each trial to stack, in seconds. If None (the
default), a single PSTH is plotted. If a float is passed, PSTHs
from each trial of the given length are averaged together before
plotting.

	binsize (float [https://docs.python.org/3/library/functions.html#float]) – The size of bins used in computing the PSTH.

	ax (matplotlib.axes.Axes instance, optional) – An optional axes onto which the data is plotted.

	fig (matplotlib.figure.Figure instance, optional) – An optional figure onto which the data is plotted.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments passed to matplotlib’s plot function.

	Returns

	
	fig (matplotlib.figure.Figure) – Matplotlib Figure object into which PSTH is plotted.

	ax (matplotlib.axes.Axes) – Matplotlib Axes object into which PSTH is plotted.

	
pyret.visualizations.raster_and_psth(*args, **kwargs)

	Plot a spike raster and a PSTH on the same set of axes.

	Parameters

	
	spikes (array_like) – An array of spike times.

	trial_length (float [https://docs.python.org/3/library/functions.html#float]) – The length of each trial to stack, in seconds. If None (the default),
all spikes are plotted as part of the same trial.

	binsize (float [https://docs.python.org/3/library/functions.html#float]) – The size of bins used in computing the PSTH.

	ax (matplotlib.axes.Axes instance, optional) – An optional axes onto which the data is plotted.

	fig (matplotlib.figure.Figure instance, optional) – An optional figure onto which the data is plotted.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments to matplotlib’s plot function.

	Returns

	
	fig (matplotlib.figure.Figure) – Matplotlib Figure instance onto which the data is plotted.

	ax (matplotlib.axes.Axes) – Matplotlib Axes instance onto which the data is plotted.

	
pyret.visualizations.spatial(*args, **kwargs)

	Plot the spatial component of a full linear filter.

If the given filter is 2D, it is assumed to be a 1D spatial filter,
and is plotted directly. If the filter is 3D, it is decomposed into
its spatial and temporal components, and the spatial component is plotted.

	Parameters

	
	filt (array_like) – The filter whose spatial component is to be plotted. It may have
temporal components.

	dx (float [https://docs.python.org/3/library/functions.html#float], optional) – The spatial sampling rate of the STA, setting the scale of the
x- and y-axes.

	maxval (float [https://docs.python.org/3/library/functions.html#float], optional) – The value to use as minimal and maximal values when normalizing the
colormap for this plot. See plt.imshow() documentation for more
details.

	ax (matplotlib Axes object, optional) – The axes on which to plot the data; defaults to creating a new figure.

	Returns

	
	fig (matplotlib.figure.Figure) – The figure onto which the spatial STA is plotted.

	ax (matplotlib Axes object) – Axes into which the spatial STA is plotted.

	
pyret.visualizations.temporal(*args, **kwargs)

	Plot the temporal component of a full linear filter.

If the given linear filter is 1D, it is assumed to be a temporal filter,
and is plotted directly. If the filter is 2 or 3D, it is decomposed into
its spatial and temporal components, and the temporal component is plotted.

	Parameters

	
	time (array_like) – A time vector to plot against.

	filt (array_like) – The full filter to plot. May be than 1D, but must match in size along
the first dimension with the time input.

	ax (matplotlib Axes object, optional) – the axes on which to plot the data; defaults to creating a new figure

	Returns

	
	fig (matplotlib.figure.Figure) – The figure onto which the temoral STA is plotted.

	ax (matplotlib Axes object) – Axes into which the temporal STA is plotted

	
pyret.visualizations.plot_sta(time, sta, dx=1.0)

	Plot a linear filter.

If the given filter is 1D, it is direclty plotted. If it is 2D, it is
shown as an image, with space and time as its axes. If the filter is 3D,
it is decomposed into its spatial and temporal components, each of which
is plotted on its own axis.

	Parameters

	
	time (array_like) – A time vector to plot against.

	dx (float [https://docs.python.org/3/library/functions.html#float], optional) – The spatial sampling rate of the STA, setting the scale of the
x- and y-axes.

	sta (array_like) – The filter to plot.

