
RedisORM
Release 0.1.0

January 08, 2016

Contents

1 A Few Minor Warnings 3

2 Quick start 5

3 Contributing 7

4 Documentation 9
4.1 Exceptions . 9
4.2 Model Class . 9
4.3 Helper Classes . 10

Python Module Index 13

i

ii

RedisORM, Release 0.1.0

RedisORM is just a quick and simple little Key-Value group to Python Object mapper that makes it easier to have
somewhat more complex structures in Redis. While a similar structure could be achieved by using a Redis hash, this
module also allows for lists and future support for Redis data structures is hopefully planed, making this more helpful
than basic hashs.

There is a small test suite provided. It requires an actual Redis install that is up and running. If you want too change
the address then please take a look in the test directory. The tests are automatically ran each commit, thanks to travis-
ci.org and coverage is provided by Coveralls.io and this documentation is kindly hosted and automatically rebuilt by
readthedocs.org.

If you find this project helpful and would like to make a small donation, I’m available on Gittip:

Contents 1

http://travis-ci.org
http://travis-ci.org
http://coveralls.io
http://readthedocs.org

RedisORM, Release 0.1.0

2 Contents

CHAPTER 1

A Few Minor Warnings

1. This is a very early release, and although I’ve been using a large part of this code for about a year now, things
are still going to break and not function well. Don’t be afraid to submit a bug report or a patch on Github to fix
something.

2. I’m only a second year university student, and software isn’t even my major; I’m working towards an Electrical
and Computer Engineering degree, so not only do I have limited time to keep this maintained, but I also probably
won’t write the best code ever.

3. This project follows the semantic versioning specs. All Minor and patch versions will not break the major
versions API, however a bump of the major version signifies that backwards compatibility will most likely be
broken in some way.

3

RedisORM, Release 0.1.0

4 Chapter 1. A Few Minor Warnings

CHAPTER 2

Quick start

This module provides a basic object mapper for groups of Redis keys.

Note: The model stores all its data with a Redis key structure like so: namespace:key:part

Where:

1. namespace - the key prefix

2. key - the actual name or id of this object

3. part - the specific element of the model

Basic use is like so:

>>> import redis
>>> from redisORM import RedisModel
>>> redis_instance = redis.StrictRedis("localhost", db=0)

Lets create a new model:

>>> sample1 = RedisModel(namespace="test", key="sample1", conn=redis_instance)
>>> sample1
<RedisModel.RedisModel ...>

And now lets add some data to it. Two strings and a list:

>>> sample1.name = "Ludwig Van Beethoven"
>>> sample1["era"] = "Classical" # you can also treat it like a dictionary (with some missing features)
>>> sample1.famous_works = ["Symphony No.5", "Symphony No.7", "Symphony No.9"] # Lists have limited support also

Along with setting data you can also access data, both like an object property or by using the dictionary index style:

>>> sample1["name"]
'Ludwig Van Beethoven'
>>> sample1.era
'Classical'
>>> sample1.famous_works
['Symphony No.5', 'Symphony No.7', 'Symphony No.9']

You can also check for a property in the model:

>>> "name" in sample1
True
>>> "age" in sample1
False

5

RedisORM, Release 0.1.0

>>> "Symphony No.9" in sample1.famous_works
True

6 Chapter 2. Quick start

CHAPTER 3

Contributing

All code for this can be found online at github. If something is broken, or a feature is missing, please submit a pull
request or open an issue. Most things I probably won’t have time to get around to looking at too deeply, so if you want
it fixed, a pull request is the way to go. In your pull request please provide an explanation as to what your request is
for, and what benefit it provides. Also, please try to match the style of the code, or make sure your code is nearly all
PEP8 compliant just to maintain code consistency.

Besides that, this project is licensed under the MIT License as found in the LICENSE.txt file. Enjoy!

7

https://github.com/JoshAshby/pyRedisORM

RedisORM, Release 0.1.0

8 Chapter 3. Contributing

CHAPTER 4

Documentation

4.1 Exceptions

This library will only raise a subclass of RedisORMException if it encounters a problem.

class redisORM.redis_model.RedisORMException
The general exception class which is raised by this module. Nothing special.

4.2 Model Class

Besides RedisORMException, this Model class should be the only other class you need to use in this library. It
acts as a simple dict style object which will back all its data in Redis.

class redisORM.redis_model.RedisModel(namespace=None, key=None, conn=None, **kwargs)
Emulates a python object for the data stored in the collection of keys which match this models, in Redis. Raw
data from the redis is stored in _data which is a RedisKeys instance. This allows for the black magic which
makes this class store changes in realtime to redis.

