
pyramid_crud Documentation
Release 0.1.3

Florian Rüchel

June 21, 2016

Contents

1 Links 3

2 Table of Contents 5
2.1 Introduction . 5

2.1.1 Installation . 5
2.1.2 A Word on Dependencies . 5
2.1.3 QuickStart . 6

2.2 Usage . 6
2.2.1 Configuration . 7
2.2.2 Views . 7
2.2.3 Forms . 15
2.2.4 Templates . 20
2.2.5 Utility Functions . 23
2.2.6 Adding Actions to Forms . 23
2.2.7 Help Topics . 26
2.2.8 Examples . 28

2.3 Development . 28
2.3.1 Building Documentation . 28
2.3.2 Running Tests . 28
2.3.3 Contributing . 29

3 Indices and tables 31

Python Module Index 33

i

ii

pyramid_crud Documentation, Release 0.1.3

This software is a framework with the attempt to replicate a behavior similar to Django’s Generic Views and Admin
Pages.

It aims to provide a simple yet configurable interface to get a CRUD (Create, Read, Update, Delete) interface on
persisted data.

This library is an unofficial extension to Pyramid. This is not likely to change unless the libraries dependencies are
decoupled as described in A Word on Dependencies.

Note: This library is in an early phase and contributions are welcome that fix bugs or add missing features. Just please
make sure to keep it as clean as possible. Also always take a look at how Django achieves the desired functionality (if
present), because they have some good ideas on keeping the code clean and readable.

Contents 1

https://docs.djangoproject.com/en/1.6/ref/class-based-views/generic-display/
https://docs.djangoproject.com/en/1.6/ref/contrib/admin/
https://docs.djangoproject.com/en/1.6/ref/contrib/admin/
https://pyramid-crud.readthedocs.org/en/latest/introduction.html#a-word-on-dependencies

pyramid_crud Documentation, Release 0.1.3

2 Contents

CHAPTER 1

Links

• Documentation

• Source Code

• Package on PyPI

3

http://pyramid-crud.readthedocs.org
https://github.com/Javex/pyramid_crud
https://pypi.python.org/pypi/pyramid_crud

pyramid_crud Documentation, Release 0.1.3

4 Chapter 1. Links

CHAPTER 2

Table of Contents

2.1 Introduction

2.1.1 Installation

You can install pyramid_crud using pip:

pip install pyramid_crud

Or you can fetch the current sources and install it manually:

git clone https://github.com/Javex/pyramid_crud
cd pyramid_crud
python setup.py install

2.1.2 A Word on Dependencies

This library currently relies on certain other libraries. Therefore, it only supports a certain use-case (or at least only
integrates well there). Thus, if your application stack differs from the libraries listed below, make sure to read this
section to see which parts can be changed and which cannot.

• Pyramid

• WTForms

• SQLAlchemy

• WTForms-Alchemy

• Mako

The Mako integration is very loose, allowing for arbitrary templates to be used as long as they are registered properly
with Pyramid.

WTForms on the other hand is more tightly integrated. It should be easily possible to write an adapter that replicates the
WTForms interface and allows integration with other form libraries but this library was not designed for it. However,
I am happy to accept pull requests that change this behavior to allow arbitrary form libraries as long as the code stays
clean and the interface does not require major changes. Finally, there is no requirement for you to use WTForms in
the rest of your application: You can simply rely on WTForms only for this library. As long as you don’t deviate from
the default mechanisms you will not even have to concern yourself with WTForms at all.

5

http://docs.pylonsproject.org/en/latest/docs/pyramid.html
http://wtforms.readthedocs.org/
http://docs.sqlalchemy.org/en/rel_0_9/
https://wtforms-alchemy.readthedocs.org/en/latest/
http://docs.makotemplates.org/en/latest/

pyramid_crud Documentation, Release 0.1.3

SQLAlchemy is also very tightly bound to the library. Both the form and the view part rely on SQLAlchemy and its
interface. However, seeing as SQLAlchemy is basically the go-to ORM outside of Django, I don’t see a need except
if NoSQL databases are desired.

Pyramid is, of course, at the core of this library and there are currently no plans to decouple it to allow arbitrary
frameworks the usage of this library. Again, I accept pull requests for this, but I find it much more likely that a
split into a new library that provides this functionality independent of a web framework and separate integration into
different frameworks is the way to go if this is desired. If you want to work on something like this, please contact me,
so we can coordinate on this.

2.1.3 QuickStart

For this quickstart we assume you already have an application with models that you want to enable CRUD for.

First you have to include pyramid_crud in your .ini file:

pyramid.includes =
...
pyramid_crud
...

from pyramid_crud.forms import CSRFModelForm
from pyramid_crud.views import CRUDView
from .models import MyModel

class MyModelForm(CSRFModelForm):
class Meta:

model = MyModel

class MyModelView(CRUDView):
form = MyModelForm
url_path = '/mymodel'

That gets you started: We create a form and a set of views for our form. Now start your application and visit the
application on the path /mymodel. You should see a list of present instances and also buttons to delete them and add
new instances. Finally, you can also click the first columns element to edit an item. Go ahead, play around with it.
Afterwards, you can head to Usage and start configuring the associated parts to behave the way you need it to.

2.2 Usage

After you have read the QuickStart you can now head into the special configuration. This chapter is split into four
sections. Views are the center of configuration. Here you define which form to use, how templates are located and
under which route it should be available. Views also needs Forms. These define the associated model and configure
which fields are displayed. Finally, if the default templates don’t suit you (e.g. you want to integrate your own style or
you don’t use Mako), you can visit the Templates section to see how to change the default templates.

There are also some Examples that show possible applications. You can refer there to see how your goal can be
realized in pratice. To change the global behavior of the library refer to Configuration. This is useful if the default
global application behavior does not suit you.

6 Chapter 2. Table of Contents

pyramid_crud Documentation, Release 0.1.3

2.2.1 Configuration

There are several global settings with which you can configure the behavior of this library. All settings use the prefix
crud.

Static View URL Prefix

The application needs to serve static assets to display the default templates properly (specifically, it uses Bootstrap).
These assets need their own prefix to avoid routing conflicts with your other static files. Thus, this setting allows you
to define a custom prefix. By default, it is /static/crud which should be fine for most applications (as static
is a very common name, you can have all your CSS and JS files under this). However, if this does not fit your use case,
use this setting to change it.

If this is None, no additional static view will be registered. This is useful if you roll your own theme anyway (see
Create a Complete Theme) and you set up your own static views for it.

Config File Setting Name
crud.static_url_prefix

2.2.2 Views

Add a New View

Configuration

The main configuration of the library is done on the view. By subclassing CRUDView for each new view you can
create an individual configuration that turns your model & form into a fully accessible CRUD interface. The available
confiugration parameters are described on the class:

class pyramid_crud.views.CRUDView(request)
The base class for all views. Subclassing directly from this gets you a new view configuration for a single model
& form. If you specify __abstract__ on it, the class will not be configured at all and you can use it as your
own base class.

Note: Configuration is done by Pyramid the moment you call
pyramid.config.Configurator.scan() in a way similar to what the
pyramid.view.view_config decorator does. If you want to completely disable this behavior, set
view_configurator_class to None. Then no route configuration will be done and you have to set up views and
routes yourself. This is an advanced technique not recommended for beginners.