	Returns

	
	fig (matplotlib.figure.Figure) – The figure onto which the STA is plotted.

	ax (matplotlib Axes object) – Axes into which the STA is plotted

	
pyret.visualizations.play_sta(sta, repeat=True, frametime=100, cmap='seismic_r', clim=None, dx=1.0)

	Plays a spatiotemporal spike-triggered average as a movie.

	Parameters

	
	sta (array_like) – Spike-triggered average array, shaped as (nt, nx, ny).

	repeat (boolean, optional) – Whether or not to repeat the animation (default is True).

	frametime (float [https://docs.python.org/3/library/functions.html#float], optional) – Length of time each frame is displayed for in milliseconds
(default is 100).

	cmap (string, optional) – Name of the colormap to use (Default: 'seismic_r').

	clim (array_like, optional) – 2-element color limit for animation; e.g. [0, 255].

	dx (float [https://docs.python.org/3/library/functions.html#float], optional) – The spatial sampling rate of the STA, setting the scale of the
x- and y-axes.

	Returns

	anim

	Return type

	matplotlib animation object

	
pyret.visualizations.ellipse(*args, **kwargs)

	Plot an ellipse fitted to the given receptive field.

	Parameters

	
	filt (array_like) – A linear filter whose spatial extent is to be plotted. If this
is 2D, it is assumed to be the spatial component of the receptive
field. If it is 3D, it is assumed to be a full spatiotemporal
receptive field; the spatial component is extracted and plotted.

	sigma (float [https://docs.python.org/3/library/functions.html#float], optional) – Determines the threshold of the ellipse contours. This is
the standard deviation of a Gaussian fitted to the filter
at which the contours are plotted. Default is 2.0.

	alpha (float [https://docs.python.org/3/library/functions.html#float], optional) – The alpha blending value, between 0 (transparent) and
1 (opaque) (Default: 0.8).

	fc (string, optional) – Ellipse face color. (Default: none)

	ec (string, optional) – Ellipse edge color. (Default: black)

	lw (int [https://docs.python.org/3/library/functions.html#int], optional) – Line width. (Default: 3)

	dx (float [https://docs.python.org/3/library/functions.html#float], optional) – The spatial sampling rate of the STA, setting the scale of the
x- and y-axes.

	ax (matplotlib Axes object, optional) – The axes onto which the ellipse should be plotted.
Defaults to a new figure.

	Returns

	
	fig (matplotlib.figure.Figure) – The figure onto which the ellipse is plotted.

	ax (matplotlib.axes.Axes) – The axes onto which the ellipse is plotted.

	
pyret.visualizations.plot_cells(*args, **kwargs)

	Plot the spatial receptive fields for multiple cells.

	Parameters

	
	cells (list of array_like) – A list of spatiotemporal receptive fields, each of which is
a spatiotemporal array.

	dx (float [https://docs.python.org/3/library/functions.html#float], optional) – The spatial sampling rate of the STA, setting the scale of the
x- and y-axes.

	ax (matplotlib Axes object, optional) – The axes onto which the ellipse should be plotted.
Defaults to a new figure.

	Returns

	
	fig (matplotlib.figure.Figure) – The figure onto which the ellipses are plotted.

	ax (matplotlib.axes.Axes) – The axes onto which the ellipses are plotted.

	
pyret.visualizations.play_rates(rates, patches, num_levels=255, time=None, repeat=True, frametime=100)

	Plays a movie representation of the firing rate of a list of cells, by
coloring a list of patches with a color proportional to the firing rate. This
is useful, for example, in conjunction with plot_cells, to color the
ellipses fitted to a set of receptive fields proportional to the firing rate.

	Parameters

	
	rates (array_like) – An (N, T) matrix of firing rates. N is the number of cells, and
T gives the firing rate at a each time point.

	patches (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of N matplotlib patch elements. The facecolor of these patches is
altered according to the rates values.