This object has a __repr__ method which can be used with print or logging statements. It will give the id and a
representation of the internal _data RedisKeys for debugging purposes.

namespace = None

key = None

conn = None

finish_init()
A hook called at the end of the main __init__ to allow for custom inherited classes to customize their init
process without having to redo all of the existing int. This should accept nothing besides self and nothing
should be returned.

get(attr, default=None)
Acts like a dict.get() where it will return a default if no matching value was found for the given key.

Parameters

• attr – The key to look for. If this is found then its value is returned, otherwise default is
returned.

• default – The default to return if no match was found.

9

RedisORM, Release 0.1.0

classmethod new(id=None, **kwargs)
Creates a new instance, filling out the models data with the keyword arguments passed, so long as those
keywords are not in the protected items array.

delete()
Deletes the current instance, if its in the database (or try).

protected_items
Provides a cleaner interface to dynamically add items to the models list of protected functions to not store
in the database

4.3 Helper Classes

These classes help make RedisModel function smoothly and allow for the easy addition of new Redis data structures.
Most of the time you should have a need for these classes, although admittedly, the RedisList does come in handy
once in a while for a list like object that backs its data in an actual Redis list.

class redisORM.redis_model.RedisList(key, conn, start=[], reset=False)
Attempts to emulate a python list, while backing the list in redis. This supports most of the common list
functions, except as noted.

Generally speaking, you won’t have to create an instance of this class, however if you are working with a list
then this is the class you’ll get back, not a list class.

Note: Most notably, this is currently missing the sort and reverse functions.

sync()

listToInt()

append(other)

prepend(other)

extend(other)

insert(index, elem)

remove(elem)

pop()

lpop()

index(elem)

count()

reset()

class redisORM.redis_model.RedisKeys(key, namespace=’‘, conn=None)
Where the realtime syncing and updating takes place.

A dict like object which is used as the backing data store for RedisModel.

Aka: The Source of Magic

delete()
Deletes all the keys from redis along with emptying the objects internal _data dict, then deleting itself at
the end of it all.

10 Chapter 4. Documentation

RedisORM, Release 0.1.0

get(part)
Retrieves a part of the model from redis and stores it.

Parameters part – The part of the model to retrieve.

Raises RedisORMException If the redis type is different from string or list (the only two sup-
ported types at this time.)

get_default(part, default=None)
Works just like a dict‘s get() method, returning the default if no matching key was found.

Parameters

• part – The key which to look for

• default – The default to return if no match was found

4.3. Helper Classes 11

RedisORM, Release 0.1.0

12 Chapter 4. Documentation

Python Module Index

r
redisORM.redis_model, 5

13

RedisORM, Release 0.1.0

14 Python Module Index

Index

A
append() (redisORM.redis_model.RedisList method), 10

C
conn (redisORM.redis_model.RedisModel attribute), 9
count() (redisORM.redis_model.RedisList method), 10

D
delete() (redisORM.redis_model.RedisKeys method), 10
delete() (redisORM.redis_model.RedisModel method),

10

E
extend() (redisORM.redis_model.RedisList method), 10

F
finish_init() (redisORM.redis_model.RedisModel

method), 9

G
get() (redisORM.redis_model.RedisKeys method), 10
get() (redisORM.redis_model.RedisModel method), 9
get_default() (redisORM.redis_model.RedisKeys

method), 11

I
index() (redisORM.redis_model.RedisList method), 10
insert() (redisORM.redis_model.RedisList method), 10

K
key (redisORM.redis_model.RedisModel attribute), 9

L
listToInt() (redisORM.redis_model.RedisList method),

10
lpop() (redisORM.redis_model.RedisList method), 10

N
namespace (redisORM.redis_model.RedisModel at-

tribute), 9

new() (redisORM.redis_model.RedisModel class
method), 9

P
pop() (redisORM.redis_model.RedisList method), 10
prepend() (redisORM.redis_model.RedisList method), 10
protected_items (redisORM.redis_model.RedisModel at-

tribute), 10

R
RedisKeys (class in redisORM.redis_model), 10
RedisList (class in redisORM.redis_model), 10
RedisModel (class in redisORM.redis_model), 9
redisORM.redis_model (module), 5
RedisORMException (class in redisORM.redis_model), 9
remove() (redisORM.redis_model.RedisList method), 10
reset() (redisORM.redis_model.RedisList method), 10

S
sync() (redisORM.redis_model.RedisList method), 10

15

	A Few Minor Warnings
	Quick start
	Contributing
	Documentation
	Exceptions
	Model Class
	Helper Classes

	Python Module Index