The following attributes can be defined to override behavior of the view:

Form Mandatory argument that specifies the form class for which this view should be created. This must be a
form as described in Forms.

url_path Mandatory arguments if the default view_configurator_class is used. It determines the base path
under which this view should be available.

So for example, if this is /myitems then the list view will be reached under the /myitems path whereas
the new view will be under /myitems/new.

How and if this parameter is used depends entirely on the implementation of the configurator but it is
recommended to keep this parameter for custom implementations as well.

2.2. Usage 7

http://getbootstrap.com/
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.scan
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/view.html#pyramid.view.view_config

pyramid_crud Documentation, Release 0.1.3

dbsession Return the current SQLAlchemy session. By default this expects a dbsession attribute on the
request object. It is mandatory that you either attach the attribute using an event or override this
attribute (you can use a property if you like).

list_display A tuple if items which should be displayed on the list view. By default a single column of the
models __str__ method is used. There are several possibilities of what you might specify here (the
options will be tried in this order):

• A string representing an attribute or callable on the model. If this attribute is callable, it will be called
and get no additional arguments (the first argument will already be self, the model instance).

For example, with a normal field on the model:

class Model(Base):
id = Column(Integer, primary_key=True,

info={'label': 'ID'})

class View(CRUDView):
list_display = ('id',)

In this example there will be a single column in the list view. Its title will be “ID” and its value will
be the value of the id field in the database.

Similarly, with a callable:

class Model(Base):
id = Column(Integer, primary_key=True)

def id_plus_one(self):
return self.id + 1

id_plus_one.info = {'label': 'ID+1'}

class View(CRUDView):
list_display = ('id_plus_one',)

• A generic callable function. This function will be called with a single argument: The instance of the
model. For example:

class Model(Base):
id = Column(Integer, primary_key=True)

def id_plus_one(obj):
return obj.id + 1

id_plus_one.info = {'label': 'ID+1'}

class View(CRUDView):
list_display = (id_plus_one,)

• A string representing a method on the view. This will behave in the same way as for the function
callable above except that it must be a string. For example:

class Model(Base):
id = Column(Integer, primary_key=True)

class View(CRUDView):
list_display = ('id_plus_one',)

8 Chapter 2. Table of Contents

http://docs.python.org/library/functions.html#property

pyramid_crud Documentation, Release 0.1.3

def id_plus_one(self, obj):
return obj.id + 1

id_plus_one.info = {'label': 'ID+1'}

Some additional notes on the way this attribute behaves:

• Some additional configuration is possible on each attribute, regardless of how it is specified. For
information on this see The Info Dictionary.

• A class columnn-<attr-name> is placed on each on each of the <th> fields in the column heading
to allow application of CSS attributes, e.g. to set the width of a column.

• If the attribute info cannot be found on the attribute (at the class level, not instance level), default
value is determined as the column heading. If name of the column is __str__ then the name of the
model class is fetched. If it is directly callable (in case of a generic callable function), then the name
of the function is used. In all other cases the provided string is used. To make for a prettier format, it
additionally replaces any underscores by spaces and captializes each word.

list_display_links Specify which of the displayed columns should be turned into links that open the edit view
of that instance. By default, the first column is used.

This should be any kind of iterable, preferrably a tuple or set for performance reasons.

Example:

class MyView(CRUDView):
list_display = ('column1', 'column2', 'column3')
list_display_links = ('column1', 'column3')

This configuration will turn the columns column1 and column3 into links.

actions: An optional list of action callables or view method names for the dropdown menu. See Adding Actions
to Forms for details on how to use it.

theme A theme is just a collection of template files inside a directory and this is the name of that directory.
The recommended way is to use asset specification to unambigously identify the package. By default the
bootstrap template is used and so this is set to pyramid_crud:templates/mako/bootstrap. If
you want to roll your own theme, you can overwrite this. But if you only want to copy a single template
and modify it, you should check out Templates.

template_ext Which file extension to use for templates. By default, Mako templates are used and so the exten-
sion is .mako but any renderer that is recognized by pramid can be used.

template_* You can specify any name here, e.g. template_list and the
CRUDView.get_template_for() method will use this when calling it with list as the ac-
tion parameter. This is useful for overwriting specific templates but keeping the default behavior for the
rest.

Note: The name “ext” for an action is thus not allowed (as template_ext is another configuration).
Just don’t define an action with that name.

This way is also impossible for templates in subdirectories, for example
fieldsets/horizontal.mako since a slash (“/”) cannot be used on a path. Currently the
only way is to overwrite CRUDView.get_template_for().

2.2. Usage 9

pyramid_crud Documentation, Release 0.1.3

view_configurator_class A class that configures all views and routes for this view class. The default imple-
mentation is ViewConfigurator which covers basic route & view configuration. However, if you
need more advanced functionalities like, for example, permissions, you can change this parameter. See the
documentation on ViewConfigurator for details on how to achieve that.

There are also some attributes which you can access. All of them are available on the instance, but only some
are also available on the class (in this case, it is noted on the attribute).

routes A dictionary mapping action names to routes. Action names are such as list or edit and they all
have unique route names that can be given to request.route_url. You can use it like this:

url = request.route_url(view.routes["list"])

This will return a URL to the list view.

The routes dictionary is populated by the view_configurator_class.

This can be accessed at the class and instance level.

request The current request, an instance of pyramid.request.Request.

View & Route Setup

Setting up views and routes is delegated to a special configurator class that creates a route & view for each available
view, i.e. list, edit, new and delete. Since you often need to change the routes and views to match your needs, you can
subclass this and start overwriting its behavior. The interface is very simple:

Note: There is a slight overhead to configuring views like this because it requires the creation of an additional class.
However, approaches like configuring parameters directly on the view are inflexible and setting awkward callables (in
theory the most pythonic way) look ugly. Thus, this method is both flexible and easy to read.

class pyramid_crud.views.ViewConfigurator(config, view_class)
The standard implementation of the view configuration. It performs the most basic configuration of routes and
views without any extra functionality.

This is sufficient in many cases, but there are several applications where you might
want to completely or partially change this behavior. Any time you want to
pass additional arguments to pyramid.config.Configurator.add_route() or
pyramid.config.Configurator.add_view() you can just subclass this and override the spe-
cific methods.

All the public methods must always be implemented according to their documentation or the configuration of
views and routes will fail. If you are unsure, you can take a look at the default implementation. It is just a very
thin wrapper around the above mentioned methods.

During instantiation the arguments config representing an instance of
pyramid.config.Configurator and view_class being your subclassed view class are given
to the instance and stored under these values as its attributes.

From the view_class parameter you can access the complete configuration as documented on CRUDView .
config should then be used to add routes and views and possibly other configuration you might need.

ViewConfigurator.configure_list_view()
Configure the “list” view by setting its route and view. This method must call add_view to configure the view
and add_route to connect a route to it. Afterwards, it must return the name of the configured route that links
route and view. This will then be stored in the view’s route dictionary under the “list” key.

10 Chapter 2. Table of Contents

http://docs.pylonsproject.org/projects/pyramid/en/latest/api/request.html#pyramid.request.Request
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_route
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator

pyramid_crud Documentation, Release 0.1.3

def configure_list_view(self):
self.config.add_view('myview-list',

renderer='list.mako',)
self.config.add_route('myview-list', self.view_class.url_path)
return 'myview-list'

This does a few things:

•It sets up the view under the alias myview-list with the template list.mako. Note that the de-
fault configuration uses a theme and absolute paths while this configures a template that needs to be in
mako.directories.