	Returns

	anim – The object representing the full animation.

	Return type

	matplotlib.animation.Animation

4. Changelog

A list of new features, improvements, and bug-fixes in each release.

4.1. v0.6 (Active)

4.1.1. New features

	Adds the ability to extend temporal filters to be acausal (past the time of the spike)

	Adds an RBF class for estimating a nonlinearity using tiled radial basis functions.

4.1.2. API changes

	Removes outdated stimulustools.rolling_window method.

	In fixing a bug in linear_response, then method now returns an array of the
same shape as the stimulus input, rather than one shorter by the length of the
filter whose response is computed.

4.1.3. Bug fixes

	Fixes a bug in the Sigmoid nonlinearity due do shuffled dictionary keys

	Fixes bug in linear_response, which was supposed to take a filter, but actually
took a reverse-correlation.

	Fixes incorrect documentation for stimulustools.slicestim.

4.2. v0.5 (17 Nov 2016)

4.2.1. New features

	Better handling of low-rank STA component signs in filtertools.lowranksta.

	Functionality for embedding STA animations into HTML, via visualizations.anim_to_html().

	New classes for estimating nonlinearities: Binterp, Sigmoid and
GaussianProcess. These follow the scikit-learn interface, meaning
they have fit() and predict() methods, which return self.

4.2.2. API changes

	Renamed filtertools.getsta -> filtertools.sta

	Renamed filtertools.getste -> filtertools.ste

	Renamed filtertools.getstc -> filtertools.stc

	Renamed visualizations.rasterandpsth -> visualizations.raster_and_psth

	Renamed visualizations.plotcells -> visualizations.plot_cells

	Renamed visualizations.plotsta -> visualizations.plot_sta

	Renamed visualizations.playrates -> visualizations.play_rates

	Renamed visualizations.playsta -> visualizations.play_sta

	spiketools.binspikes and spiketools.estfr no longer return the time axis. Only the
binned spikes and firing rate are returned, respectively.

	Removed containers module.

	filtertools.rolling_window has been moved to the stimulustools module,
and is renamed slicestim. rolling_window is an alias for slicestim,
for the time being, which raises a warning about future deprecation.

	Renamed stimulustools.stimcov -> stimulustools.cov.

	Renamed stimulustools.upsample_stim -> stimulustools.upsample.

	Renamed stimulustools.downsample_stim -> stimulustools.downsample.

4.3. v0.4 (December 11 2015)

4.3.1. New features

	Adds a containers module that contains two classes, and Experiment and a
Filter class, for managing stimuli and spikes (Experiment) and spike-triggered averages (Filter).

	New and improved ellipse and contour fitting code (filtertools.rfsize,
filtertools.get_ellipse, visualizations.ellipse)

	New function filtertools.resample which is a thin wrapper around scipy.signal.resample

4.3.2. API changes

	Flipped the expected dimensions of stimuli and filters to have the temporal dimension first. E.g. functions now expect (time, space, space) or (time, space) instead of (space, space, time) or (space, time).

	Changes the default value of the argument in rolling_window to time_axis=0, to be consistent with the rest of pyret (after the flipped dimensions switch)

	Removes the prinangles function (does not really belong in the filtertools module, or even in pyret at all)

	Updated pyret.plotsta function

	Reworked filtertools.getste to be a generator, and modified getsta and getstc to consume that generator.

4.3.3. Issues closed

	#62 bug in filtertools.decompose [https://github.com/baccuslab/pyret/issues/62].

	#63 better ellipse fitting tools [https://github.com/baccuslab/pyret/issues/63].

	#60 custom classes for filter [https://github.com/baccuslab/pyret/issues/60].

	#53 simplifying filtertools [https://github.com/baccuslab/pyret/issues/53].

4.4. v0.3 (June 25 2015)

4.4.1. API changes

	Changed the filtertools module’s getste, getsta, and getstc to use
generators. The getste function now returns a generator that yields samples
from the spike-triggered ensemble, while getsta and getstc consume that
generator in order to compute their results.

