

    
      
          
            
  
Welcome to pyRAPL’s documentation!



	Quickstart
	Installation

	Basic usage
	Decorate a function to measure its energy consumption

	Configure the decorator specifying the device to monitor

	Running the test multiple times

	Configure the output of the decorator

	Measure the energy consumption of a piece of code

	Measure the energy consumption of a block









	API
	Enumeration

	Functions

	Decorator

	Class

	Exception





	Outputs API
	Abstract Class

	Class










About

pyRAPL is a software toolkit to measure the energy footprint of a host machine along the execution of a piece of Python code.

pyRAPL uses the Intel “Running Average Power Limit” (RAPL) technology that estimates power consumption of a CPU. This technology is available on Intel CPU since the Sandy Bridge [https://fr.wikipedia.org/wiki/Intel#Historique_des_microprocesseurs_produits] generation.

More specifically, pyRAPL can measure the energy consumption of the following CPU domains:


	CPU socket package


	DRAM (for server architectures)


	GPU (for client architectures)







Miscellaneous

PyRAPL is an open-source project developed by the Spirals research group [https://team.inria.fr/spirals] (University of Lille and Inria) that take part of the Powerapi [http://powerapi.org] initiative.


Mailing list and contact

You can contact the developer team with this address : powerapi-staff@inria.fr

You can follow the latest news and asks questions by subscribing to our mailing list




Contributing

If you would like to contribute code you can do so via GitHub by forking the repository and sending a pull request.

When submitting code, please make every effort to follow existing coding conventions and style in order to keep the code as readable as possible.









          

      

      

    

  

    
      
          
            
  
Quickstart


Installation

You can install pyRAPL with pip : pip install pyRAPL




Basic usage

Here are some basic usages of pyRAPL. Please note that the reported energy consumption is not only the energy consumption of the code you are running. This includes the global energy consumption of all the process running on the machine during this period, thus including the operating system and other applications.
That is why we recommend to eliminate any extra programs that may alter the energy consumption of the machine hosting experiments and to keep only the code under measurement (i.e., no extra applications, such as graphical interface, background running task…). This will give the closest measure to the real energy consumption of the measured code.

Here are some basic usages of pyRAPL. Please understand that the measured energy consumption is not only the energy consumption of the code you are running. It’s the global energy consumption of all the process running on the machine during this period. This includes also the operating system and other applications.
That’s why we recommend eliminating any extra programs that may alter the energy consumption of the machine where we run the experiments and keep only the code we want to measure its energy consumption (no extra applications such as graphical interface, background running task …). This will give the closest measure to the real energy consumption of the measured code.


Decorate a function to measure its energy consumption

To measure the energy consumed by the machine during the execution of the
function foo() run the following code:

import pyRAPL

pyRAPL.setup()

@pyRAPL.measureit
def foo():
  # Instructions to be evaluated.

foo()





This will print the recorded energy consumption of all the monitorable devices of the machine during the execution of function fun.




Configure the decorator specifying the device to monitor

You can easly configure which device and which socket to monitor using the parameters of the pyRAPL.setup function.
For example, the following example only monitors the CPU power consumption on the CPU socket 1.
By default, pyRAPL monitors all the available devices of the CPU sockets:

import pyRAPL

pyRAPL.setup(devices=[pyRAPL.Device.PKG], socket_ids=[1])

@pyRAPL.measureit
def foo():
  # Instructions to be evaluated.

foo()





You can append the device pyRAPL.Device.DRAM to the devices parameter list to monitor RAM device too.




Running the test multiple times

For short functions, you can configure the number of runs and it will calculate the mean energy consumption of all runs.
As an example if you want to run the evaluation 100 times

import pyRAPL

pyRAPL.setup()

@pyRAPL.measureit(number=100)
def foo():
    # Instructions to be evaluated.

for _ in range(100):
    foo()








Configure the output of the decorator

If you want to handle data with different output than the standard one, you can configure the decorator with an Output instance from the pyRAPL.outputs module.

As an example if you want to write the recorded energy consumption in a csv file

import pyRAPL

pyRAPL.setup()

csv_output = pyRAPL.outputs.CSVOutput('result.csv')

@pyRAPL.measureit(output=csv_output)
def foo():
  # Some stuff ...

for _ in range(100):
  foo()

csv_output.save()





This will produce a csv file of 100 lines. Each line containing the energy
consumption recorded during one execution of the function fun.
Other predefined Output classes exist to export data to MongoDB and Panda
dataframe. You can also create your own Output class (see the
documentation [https://pyrapl.readthedocs.io/en/latest/Outputs_API.html])




Measure the energy consumption of a piece of code

To measure the energy consumed by the machine during the execution of a given
piece of code, run the following code:

import pyRAPL

pyRAPL.setup()
measure = pyRAPL.Measurement('bar')
measure.begin()

# ...
# Instructions to be evaluated.
# ...

measure.end()





You can also access the result of the measurements using the property : measure.result which returns a Result [https://pyrapl.readthedocs.io/en/latest/API.html#pyRAPL.Result] instance.