•It connects the alias to the configured route via the url_path configuration parameter (the list view is just
the base route in this case, but that is totally up to you).

•It returns this alias from the function so that it can be stored in the routes dictionary on the view.

ViewConfigurator.configure_edit_view()
This method behaves exactly like ViewConfigurator.configure_list_view() except it must con-
figure the edit view, i.e. the view for editing existing objects. It must return the name of the route as well that
will then be stored under the “edit” key.

ViewConfigurator.configure_new_view()
This method behaves exactly like ViewConfigurator.configure_list_view() except it must con-
figure the new view, i.e. the view for adding new objects. It must return the name of the route as well that will
then be stored under the “new” key.

There are also some helper methods available.

The Info Dictionary

Each object can have an optional info dictionary attached (and in most cases you will want one). The idea is based
on the idea of WTForms-Alchemy’s Form Customization and actually just extends it. Several attributes used by this
library support inclusion of extra information in this dict. The following options can be set and/or read and some are
automatically defined if you do not provide a value. The follwoing values are available:

label This is taken over from WTForms-Alchemy but is used in more places. Instead of being just used as the label
on a form, it is also used as a column heading in the list view. Each object should have one, but some functions
set it (for example, the column header function associated with list_display provides a default). For specific
behavior on this regarding different views you should consult the associated documentation. While you should
normally set it, not setting it will invent some hopefully nice-looking strings for the default usage (basically list
and edit views).

description Used on form fields to describe a field more in-depth than a label can. This text may be arbitrarily long.
It is not displayed on all templates (see Fieldset Templates).

css_class A css class which should be set on this element’s context. Currently this is only used for the list view where
the th element gets this class so you can style your table based on individual columns. See the documentation
on list_display for more info.

bool This value is not always set, but when it is set, it indicates if this item is a boolean type. Currently this is only
set for the list headings and there it is unused but can be adapted by custom templates.

func This is only used with actions and defines the callable which executes an action. It is part of the dict returned by
_all_actions on the view.

2.2. Usage 11

https://wtforms-alchemy.readthedocs.org/en/latest/customization.html

pyramid_crud Documentation, Release 0.1.3

API

The classes, methods and attributes described here are normally not used directly by the user of the library and are just
here for the sake of completeness.

CRUDView

The following methods refer to specific views:

CRUDView.list()
List all items for a Model. This is the default view that can be overridden by subclasses to change its behavior.

Returns A dict with a single key items that is a query which when iterating over yields all items
to be listed.

CRUDView.delete(query)
Delete all objects in the query.

CRUDView.edit()
The default view for editing an item. It loads the configured form and model. In edit mode (i.e. with an already
existing object) it requires a matchdict mapping primary key names to their values. This has to be ensured during
route configuring by setting the correct pattern. The default implementation takes correctly care of this.

Returns

In case of a GET request a dict with the key form denoting the configured form instance with
data from an optional model loaded and a key is_new which is a boolean flag indicating
whether the actual action is new or edit (allowing for templates to display “New Item” or
“Edit Item”).

In case of a POST request, either the same dict is returned or an instance of HTTPFound which
indicates success in saving the item to the database.

Raises ValueError – In case of an invalid, missing or unmatched action. The most likely reason
for this is the missing button of a form, e.g. by the name save. By default the following actions
are supported: save, save_close, save_new and additionally anything that starts with
add_ or delete_ (these two are for internal form handling and inline deletes/adds).

Addtionally, the following helper methods are used internally during several sections of the library:

CRUDView.redirect(route_name=None, *args, **kw)
Convenience function to create a redirect.

Parameters route_name – The name of the route for which to create a URL. If this is None, the
current route is used.

All additional arguments and keyword arguments are passed to pyramid.request.Request.route_url().

Returns An instance of pyramid.httpexceptions.HTTPFound suitable to be returned
from a view to create a redirect.

classmethod CRUDView.get_template_for(action)
Return the name of the template to be used. By default this uses the template in the folder theme
with the name action + template_ext, so for example in the default case for a list view: “pyra-
mid_crud:templates/mako/bootstrap/list.mako”.

This method basically just appends the given action to a base path and appends the file extension. As such, it is
perfectly fine, to define relative paths here:

view.get_template_for('fieldsets/horizontal')

12 Chapter 2. Table of Contents

http://docs.pylonsproject.org/projects/pyramid/en/latest/api/request.html#pyramid.request.Request.route_url
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound

pyramid_crud Documentation, Release 0.1.3

You can also change single templates by statically defining action_template on the view class where
action is replaced by a specific action, e.g. list. So say, for example, you want to only change
the default list template and keep the others. In that case, you would specify list_template =
"templates/my_crud_list.mako" and the list template would be loaded from there (while still loading
all other templates from their default location).

Parameters action – The action, e.g. list or edit.

CRUDView._get_request_pks()
Get an ordered dictionary of primary key names matching to their value, fetched from the request’s matchdict
(not the model!).

Parameters names – An iterable of names which are to be fetched from the matchdict.

Returns An OrderedDict of the given names as keys with their corresponding value.

Raises ValueError – When only some primary keys are set (it is allowed to have all or none of
them set)

CRUDView._get_route_pks(obj)
Get a dictionary mapping primary key names to values based on the model (contrary to
_get_request_pks() which bases them on the request).

Parameters obj – An instance of the model.

Returns A dict with primary key names as keys and their values on the object instance as the values.

CRUDView._edit_route(obj)
Get a route for the edit action based on an objects primary keys.

Parameters obj – The instance of a model on which the routes values should be based.

Returns A URL which can be used as the routing URL for redirects or displaying the URL on the
page.

CRUDView.iter_head_cols()
Get an iterable of column headings based on the configuration in list_display.

CRUDView.iter_list_cols(obj)
Get an iterable of columns for a given obj suitable as the columns for a single row in the list view. It uses the
list_display option to determine the columns.

ViewConfigurator

In addition to the methods described above, the default implementation has a few helper methods. These are not
required in any case since they are only called by the above methods. However, since these methods are used to
factor out common tedious work, you might either use or override them and possibly not even touch the default
implementations above.

ViewConfigurator._configure_view(action, route_action=None, *args, **kw)
Configure a view via pyramid.config.Configurator.add_view() while passing any additional ar-
guments to it.

Parameters

• action – The name of the attribute on the view class that represents the action. For exam-
ple, in the default implementation the list action corresponds to CRUDView.list().
If you rename them, e.g. by naming the list action “_my_list”, this would have to be
_my_list regardless of the name of the action.

2.2. Usage 13

http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_view

pyramid_crud Documentation, Release 0.1.3

• route_action – An optional parameter that is used as the name base for the route. If
this is missing, it will take the same value as action. In the default implementation it is
used to distinguish between new and edit which use the same action, view and template
but different route names.

Overriding this method allows you to change the view configuration for all configured views at once, i.e. you
don’t have to change the public methods at all. Just look at their default implementation to see the parameters
they use.

ViewConfigurator._configure_route(action, suffix, *args, **kw)
Set up a route via pyramid.config.Configurator.add_route() while passing all addtional argu-
ments through to it.

Parameters

• action – The action upon which to base the route name. It must be the same as
route_action on _configure_view().