4.5. v0.2 (February 1 2015)

This is a major release with a number of API changes, enhancements, and bug fixes.

The main focus has been on adding thorough documentation of all the packages and functions available.

4.5.1. API changes

	Changed the filterlength, numSamples and spatialSmoothing optional arguments to filter_length, num_samples and spatialSmoothing in filtertools.py

	Changed the numTrials to num_trials in spiketools.py

	Changed the triallength, spatialFrame, temporalFilter and boxdims optional arguments to trial_length, spatial_filter, temporal_filter and box_dims in visualizations.py

	Changed the stim paramteer to stimulus in stimulustools.py

	Added a function sample(rate) to spiketools.py which draws spikes from a Poisson distribution with the given rate.

	Renamed the spikingevent class in spiketools.py to SpikingEvent

	Renamed the attributes startTime, stopTime and functions trialCounts, eventStats of SpikingEvent to start_time, stop_time and trial_counts, event_stats

	Moved the peakdet function from the peakdetect.py module to spiketools.py. Removed the peakdetect.py module

	Renamed the functions getellipseparams and getellipse to get_ellipse_params and fit_ellipse in filtertools.py

	Renamed the functions upsamplestim and downsamplestim to upsample_stim and downsample_stim in stimulustools.py

4.5.2. General package changes

	Removed the (Igor and Baccus lab specific) module binary.py

	Documentation via sphinx is included in the doc/ folder

4.5.3. Known issues

	Installing with pip has not been tested.

	Installing with python setup.py install is known to not work on some machines.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyret	

 	
 	
 pyret.filtertools	

 	
 	
 pyret.nonlinearities	

 	
 	
 pyret.spiketools	

 	
 	
 pyret.stimulustools	

 	
 	
 pyret.visualizations	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | J
 | L
 | N
 | P
 | R
 | S
 | T
 | U

B

 	
 	binspikes() (in module pyret.spiketools)

 	
 	Binterp (class in pyret.nonlinearities)

C

 	
 	cov() (in module pyret.stimulustools)

 	
 	cutout() (in module pyret.filtertools)

D

 	
 	decompose() (in module pyret.filtertools)

 	
 	detectevents() (in module pyret.spiketools)

 	downsample() (in module pyret.stimulustools)

E

 	
 	ellipse() (in module pyret.visualizations)

 	
 	estfr() (in module pyret.spiketools)

F

 	
 	filterpeak() (in module pyret.filtertools)

 	fit() (pyret.nonlinearities.Binterp method)

 	(pyret.nonlinearities.GaussianProcess method)

 	(pyret.nonlinearities.Sigmoid method)

 	
 	flat2d() (in module pyret.filtertools)

 	(in module pyret.stimulustools)

G

 	
 	GaussianProcess (class in pyret.nonlinearities)

 	
 	get_ellipse() (in module pyret.filtertools)

 	get_regionprops() (in module pyret.filtertools)

J

 	
 	jitter() (pyret.spiketools.SpikingEvent method)

L

 	
 	linear_response() (in module pyret.filtertools)

 	
 	lowranksta() (in module pyret.filtertools)

N

 	
 	normalize_spatial() (in module pyret.filtertools)

P

 	
 	peakdet() (in module pyret.spiketools)

 	play_rates() (in module pyret.visualizations)

 	play_sta() (in module pyret.visualizations)

 	plot() (pyret.spiketools.SpikingEvent method)

 	plot_cells() (in module pyret.visualizations)

 	plot_sta() (in module pyret.visualizations)

 	predict() (pyret.nonlinearities.Binterp method)

 	(pyret.nonlinearities.GaussianProcess method)

 	(pyret.nonlinearities.Sigmoid method)

 	
 	psth() (in module pyret.visualizations)

 	pyret.filtertools (module)

 	pyret.nonlinearities (module)

 	pyret.spiketools (module)

 	pyret.stimulustools (module)

 	pyret.visualizations (module)