You can also use an output to handle this results, for example with the csv output : measure.export(csv_output)




Measure the energy consumption of a block

pyRAPL allows also to measure a block of instructions using the Keyword with as the example below:

import pyRAPL
pyRAPL.setup()

with pyRAPL.Measurement('bar'):
  # ...
  # Instructions to be evaluated.
  # ...





This will print in the console the energy consumption of the block.
To handle the measures instead of just printing them you can use any Output [https://pyrapl.readthedocs.io/en/latest/Outputs_API.html] class that you pass to the Measurement object

import pyRAPL
pyRAPL.setup()

dataoutput= pyRAPL.outputs.DataFrameOutput()
with pyRAPL.Measurement('bar',output=dataoutput):

  # ...
  # Instructions to be evaluated.
  # ...

dataoutput.data.head()













          

      

      

    

  

    
      
          
            
  
API


Enumeration


	
class pyRAPL.Device

	Device that can be monitored by pyRAPL

Device.PKG : to monitor the CPU energy consumption

Device.DRAM : to monitor the RAM energy consumption








Functions


	
pyRAPL.setup(devices=None, socket_ids=None)

	Configure which device and CPU socket should be monitored by pyRAPL

This function must be called before using any other pyRAPL functions


	Parameters

	
	devices (Optional[List[Device]]) – list of monitored devices if None, all the available devices on the machine will be monitored


	socket_ids (Optional[List[int]]) – list of monitored sockets, if None, all the available socket on the machine will be monitored






	Raises

	
	PyRAPLCantRecordEnergyConsumption – if the sensor can’t get energy information about the given device in parameter


	PyRAPLBadSocketIdException – if the given socket in parameter doesn’t exist















Decorator


	
@pyRAPL.measureit(_func=None, *, output=None, number=1)

	Measure the energy consumption of monitored devices during the execution of the decorated function (if multiple runs it will measure the mean energy)


	Parameters

	
	output (Optional[Output]) – output instance that will receive the power consummation data


	number (int) – number of iteration in the loop in case you need multiple runs or the code is too fast to be measured















Class


	
class pyRAPL.Measurement(label, output=None)

	measure the energy consumption of devices on a bounded period

Beginning and end of this period are given by calling begin() and end() methods


	Parameters

	
	label (str) – measurement label


	output (Optional[Output]) – default output to export the recorded energy consumption. If None, the PrintOutput will be used









	
begin()

	Start energy consumption recording






	
end()

	End energy consumption recording






	
export(output=None)

	Export the energy consumption measures to a given output


	Parameters

	output (Optional[Output]) – output that will handle the measure, if None, the default output will be used










	
property result

	Access to the measurement data


	Return type

	Result














	
class pyRAPL.Result(label, timestamp, duration, pkg=None, dram=None)

	A data class to represent the energy measures


	Variables

	
	label (str) – measurement label


	timestamp (float) – measurement’s beginning time (expressed in seconds since the epoch)


	duration (float) – measurement’s duration (in micro seconds)


	pkg (Optional[List[float]]) – list of the CPU energy consumption -expressed in micro Joules- (one value for each socket) if None, no CPU energy consumption was recorded


	dram (Optional[List[float]]) – list of the RAM energy consumption -expressed in seconds- (one value for each socket) if None, no RAM energy consumption was recorded















Exception


	
exception pyRAPL.PyRAPLException

	Parent class of all PyRAPL exception






	
exception pyRAPL.PyRAPLCantRecordEnergyConsumption(device)

	Exception raised when starting recording energy consumption for a device but no energy consumption metric is
available for this device


	Variables

	device (Device) – device that couldn’t be monitored (if None, Any device on the machine could be monitored)










	
exception pyRAPL.PyRAPLBadSocketIdException(socket_id)

	Exception raised when trying to initialise PyRAPL on a socket that doesn’t exist on the machine


	Variables

	socket_id (int) – socket that doesn’t exist















          

      

      

    

  

    
      
          
            
  
Outputs API

This module contains class that will be used by the measure decorator or the Measurement.export method to export
recorded measurement

example with the  measure decorator:

output_instance = pyRAPL.outputs.XXXOutput(...)

@pyRAPL.measure(output=output_instance)
def foo():
    ...





example with the Measurement.export function:

measure = pyRAPL.Measurement('label')
...
output_instance = pyRAPL.outputs.XXXOutput(...)
measure.export(output_instance)





You can define your one output by inherit from the Output class and implements the add method.
This method will receive the measured energy consumption data as a Result instance and must handle it.

For example, the PrintOutput.add method will print the Result instance.