• suffix – The suffix to be used for the actual path. It is appended to the url_path
directly. This may be empty (as is the case for the default list view) but must always be
explicitly specified. The result of this will be passed to add_route and so may (and often
will) include parameters such as /{id}.

Overriding this method can be done in the same manner as described for _configure_view().

Warning: Some methods on the view require primary keys of the object in question in the matchdict of
the request. To guarantee this, the routes have to be correctly set up, i.e. each route that requires this primary
key (or keys, depending on the model) has to have a pattern where each primary key name appears once. The
default implementation takes care of this via _get_route_pks(), but if you change things you have to
ensure this yourself.
Which methods require which values is documented on the respective views of CRUDView .

ViewConfigurator._get_route_name(action)
Get a name for a route of a specific action. The default implementation provides the fully quallyfied name of the
view plus the action, e.g. mypackage.views.MyView.list (in this case, the action is “list” for the class
“MyView” in the module “mypackage.views”).

Note: In theory this implementation is ambigous, because you could very well have two classes with the same
name in the same module. However, this would be a very awkward implementation and is not recommended
anyway. If you really choose to do such a thing, you should probably find a better way of naming your routes.

ViewConfigurator._get_route_pks()
Get a string representing all primary keys for a route suitable to be given as suffix to _configure_route().
Some examples will probably best describe the default behavior.

In the case of a model with a single primary key id, the result is the very simple string {id}. If you add this to
a route, the primary key of the object will be in the matchdict under the key id.

If you have a model with multiple primary keys, say composite foreign keys, called model1_id and
model2_id then the result would be {model1_id},{model2_id}. The order is not important on this
one as pyramids routing system will fully take care of it.

Note: If you have some kind of setup where one of the primary keys may contain a comma, this implementation
is likely to fail and you have to change it. However, in most cases you will not have a comma and this should
be fine.

14 Chapter 2. Table of Contents

http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_route

pyramid_crud Documentation, Release 0.1.3

2.2.3 Forms

Add a New Form

Configuration

To configure a normal form, you subclass the ModelForm. On this subclass there are several options you can/must
override. The mandatory options are listed first, followed by a list of optional configuration parameters. Finally, you
can of course always override the methods on the form.

class pyramid_crud.forms.ModelForm(formdata=None, obj=None, *args, **kw)
Base-class for all regular forms.

The following configuration options are available on this form in addition to the full behavior described for
WTForms-Alchemy

Note: While this class can easily be the base for each form you want to configure, it is strongly recommended
to use the CSRFModelForm instead. It is almost no different than this form except for a new csrf_token
field. Thus it should never hurt to subclass it instead of this form.

Meta This is the only mandatory argument. It is directly taken over from WTForms-Alchemy so you should
check out their documentation on this class as it will provide you with a complete overview of what’s
possible here.

inlines A list of forms to use as inline forms. See Inline Forms / One-To-Many.

fieldsets Optionally define fieldsets to group your form into categories. It requires a list of dictionaries and in
each dictionary, the following attributes can/must be set:

• title: A title to use for the fieldset. This is required but may be the empty string (then no title is
displayed).

• fields: A list of field names that should be displayed together in a fieldset. This is required.

• template: The name of the fieldset template to load. This must be the name of a file in the
fieldsets directory of the current theme without a file extension. It defaults to horizontal
which uses bootstraps horizontal forms for each fieldset. See Fieldset Templates for details on avail-
able templates.

title Set the title of your form. By default this returns the class name of the model. It is used in different places
such as the title of the page.

title_plural: The plural title. By default it is the title with an “s” appended, however, you somtimes might want
to override it because “Childs” just looks stupid ;-)

name: The name of this form. By default it uses the lowercase model class name. This is used internally und
you normally do not need to change it.

get_dbsession: Unfortunately, you have to define this classmethod on the form to get support for the unique
validator. It is documented in Unique Validator. This is a limitation we soon hope to overcome.

fieldsets
See inline documentation for ModelForm

get_fieldsets()
Get a list of all configured fieldsets, setting defaults where they are missing.

2.2. Usage 15

https://wtforms-alchemy.readthedocs.org
https://wtforms-alchemy.readthedocs.org
https://wtforms-alchemy.readthedocs.org/en/latest/validators.html#unique-validator

pyramid_crud Documentation, Release 0.1.3

populate_obj(obj)
Populates the attributes of the passed obj with data from the form’s fields.

Note This is a destructive operation; Any attribute with the same name as a field will be overrid-
den. Use with caution.

populate_obj_inline(obj)
Populate all inline objects. It takes the usual obj argument that is the parent of the inline fields. From
these all other values are derived and finally the objects are updated.

Note: Right now this assumes the relationship operation is a append, thus for example set collections
won’t work right now.

primary_keys
Get a list of pairs name, value of primary key names and their values on the current object.

process(formdata=None, obj=None, **kwargs)
Take form, object data, and keyword arg input and have the fields process them.

Parameters

• formdata – Used to pass data coming from the enduser, usually request.POST or equiv-
alent.

• obj – If formdata is empty or not provided, this object is checked for attributes matching
form field names, which will be used for field values.

• data – If provided, must be a dictionary of data. This is only used if formdata is empty
or not provided and obj does not contain an attribute named the same as the field.

• **kwargs – If formdata is empty or not provided and obj does not contain an attribute
named the same as a field, form will assign the value of a matching keyword argument to
the field, if one exists.

process_inline(formdata=None, obj=None, **kwargs)
Process all inline fields. This sets the global attribute inline_fields which is a dict-like object that
contains as keys the name of all defined inline fields and as values a pair of inline, inline_forms
where inline is the inline which the name refers to and inline_forms is the list of form instances
associated with this inline.

validate()
Validates the form by calling validate on each field, passing any extra Form.validate_<fieldname> valida-
tors to the field validator.

validate_inline()
Validate all inline forms. Implicitly called by validate().

This will also fill the form.errors dict with additional error messages based on invalid inline fields
using the same naming pattern used for naming inline fields for display and form submission, i.e.
inlinename_index_fieldname.

Thus, if errors exist on an inline field, they can be fetched from the global errors dict the same way regular
errors are present in it.

Fieldset Templates

You can configure custom fieldset templates on the fieldsets configuration parameter by setting the “template” key for
a fieldset. The following fieldsets are available:

16 Chapter 2. Table of Contents

pyramid_crud Documentation, Release 0.1.3

horizontal A typical horizontal display that renders each form field in its own row with a label before the field.

grid A grid display that renders the field first and then displays the label. All fields are next to each other and
line breaks only happen at the edge of the screen. This is a good template for a fieldset that consists only of
checkboxes. This will not display the “description” of a field.

Inline Forms / One-To-Many

class pyramid_crud.forms.BaseInLine(formdata=None, obj=None, *args, **kw)
Base-class for all inline forms. You normally don’t subclass from this directly unless you want to create a new
inline type. However, all inline types share the attributes inherited by this template.

Inline forms are forms that are not intended to be displayed by themselves but instead are added to the inlines
attribute of a normal form. They will then be displayed inside the normal form while editing, allowing for
multiple instance to be added, deleted or modified at the same time. They are heavily inspired by Django’s
inline forms.

An inline form is configurable with the following attributes, additionally to any attribute provided by WTForms-
Alchemy

Meta This is the standard WTForms-Alchemy attribute to configure the model. Check out their documentation
for specific details.

relationship_name The name of the other side of the relationship. Determined automatically, unless there are
multiple relationships between the models in which case this must be overridden by the subclass.