R

 	
 	raster() (in module pyret.visualizations)

 	raster_and_psth() (in module pyret.visualizations)

 	
 	resample() (in module pyret.filtertools)

 	revcorr() (in module pyret.filtertools)

S

 	
 	Sigmoid (class in pyret.nonlinearities)

 	slicestim() (in module pyret.stimulustools)

 	smooth() (in module pyret.filtertools)

 	sort() (pyret.spiketools.SpikingEvent method)

 	spatial() (in module pyret.visualizations)

 	
 	SpikingEvent (class in pyret.spiketools)

 	sta() (in module pyret.filtertools)

 	stats() (pyret.spiketools.SpikingEvent method)

 	stc() (in module pyret.filtertools)

 	ste() (in module pyret.filtertools)

T

 	
 	temporal() (in module pyret.visualizations)

 	
 	trial_counts() (pyret.spiketools.SpikingEvent method)

 	ttfs() (pyret.spiketools.SpikingEvent method)

U

 	
 	upsample() (in module pyret.stimulustools)

v0.2 (February 1 2015)

This is a major release with a number of API changes, enhancements, and bug fixes.

The main focus has been on adding thorough documentation of all the packages and functions available.

API changes

	Changed the filterlength, numSamples and spatialSmoothing optional arguments to filter_length, num_samples and spatialSmoothing in filtertools.py

	Changed the numTrials to num_trials in spiketools.py

	Changed the triallength, spatialFrame, temporalFilter and boxdims optional arguments to trial_length, spatial_filter, temporal_filter and box_dims in visualizations.py

	Changed the stim paramteer to stimulus in stimulustools.py

	Added a function sample(rate) to spiketools.py which draws spikes from a Poisson distribution with the given rate.

	Renamed the spikingevent class in spiketools.py to SpikingEvent

	Renamed the attributes startTime, stopTime and functions trialCounts, eventStats of SpikingEvent to start_time, stop_time and trial_counts, event_stats

	Moved the peakdet function from the peakdetect.py module to spiketools.py. Removed the peakdetect.py module

	Renamed the functions getellipseparams and getellipse to get_ellipse_params and fit_ellipse in filtertools.py

	Renamed the functions upsamplestim and downsamplestim to upsample_stim and downsample_stim in stimulustools.py

General package changes

	Removed the (Igor and Baccus lab specific) module binary.py

	Documentation via sphinx is included in the doc/ folder

Known issues

	Installing with pip has not been tested.

	Installing with python setup.py install is known to not work on some machines.

v0.3 (June 25 2015)

API changes

	Changed the filtertools module’s getste, getsta, and getstc to use
generators. The getste function now returns a generator that yields samples
from the spike-triggered ensemble, while getsta and getstc consume that
generator in order to compute their results.

v0.4 (December 11 2015)

New features

	Adds a containers module that contains two classes, and Experiment and a
Filter class, for managing stimuli and spikes (Experiment) and spike-triggered averages (Filter).

	New and improved ellipse and contour fitting code (filtertools.rfsize,
filtertools.get_ellipse, visualizations.ellipse)

	New function filtertools.resample which is a thin wrapper around scipy.signal.resample

API changes

	Flipped the expected dimensions of stimuli and filters to have the temporal dimension first. E.g. functions now expect (time, space, space) or (time, space) instead of (space, space, time) or (space, time).

	Changes the default value of the argument in rolling_window to time_axis=0, to be consistent with the rest of pyret (after the flipped dimensions switch)

	Removes the prinangles function (does not really belong in the filtertools module, or even in pyret at all)

	Updated pyret.plotsta function

	Reworked filtertools.getste to be a generator, and modified getsta and getstc to consume that generator.

Issues closed

	#62 bug in filtertools.decompose [https://github.com/baccuslab/pyret/issues/62].

	#63 better ellipse fitting tools [https://github.com/baccuslab/pyret/issues/63].

	#60 custom classes for filter [https://github.com/baccuslab/pyret/issues/60].