Abstract Class


	
class pyRAPL.outputs.Output

	Abstract class that represent an output handler for the Measurement class


	
add(result)

	Handle the object Result


	Parameters

	result (Result) – data to handle














	
class pyRAPL.outputs.BufferedOutput

	Use a buffer to batch the output process

The method add add data to the buffer and the method save outputs each data in the buffer. After that, the
buffer is flushed

Implement the abstract method _output_buffer to define how to output buffered data


	
_output_buffer()

	Abstract method

Output all the data contained in the buffer


	Parameters

	data – data to output










	
add(result)

	Add the given data to the buffer


	Parameters

	result – data that must be added to the buffer










	
property buffer

	Return the buffer content


	Return type

	List[Result]



	Returns

	a list of all the Result instances contained in the buffer










	
save()

	Output each data in the buffer and empty the buffer












Class


	
class pyRAPL.outputs.PrintOutput(raw=False)

	Output that print data on standard output


	Parameters

	raw (bool) – if True, print the raw result class to standard output.
Otherwise, print a fancier representation of result






	
add(result)

	print result on standard output


	Parameters

	result (Result) – data to print














	
class pyRAPL.outputs.CSVOutput(filename, separator=', ', append=True)

	Write the recorded measure in csv format on a file

if the file already exists, the result will be append to the end of the file, otherwise it will create a new file.

This instance act as a buffer. The method add add data to the buffer and the method save append each data
in the buffer at the end of the csv file. After that, the buffer is flushed


	Parameters

	
	filename (str) – file’s name  were the result will be written


	separator (str) – character used to separate columns in the csv file


	append (bool) – Turn it to False to delete file if it already exist.













	
class pyRAPL.outputs.MongoOutput(uri, database, collection)

	Store the recorded measure in a MongoDB database

This instance act as a buffer. The method add add data to the buffer and the method save store each data
in the buffer in the MongoDB database. After that, the buffer is flushed


	Parameters

	
	uri (str) – uri used to connect to the mongoDB instance


	database (str) – database name to store the data


	collection (str) – collection name to store the data













	
class pyRAPL.outputs.DataFrameOutput

	Append recorded data to a pandas Dataframe


	
add(result)

	Append recorded data to the pandas Dataframe


	Parameters

	result – data to add to the dataframe










	
property data

	Return the dataframe that contains the recorded data


	Return type

	DataFrame



	Returns

	the dataframe



















          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pyRAPL	
       

     
       	
       	   
       pyRAPL.outputs	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | M
 | O
 | P
 | R
 | S
 


_


  	
      	_output_buffer() (pyRAPL.outputs.BufferedOutput method)


  





A


  	
      	add() (pyRAPL.outputs.BufferedOutput method)

      
        	(pyRAPL.outputs.DataFrameOutput method)


        	(pyRAPL.outputs.Output method)


        	(pyRAPL.outputs.PrintOutput method)


      


  





B


  	
      	begin() (pyRAPL.Measurement method)


  

  	
      	buffer() (pyRAPL.outputs.BufferedOutput property)


      	BufferedOutput (class in pyRAPL.outputs)


  





C


  	
      	CSVOutput (class in pyRAPL.outputs)


  





D


  	
      	data() (pyRAPL.outputs.DataFrameOutput property)


  

  	
      	DataFrameOutput (class in pyRAPL.outputs)


      	Device (class in pyRAPL)


  





E


  	
      	end() (pyRAPL.Measurement method)


  

  	
      	export() (pyRAPL.Measurement method)


  





M


  	
      	measureit() (in module pyRAPL)


  

  	
      	Measurement (class in pyRAPL)


      	MongoOutput (class in pyRAPL.outputs)


  





O


  	
      	Output (class in pyRAPL.outputs)


  





P


  	
      	PrintOutput (class in pyRAPL.outputs)


      	pyRAPL.outputs (module)


  

  	
      	PyRAPLBadSocketIdException


      	PyRAPLCantRecordEnergyConsumption


      	PyRAPLException


  





R


  	
      	Result (class in pyRAPL)


  

  	
      	result() (pyRAPL.Measurement property)


  





S


  	
      	save() (pyRAPL.outputs.BufferedOutput method)


  

  	
      	setup() (in module pyRAPL)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to pyRAPL’s documentation!
        


        		
          Quickstart
          
            		
              Installation
            


            		
              Basic usage
              
                		
                  Decorate a function to measure its energy consumption
                


                		
                  Configure the decorator specifying the device to monitor
                


                		
                  Running the test multiple times
                


                		
                  Configure the output of the decorator
                


                		
                  Measure the energy consumption of a piece of code
                


                		
                  Measure the energy consumption of a block
                


              


            


          


        


        		
          API
          
            		
              Enumeration
            


            		
              Functions
            


            		
              Decorator
            


            		
              Class
            


            		
              Exception
            


          


        


        		
          Outputs API
          
            		
              Abstract Class
            


            		
              Class
            


          


        


      


    
  

_static/plus.png





_static/file.png





_static/minus.png