For example: If this is the child form to be inlined, the other side might be called children and this
might be called parent (or it might not even exist, there is no need for a bidrectional relationship). The
correct value would then be children not parent.

extra How many empty fields to display in which new objects can be added. Pay attention that often fields
require intputs and thus extra field may often not be left empty. This is an intentional restriction to allow
client-side validation without javascript. So only specify this if you are sure that items will always be
added (note, however, that the extra attribute is not used to enforce a minimum number of members in the
database). Defaults to 0.

is_extra A boolean indicating whether this instance is an extra field or a persisted database field. Set during
parent’s processing.

fieldsets
See inline documentation for ModelForm

get_fieldsets()
Get a list of all configured fieldsets, setting defaults where they are missing.

classmethod pks_from_formdata(formdata, index)
Get a list of primary key values in the order of the primary keys on the model. The returned value is
suitable to be passed to sqlalchemy.orm.query.Query.get().

Parameters

• formdata – A webob.multidict.MultiDict that contains all parameters that
were passed to the form.

• index (int) – The index of the element for which the primary key is desired. From this,
the correct field name to get from fromdata is determined.

Returns A tuple of primary keys that uniquely identify the object in the database. The order is
based on the order of primary keys in the table as reported by SQLAlchemy.

Return type tuple

2.2. Usage 17

https://wtforms-alchemy.readthedocs.org
https://wtforms-alchemy.readthedocs.org
http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.get
http://webob.readthedocs.org/en/latest/api/multidict.html#webob.multidict.MultiDict
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#tuple

pyramid_crud Documentation, Release 0.1.3

populate_obj(obj)
Populates the attributes of the passed obj with data from the form’s fields.

Note This is a destructive operation; Any attribute with the same name as a field will be overrid-
den. Use with caution.

primary_keys
Get a list of pairs name, value of primary key names and their values on the current object.

process(formdata=None, obj=None, data=None, **kwargs)
Take form, object data, and keyword arg input and have the fields process them.

Parameters

• formdata – Used to pass data coming from the enduser, usually request.POST or equiv-
alent.

• obj – If formdata is empty or not provided, this object is checked for attributes matching
form field names, which will be used for field values.

• data – If provided, must be a dictionary of data. This is only used if formdata is empty
or not provided and obj does not contain an attribute named the same as the field.

• **kwargs – If formdata is empty or not provided and obj does not contain an attribute
named the same as a field, form will assign the value of a matching keyword argument to
the field, if one exists.

validate()
Validates the form by calling validate on each field, passing any extra Form.validate_<fieldname> valida-
tors to the field validator.

class pyramid_crud.forms.TabularInLine(formdata=None, obj=None, *args, **kw)
A base class for a tabular inline display. Each row is displayed in a table row with the field labels being displayed
in the table head. This is basically a list view of the fields only that you can edit and delete them and even insert
new ones.

Many-To-One & One-To-One

The opposite of the One-To-Many pattern is the Many-To-One. One-To-One looks the same from the “One” side, just
that the “parent” does not have many “children” but one “child”.

Both relationships are possible without any further configuration. They are automatically detected and work right
away. Currently, this feature only has limited use as you cannot directly create a parent form here. Instead the parent
object has to exist. Then you can go back and select it in the child’s edit form.

Note: When using a model with a child as an inline, this automatic detection will not display the parent item in the
inline form.

Extra Forms

CSRF

The CSRF Forms are special forms to protect you against CSRF attacks. There are two different types: The
CSRFForm is the base for any form that wants to enable CSRF and is not limited to the usage within the scope
of this library (it is not integrated with the rest of the system, it only implements a WTForms form that takes a
pyramid.request.Request as the csrf_context). The CSRFModelForm on the other hand is integrated

18 Chapter 2. Table of Contents

http://docs.pylonsproject.org/projects/pyramid/en/latest/api/request.html#pyramid.request.Request

pyramid_crud Documentation, Release 0.1.3

with the rest of the library and should be used to protect a form against CSRF attacks while still maintaining the
complete functionality of the ModelForm.

class pyramid_crud.forms.CSRFForm(formdata=None, obj=None, prefix=u’‘, csrf_context=None,
**kwargs)

Base class from which new CSRF-protected forms are derived. Only use this if you want to create a form
without the extra model-functionality, i.e. is normal form.

If you want to create a CSRF-protected model form use CSRFModelForm.

generate_csrf_token(csrf_context)
Create a CSRF token from the given context (which is actually just a pyramid.request.Request
instance). This is automatically called during __init__.

validate()
Validate the form and with it the CSRF token. Logs a warning with the error message and the remote IP
address in case of an invalid token.

class pyramid_crud.forms.CSRFModelForm(formdata=None, obj=None, *args, **kw)
A form that adds a CSRF token to the form. Derive from this class for security critical operations (read: you
want it most of the time and it doesn’t hurt).

Do not derive from this for inline stuff and other composite forms: Only the main form should use this as you
only need one token per request.

All configuration is done exactly in the same way as with the ModelForm except for one difference: An
additional csrf_context argument is required. The pre-configured views and templates already know how
to utilize this field and work fine with and without it.

Fields

The library defined some special fields. Normally, there is no need to be concerned with them as they are used
internally. However, they might provide useful features to a developer.

class pyramid_crud.fields.MultiCheckboxField(label=None, validators=None, coerce=<type
‘unicode’>, choices=None, **kwargs)

A multiple-select, except displays a list of checkboxes.

Iterating the field will produce subfields, allowing custom rendering of the enclosed checkbox fields.

Example for displaying this field:

class MyForm(Form):
items = MultiCheckboxField(choices=[('1', 'Label')]

form = MyForm()
for item in form.items:

str(item) # the actual field to be displayed, likely in template

If you don’t iterate, it produces an unordered list be default (if str is called on form.items, not each item
individually).

And with formdata it might look like this:

Definition same as above
formdata = MultiDict()
formdata.add('items', '1')
form = MyForm(formdata)
assert form.items.data == ['1']

As you can see, a list is produces instead of a scalar value which allows multiple fields with the same name.

2.2. Usage 19

http://docs.pylonsproject.org/projects/pyramid/en/latest/api/request.html#pyramid.request.Request

pyramid_crud Documentation, Release 0.1.3

class pyramid_crud.fields.MultiHiddenField(label=None, validators=None, coerce=<type
‘unicode’>, choices=None, **kwargs)

A field that represents a list of hidden input fields the same way as MultiCheckboxField and
wtforms.fields.SelectMultipleField.

class pyramid_crud.fields.SelectField(label=None, validators=None, coerce=<type ‘uni-
code’>, choices=None, **kwargs)

Same as wtforms.fields.SelectField with a custom validation message and the requirement that
data evaluates to True (for the purpose of having an empty field that is not allowed).

2.2.4 Templates

Changing a Single Template

Changing a single template is as simple as copying it from the default theme and adjusting it to your needs. For
example, say you want to change the list.mako template. You copy it over and start editing.

cp /path/to/pyramid_crud/templates/mako/bootstrap/list.mako my_library/templates/crud/list.mako

After you are done editing the template, you need to configure your view to load it:

class MyCRUDView(CRUDView):
...
template_list = 'crud/list.mako'

This is all assuming the crud directory can be looked up (in the example above, you would need
my_library/templates to be in mako.directories).

For an explanation of each template and some additional details, see Create a Complete Theme.