	#53 simplifying filtertools [https://github.com/baccuslab/pyret/issues/53].

v0.5 (17 Nov 2016)

New features

	Better handling of low-rank STA component signs in filtertools.lowranksta.

	Functionality for embedding STA animations into HTML, via visualizations.anim_to_html().

	New classes for estimating nonlinearities: Binterp, Sigmoid and
GaussianProcess. These follow the scikit-learn interface, meaning
they have fit() and predict() methods, which return self.

API changes

	Renamed filtertools.getsta -> filtertools.sta

	Renamed filtertools.getste -> filtertools.ste

	Renamed filtertools.getstc -> filtertools.stc

	Renamed visualizations.rasterandpsth -> visualizations.raster_and_psth

	Renamed visualizations.plotcells -> visualizations.plot_cells

	Renamed visualizations.plotsta -> visualizations.plot_sta

	Renamed visualizations.playrates -> visualizations.play_rates

	Renamed visualizations.playsta -> visualizations.play_sta

	spiketools.binspikes and spiketools.estfr no longer return the time axis. Only the
binned spikes and firing rate are returned, respectively.

	Removed containers module.

	filtertools.rolling_window has been moved to the stimulustools module,
and is renamed slicestim. rolling_window is an alias for slicestim,
for the time being, which raises a warning about future deprecation.

	Renamed stimulustools.stimcov -> stimulustools.cov.

	Renamed stimulustools.upsample_stim -> stimulustools.upsample.

	Renamed stimulustools.downsample_stim -> stimulustools.downsample.

v0.6 (Active)

New features

	Adds the ability to extend temporal filters to be acausal (past the time of the spike)

	Adds an RBF class for estimating a nonlinearity using tiled radial basis functions.

API changes

	Removes outdated stimulustools.rolling_window method.

	In fixing a bug in linear_response, then method now returns an array of the
same shape as the stimulus input, rather than one shorter by the length of the
filter whose response is computed.

Bug fixes

	Fixes a bug in the Sigmoid nonlinearity due do shuffled dictionary keys

	Fixes bug in linear_response, which was supposed to take a filter, but actually
took a reverse-correlation.

	Fixes incorrect documentation for stimulustools.slicestim.

 _images/recovered-sta.png
Filter response

0.2
0.1
0.0
-0.1
-0.2
-0.3
-0.4
-0.5

Recovered spatial filter (STA)

“n

i n

“mm
-

Recovered temporal filter (STA)

0.4 0.3 0.2 0.1
Time before spike (s)

_static/ajax-loader.gif

_images/pred-vs-true-rates.png

_images/pred-vs-true-with-binterp.png
True output (Hz)

120

100

80

40

20

-10

Linearly predicted output

15

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_images/393ae51326094fb336c517310c5fbeb9fbaaa2a6.gif

_images/firing-rate.png
o
IS S 8 8 < 5

_images/pred-vs-true-no-fit.png
True output (Hz)

120

100

40

20

Linearly predicted output

15

nav.xhtml

 Table of Contents

 		
 pyret: retinal data analysis in python

 		
 Installation

 		
 Basic

 		
 Dependencies

 		
 Development

 		
 Quickstart

 		
 Overview

 		
 Demo

 		
 Importing pyret

 		
 Loading data from HDF5

 		
 Loading data from .npz

 		
 Estimating firing rates

 		
 Estimating a receptive field

 		
 Estimating a nonlinearity

 		
 API Reference

 		
 filtertools

 		
 nonlinearities

 		
 spiketools

 		
 stimulustools

 		
 visualizations

 		
 Changelog

 		
 v0.6 (Active)

 		
 New features

 		
 API changes

 		
 Bug fixes

 		
 v0.5 (17 Nov 2016)

 		
 New features

 		
 API changes

 		
 v0.4 (December 11 2015)

 		
 New features

 		
 API changes

 		
 Issues closed

 		
 v0.3 (June 25 2015)

 		
 API changes

 		
 v0.2 (February 1 2015)

 		
 API changes

 		
 General package changes

 		
 Known issues

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