Create a Complete Theme

The default theme uses Bootstrap which looks nice but also not really unique and does not integrate at all with your
own application look. Thus, you might want to roll your own look for all views. This is easily possible with the theme
configuration parameter.

Note: This is an advanced technique. A lot of knowledge about the rest of the library is assumed throughout this
section and so it is recommended that you make yourself familiar with the rest of the documentation before taking on
own themes.

It is perfectly okay to create your application with the default theme first and change it afterwards to your custom
theme. This way you familiarize yourself with the library and have it much easier understanding what is going on
here.

The best way to roll your own template is to copy the default template from
pyramid_crud/templates/mako/bootstrap. Let’s say you want to create your own theme by the
name my_crud_theme. First you copy over the theme folder:

cp -a /path/to/pyramid_crud/templates/mako/bootstrap my_library/templates/my_crud_theme

Now you can directly enable your theme by configuring the theme variable with the setting my_crud_theme (this
is assuming that this folder is in your mako.directories path). With this, you should already have your new
template enabled.

20 Chapter 2. Table of Contents

http://getbootstrap.com/

pyramid_crud Documentation, Release 0.1.3

Note: If you want to configure a default template, just create your own intermediate base class that defines the theme
parameter. This isn’t a very pythonic solution but it works and is very flexible.

Now you should fire up your text editor and take a look at the files in your new theme folder. Here is a description of
the files used:

Note: Each file receives the usual request and view parameters pyramid passes in by default.

base.mako Contains the basic template with style sheets, flash messages and everything else that each template needs.
You will define your own look here.

If you already have your own template, you don’t need this file and can delete it. You then have two options for
configuring a custom base template:

• You can statically set the path in each <%include statement in the inheriting templates or

• You can define template_base on the view and set it to the path of your own base template. It will then
take this path as the base for all your templates and the regular base file is not needed anymore.

If you roll your own base, pay attention to the flash messages and their queue names: They are currently statically
configured and so you have to read these queues or won’t see any messages at all.

Also pay attention to the blocks used by inherting templates and either change them or define them in your base
(e.g. head and heading).

list.mako A simple list view. It gets two arguments: The items parameter is a query that you can iterate over to get
the object instances for each row. The action_form parameter is a form instance with the following fields:

action A select list where you can choose an action and execute it on multiple items at once (see Adding Actions
to Forms).

items A field that has one checkbox field for each item in the items iterable. If you iterate over it, you get a
single field that renders to a checkbox. In the default implementation, zip() is used to provide each loop
iteration with a single checkbox field and the corresponding item.

csrf_token A CSRF token field. This is required and must be displayed somewhere in the form or the validation
will fail.

submit A submit button that sends the form to execute the actions on the selected items.

edit.mako The view of a single item being edited. In the default implementation, this loads a fieldset for each
configured fieldset on the form and then loads an inline template for each configured inline on the form. It
receives the following parameters:

form A form representing the item being edited. It is an instance of your subclassed ModelForm. Look at the
documentation for Forms for more information on supported methods (make sure to also checkout linked
documentation from there).

is_new A boolean representing whether this is a new item or not.

delete_confirm.mako This template is invoked after the delete action was called and displays an intermediate view
to make sure the user really wants to delete the selected items. It gets the following arguments:

form The same form that the list view got as action_form

items The list of items to be deleted.

edit_inline/*.mako Any file in this folder is considered an inline template to be included. The following parameters
are given during inclusion:

2.2. Usage 21

http://docs.python.org/library/functions.html#zip

pyramid_crud Documentation, Release 0.1.3

inline The class that is inlined (not an instance!). It is the subclass you made from base of BaseInLine.

items Instances of the above inline parameter, each being a form to be displayed inlined.

fieldsets/*.mako This file is used by the edit.mako template for each fieldset that should be rendered. It gets
a single fieldset argument which is a dict with the following keys (note that it also keeps globals of the
parent):

title The title of this fieldset, usually displayed in a <legend> tag.

fields A list of field names on the form. Use these to retrieve the correct field from the form instance. This is
used instead of iterating over the form so you can group the fields into fieldsets.

You often don’t need to edit all of the files if you don’t use them. For example, the grid fieldset is just a special case
and can often go unused (you can delete it if you never use it on any fieldset). You can also often keep the default
template if you like the way they do things and just style them by creating your own stylesheet using the same classes
bootstrap does.

Keeping Some Templates from the Default Library

Sometimes you might want to change the complete look and overwrite most of the templates but keep some of them
from the old library. You could just keep the original copy you made above but that is not a good idea because you
might miss out on updates to the templates. You can abuse the template_* setting for this, as it works both ways:
Just set it to the path of the template you want to keep. For example, to keep the delete_confirm template but
overwrite everything else, configure your view like this:

class MyCRUDView(CRUDView):
...
template_delete_confirm = 'pyramid_crud:templates/mako/bootstrap/delete_confirm.mako'

Note how this is the full asset specification of the template because it is not in any of the directories configured with
mako.directories. Also note, that you cannot do this with templates in subdirectories (see template_* for an
explanation and solution).

Supporting Different Template Engines

Supporting another template engine is very simple. Assuming you already use them in the rest of the application, you
have them set up anyway. Once you have a theme for this engine, you can just set it to the file extension of this theme.

Let’s say, for example, you have created a Chameleon theme with all file names ending in .pt. If you have this
renderer enabled properly, it will automatically be chosen correctly, if you give pyramid a path to a file ending with
.pt. Thus, in addition to configuring your theme (see above), you just configure the template_ext parameter to .pt
and are good to go. This is what your view might look like:

class MyCRUDView(CRUDView)
...
theme = 'templates/my_chameleon_theme'
template_ext = '.pt'

Now assuming the lookup is correctly configured, this will fetch the templates using the correct renderer.

22 Chapter 2. Table of Contents

http://chameleon.readthedocs.org/en/latest/

pyramid_crud Documentation, Release 0.1.3

2.2.5 Utility Functions

API

2.2.6 Adding Actions to Forms

Similar to Django’s Admin actions, pyramid_crud also provides a way to configure specific actions.

Introduction

What are actions?

An action in the context of this library is something you perform on a list of items that might change their state (or
perform anything else, really). A good example would be publishing multiple articles at once or activating multiple
users.

How do you configure actions?

Actions are configured by setting the actions parameter on your view. Possible values here are strings or callables. If
a string is provided, a method of the same name is looked up on the view and used as the callable.

Each callable gets two arguments: The view and the query which selects the items for which the actions should be
performed. Note that a query is used instead of a list of items so that you can refine it or directly perform actions on
it. If you need a list, call .all on it or iterate over it.

So how do I create an action exactly?

Let’s work by example and take the same example Django does so we can directly see similarities and differences.
Here’s our definition with which we start:

class Article(Base):
id = Column(Integer, primary_key=True)
title = Column(Text)
body = Column(Text)
status = Column(Enum('p', 'd', 'w'))

def __unicode__(self):
return self.title

Now that we have our model, let’s make a method to publish multiple articles at once:

def make_published(view, query):
query.update({'status': 'p'})
return True, None

Notice, how we don’t pass in the request as it can be accessed with view.request. The view is an instance of your
subclassed CRUDView . The query is an instance of Query. Additionally, you can see that we return a pair here.
The first value indicates success of the operation, the latter value is an optional response (see Returning Values From
Actions for a detailed explanation).

Now you might want to have a nicer title than ‘Make Published’ (this title is assigned by default, replacing underscores
with spaces and calling str.title() on the result). To achieve a custom title (that will appear in the list of items),
assign a label to its info dict:

2.2. Usage 23

https://docs.djangoproject.com/en/1.6/ref/contrib/admin/actions/
http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query
http://docs.python.org/library/stdtypes.html#str.title

pyramid_crud Documentation, Release 0.1.3

def make_published(view, query):
query.update({'status': 'p'})
return True, None

make_published.info = {'label': "Mark selected stories as published"}

And how do I add it to a view?

That’s easy. Here is a full configuration based on the model above:

class ArticleForm(ModelForm):
class Meta:

model = Article

class ArticleView(CRUDView):
Form = ArticleForm
url_path = '/articles'
actions = [make_published]

See how we added the actions configuration directive? We gave it a list (with one item) of actions that should be
available on this model.

And that’s it, now you have an additional action available at your disposal. Read on for some more information,
including advanced techniques, differences and what’s missing in comparison to Django.

Advanced Techniques

Handling Errors

To handle exceptions, wrap your code in a try-except-else clause. You can then handle any exception and
possibly log error messages and flash a message to the user. This allows you to shield the user from any application
crashes and gives you the ability to examine the log for the cause of the error.

Nonetheless, you can still raise exceptions and they will be passed through in which case the section on Returning
Values From Actions does not really apply (as no value is returned).

An example of an implementation that shields to user from exceptions might look like this:

def make_published(view, query):
try:

query.update({'status': 'p'})
except:

log.error("An error oucurred:\n%s" % format_traceback())
self.request.session.flash("An error happened while publishing "

"the article(s)")
return False, None

else:
return True, None

This will inform the user of any failure and log the exact exception so you can investigate the problem. Note that with
a perfect implementation, you would probably want to explicitly catch all possible exceptions and not use a catch-all.
However, since this implementation doesn’t just ignore and instead log the exception, it is not too bad to have a catch
all here.

24 Chapter 2. Table of Contents

pyramid_crud Documentation, Release 0.1.3

Returning Values From Actions

As already noted above, it is recommended to wrap your code in try-except-else blocks and return the status as
a boolean. The reason for this is to allow explicit changes in application behavior based on the result of your execution.

You always have to return a pair of (success, response) to indicate how you would like to proceed.

success must be a boolean value. If it is False it indicates that the action was not successful. In this case the
redirect is raised which means it is considered an exception. Any optional transaction (e.g. pyramid_tm) will see this
exception and abort the transaction. Afterwards the page is redirected. The response value is not used in this case,
so it should always be None.

If success is True, it is assumed that the action was successful. In this case the redirect is returned and the
transaction is committed. Note that this is a fine distinction between success and failure and the user does not see a
difference (except error messages you might give out).

However, in the case of a successful response, you might also want to change the returned value into something
else (maybe redirect somewhere else or return a whole new response). This can be done by setting the response
paramater which can really be anything that is allowed to be returned from a view.

So for example if you wanted to direct to a completely different page, you could return an instance of HTTPFound
that achieves this. On the other hand, you maybe want to create an intermediate response. In that case, you just need
to return an instance of Response. You could create this by calling render_to_response if you want to render
an intermediary view from a template. This is the technique the delete action uses.

Note: The more complex it gets, the more likely it is that a redirect to an actual view is much better than manually
rendering or building your response. This allows you to factor out the code from your action into a separate view but
has the drawback of an additional redirect and the need to keep all the formdata alive (e.g. in the session).

Actions as Methods on the View

Instead of having an external function, you can add your action directly to the view (in most cases the recommended
way). For this, you just create a method on the view instead of a function:

class ArticleView(CRUDView):
...
def make_published(self, query):

try:
query.update({'status': 'p'})

except:
return False, None

else:
return True, None

make_published = {'info': "Mark selected stories as published"}

Note how we renamed view to self because as a method the view reference is now actually the own instance.

Instead of providing the action as a callable, you now use a string instead:

class ArticleView(CRUDView):
actions = ['make_published']

This will look up the action as a method on the view and call it in the same manner.

2.2. Usage 25

http://docs.pylonsproject.org/projects/pyramid_tm/en/latest/
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/httpexceptions.html#pyramid.httpexceptions.HTTPFound
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/response.html#pyramid.response.Response
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/renderers.html#pyramid.renderers.render_to_response

pyramid_crud Documentation, Release 0.1.3

Currently Unspported Features from Django

• Site-wide actions: Currently it is not possible to add actions that are globally available. However, you can work
around that by creating a custom subclass and modifiying the action list in the children during runtime, however,
this is an unspported as of now and you might face some issues with mutability.

• Disabling actions: This is currently not supported at all.

• Runtime disabling/enabling of actions: While unspported, this is possible by overriding the _all_actions
atribute. In the default implementation it behaves like a property but caches its result (using Pyramid’s reify
decoartor). Take a look at the default implementation to see the format of the returned value.

2.2.7 Help Topics

Transition From Django

If you are coming from Django you are probably wondering which features are offered here and to which Django
features they correspond. To help you with this, here are some guidelines on getting used to this system.

ModelAdmin Configuration Options

Django as a myriad of configuration options on its ModelAdmin. Not all features are supported here and they are
distributed differently (due to the nature of this library), so here is some guidance on getting around.

First of all, you have to know that we split things a bit more up around here because we are already based on other
libraries. Roughly speaking though we can define some equivalents:

• Django’s ModelAdmin is closest to views.CRUDView. Here we perform basic configuration actions, set
routes and so on. However, contrary to Django not all configuration is performed here. And instead of a
registration of the ModelAdmin with the Model, we define a Form on it that in turn links to the model.

• The Form subclasses forms.ModelForm. There is no equivalent in Django, as it creates the form automat-
ically from the relation between the model and the admin class. However, because of the way the integration
works (the form is actually created by WTForms-Alchemy) we need this form. This is the place where you
configure behavior on actual form instances.

• The Model in turn is very close to that of Django. But since our systems are not so closely integrated, the
coupling is much lower (which can be good or bad). The models are mostly just SQLAlchemy models with
some additional configuration done by WTForms-Alchemy.

Now that you know how the parts are constructed take a look at the following table. It lists each Django option on
ModelAdmin and provides the equivalent in either this library, WTForms-Alchemy or SQLAlchemy. If a behavior
is not supported here yet, it is denoted by “NYI” (not yet implemented).

Django Us
actions Adding Actions to Forms
actions_on_top NYI
actions_on_bottomg NYI
actions_selection_count NYI
date_hierarchy NYI
exclude Form.Meta.exclude
fields Form.Meta.only
fieldsets ModelForm.fieldsets
filter_horizontal NYI

Continued on next page

26 Chapter 2. Table of Contents

http://docs.pylonsproject.org/projects/pyramid/en/latest/api/decorator.html#pyramid.decorator.reify
https://www.djangoproject.com/
https://docs.djangoproject.com/en/1.6/ref/contrib/admin/#modeladmin-options
https://wtforms-alchemy.readthedocs.org/en/latest/
http://www.sqlalchemy.org/
https://wtforms-alchemy.readthedocs.org/en/latest/
https://wtforms-alchemy.readthedocs.org/en/latest/column_conversion.html#using-include-exclude-and-only
https://wtforms-alchemy.readthedocs.org/en/latest/column_conversion.html#using-include-exclude-and-only

pyramid_crud Documentation, Release 0.1.3

Table 2.1 – continued from previous page
Django Us

filter_vertical NYI
form CRUDView.Form
formfield_overrides Adding/overriding fields
inlines ModelForm.inlines
list_display CRUDView.list_display
list_display_links CRUDView.list_display_links
list_editable NYI
list_filter NYI
list_max_show_all NYI
list_per_page NYI
list_select_related NYI
ordering NYI
paginator NYI
prepoulated_fields NYI
preserve_filters NYI
radio_fields NYI
raw_id_fields NYI
readonly_fields NYI
save_as NYI
save_on_top NYI
search_fields NYI
add_form_template NYI
change_form_template NYI
change_list_template NYI
delete_confirmation_template NYI
delete_selected_confirmation_template NYI
object_history_template NYI
save_model NYI
delete_model NYI
save_formset NYI
get_ordering NYI
get_search_results NYI
save_related NYI
get_readonly_fields NYI
get_prepopulated_fields NYI
get_list_display NYI
get_list_display_links NYI
get_fieldsets NYI
get_list_filter NYI
get_inline_instances NYI
get_urls NYI
get_form NYI
get_formsets NYI
formfield_for_foreignkey NYI
formfield_for_manytomany NYI
formfield_for_choice_field NYI
get_changelist NYI
get_changelist_form NYI
get_changelist_formset NYI

Continued on next page

2.2. Usage 27

https://wtforms-alchemy.readthedocs.org/en/latest/column_conversion.html#adding-overriding-fields

pyramid_crud Documentation, Release 0.1.3

Table 2.1 – continued from previous page
Django Us

has_add_permission NYI
has_change_permission NYI
has_delete_permission NYI
get_queryset NYI
message_user NYI
get_paginator NYI
add_view NYI
change_view NYI
changelist_view NYI
delete_view NYI
history_view NYI
Media NYI

FAQ

2.2.8 Examples

2.3 Development

2.3.1 Building Documentation

To build the documentation you first need to install all documentation dependencies:

pip install -r docs_require.txt

Then you can build the documentation:

python setup.py build_sphinx

2.3.2 Running Tests

Before you can run tests, you need to install the requirements. These consist of the requirements to create docs (for
doctests) and pytest:

pip install -r tests_require.txt

Note: mock is an unnecessary requirement for users of python 3.3 and above, but it is included in the above file
unconditionally.

Now you can run your tests with:

python setup.py test

If you need more control over which tests are executed, you can also execute pytest and doctest directly:

py.test tests/
make -C docs/ doctest

28 Chapter 2. Table of Contents

pyramid_crud Documentation, Release 0.1.3

Note: Our tests are also run against templates. However, as they are not python files, the test suite automatically
compiles them into a temporary directory. This directory should never be checked into GitHub and also be removed
before installing the library (it does not hurt, it just pollutes the directory).

Running tests against templates also is included in coverage (the reason why we need an accessible template module
directory). The coverage values are reported by Travis CI to coveralls. However, since the code for this is not on
GitHub, you cannot see which lines were missted online. Instead, you need to run those tests locally and get coverage
output with coverage html after you have run the tests.

2.3.3 Contributing

2.3. Development 29

pyramid_crud Documentation, Release 0.1.3

30 Chapter 2. Table of Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

31

pyramid_crud Documentation, Release 0.1.3

32 Chapter 3. Indices and tables

Python Module Index

p
pyramid_crud.fields, 19
pyramid_crud.forms, 15
pyramid_crud.views, 7

33

pyramid_crud Documentation, Release 0.1.3

34 Python Module Index

Index

Symbols
_configure_route() (pyra-

mid_crud.views.ViewConfigurator method),
14

_configure_view() (pyra-
mid_crud.views.ViewConfigurator method),
13

_edit_route() (pyramid_crud.views.CRUDView method),
13

_get_request_pks() (pyramid_crud.views.CRUDView
method), 13

_get_route_name() (pyra-
mid_crud.views.ViewConfigurator method),
14

_get_route_pks() (pyramid_crud.views.CRUDView
method), 13

_get_route_pks() (pyramid_crud.views.ViewConfigurator
method), 14

B
BaseInLine (class in pyramid_crud.forms), 17

C
configure_edit_view() (pyra-

mid_crud.views.ViewConfigurator method),
11

configure_list_view() (pyra-
mid_crud.views.ViewConfigurator method),
10

configure_new_view() (pyra-
mid_crud.views.ViewConfigurator method),
11

CRUDView (class in pyramid_crud.views), 7
CSRFForm (class in pyramid_crud.forms), 19
CSRFModelForm (class in pyramid_crud.forms), 19

D
delete() (pyramid_crud.views.CRUDView method), 12

E
edit() (pyramid_crud.views.CRUDView method), 12

F
fieldsets (pyramid_crud.forms.BaseInLine attribute), 17
fieldsets (pyramid_crud.forms.ModelForm attribute), 15

G
generate_csrf_token() (pyramid_crud.forms.CSRFForm

method), 19
get_fieldsets() (pyramid_crud.forms.BaseInLine

method), 17
get_fieldsets() (pyramid_crud.forms.ModelForm

method), 15
get_template_for() (pyramid_crud.views.CRUDView

class method), 12

I
iter_head_cols() (pyramid_crud.views.CRUDView

method), 13
iter_list_cols() (pyramid_crud.views.CRUDView

method), 13

L
list() (pyramid_crud.views.CRUDView method), 12

M
ModelForm (class in pyramid_crud.forms), 15
MultiCheckboxField (class in pyramid_crud.fields), 19
MultiHiddenField (class in pyramid_crud.fields), 19

P
pks_from_formdata() (pyramid_crud.forms.BaseInLine

class method), 17
populate_obj() (pyramid_crud.forms.BaseInLine

method), 17
populate_obj() (pyramid_crud.forms.ModelForm

method), 15
populate_obj_inline() (pyramid_crud.forms.ModelForm

method), 16
primary_keys (pyramid_crud.forms.BaseInLine at-

tribute), 18

35

pyramid_crud Documentation, Release 0.1.3

primary_keys (pyramid_crud.forms.ModelForm at-
tribute), 16

process() (pyramid_crud.forms.BaseInLine method), 18
process() (pyramid_crud.forms.ModelForm method), 16
process_inline() (pyramid_crud.forms.ModelForm

method), 16
pyramid_crud.fields (module), 19
pyramid_crud.forms (module), 15
pyramid_crud.views (module), 7

R
redirect() (pyramid_crud.views.CRUDView method), 12

S
SelectField (class in pyramid_crud.fields), 20

T
TabularInLine (class in pyramid_crud.forms), 18

V
validate() (pyramid_crud.forms.BaseInLine method), 18
validate() (pyramid_crud.forms.CSRFForm method), 19
validate() (pyramid_crud.forms.ModelForm method), 16
validate_inline() (pyramid_crud.forms.ModelForm

method), 16
ViewConfigurator (class in pyramid_crud.views), 10

36 Index

	Links
	Table of Contents
	Introduction
	Installation
	A Word on Dependencies
	QuickStart

	Usage
	Configuration
	Views
	Forms
	Templates
	Utility Functions
	Adding Actions to Forms
	Help Topics
	Examples

	Development
	Building Documentation
	Running Tests
	Contributing

	Indices and tables
	Python Module Index

