

Welcome to PyQSO’s documentation!

Contents:

	Introduction
	Overview

	Data storage model

	Licensing

	Contact

	Structure of this documentation

	Getting started
	Demonstration

	System requirements

	Installation and running

	Creating and opening a logbook

	Closing a logbook

	Log management
	Creating a new log

	Renaming a log

	Deleting a log

	Exporting a log

	Importing a log

	Printing a log

	Filtering by callsign

	Sorting by field

	Record management
	Creating a new record (QSO)

	Editing a record

	Copying/pasting a record

	Deleting a record

	Removing duplicate records

	Toolbox
	DX cluster

	World map

	Awards

	Preferences
	General

	View

	Records

	Import/Export

	Hamlib support

	World Map

	Keyboard shortcuts

	pyqso package
	Submodules

	pyqso.adif module

	pyqso.auxiliary_dialogs module

	pyqso.awards module

	pyqso.blank module

	pyqso.cabrillo module

	pyqso.cabrillo_export_dialog module

	pyqso.calendar_dialog module

	pyqso.callsign_lookup module

	pyqso.compare module

	pyqso.dx_cluster module

	pyqso.grey_line module

	pyqso.log module

	pyqso.log_name_dialog module

	pyqso.logbook module

	pyqso.menu module

	pyqso.preferences_dialog module

	pyqso.printer module

	pyqso.record_dialog module

	pyqso.summary module

	pyqso.telnet_connection_dialog module

	pyqso.toolbar module

	pyqso.toolbox module

	Module contents

Introduction

Overview

PyQSO [http://christianjacobs.uk/pyqso] is a logging tool for amateur radio operators. It provides a
simple graphical interface through which users can manage information
about the contacts/QSOs they make with other operators on the air. All
information is stored in a light-weight SQL database. Other key features
include:

	Customisable interface (e.g. only show callsign and frequency information).

	Import logs in ADIF [http://www.adif.org/] format, and export logs in ADIF or Cabrillo [http://wwrof.org/cabrillo/] format.

	Perform callsign lookups and auto-fill data fields using the qrz.com [http://www.qrz.com/] and hamqth.com [http://www.hamqth.com/] online databases.

	Sort the logs by individual fields.

	Print a hard-copy of logs, or print to PDF.

	Connect to Telnet-based DX clusters.

	Progress tracker for the DXCC [http://www.arrl.org/dxcc/] award.

	World map with grey line and Maidenhead grid squares.

	Filter QSOs based on callsign (e.g. only display contacts with callsigns beginning with “M6”).

	Remove duplicate QSOs.

	Basic support for the Hamlib [http://hamlib.sourceforge.net/] library.

The source code for PyQSO, written in Python [https://www.python.org/] (version 3.x), is available for download from the GitHub repository [https://github.com/ctjacobs/pyqso].

Data storage model

Many amateur radio operators choose to store all the contacts they ever
make in a single logbook, whereas others keep a separate logbook for
each year, for example. Each logbook may be divided up to form multiple
distinct logs, perhaps one for casual repeater contacts, another for satellite contacts, and another
for DX’ing. Finally, each log can contain multiple records. PyQSO is
based around this three-tier model for data storage, going from logbooks
at the top to individual records at the bottom.

Rather than storing each log in a separate file, a single database can
hold several logs together; in PyQSO, a database is therefore analogous
to a logbook. Within a database the user can create multiple tables
which are analogous to the logs. Within each table the user can
create/modify/delete records which are analogous to the records in each
log.

Licensing

PyQSO is free software, released under the GNU General Public License [http://www.gnu.org/licenses/gpl-3.0.en.html]. Please see the file called COPYING for more information. A copyright year range of the form YYYY-ZZZZ specifies every single year from YYYY to ZZZZ inclusive (for example, 2012-2017 means 2012, 2013, 2014, 2015, 2016, 2017).

Contact

If you have any comments or questions about PyQSO, please send them via email to Christian Jacobs, M0UOS, at christian@christianjacobs.uk. Bug reports and feature requests can be made via the issue tracker [https://github.com/ctjacobs/pyqso/issues].

Structure of this documentation

The structure of this documentation is as follows. The section on Getting Started provides information on the PyQSO installation process through to creating a new logbook (or opening an existing one). The Log Management section explains how to create a log in the logbook, as well as the basic operations that users can perform with existing logs, such as printing, importing/exporting logs, and sorting. The Record Management section deals with the bottom layer of the three-tier model - the creation, deletion, and modification of QSO records in a log. The Toolbox section introduces the PyQSO toolbox which contains three tools that are useful to amateur radio operators: a DX cluster, a world map, and an awards progress tracker. Finally, the Preferences section explains how users can set up Hamlib support and show/hide various fields in a log, along with several other user preferences that can be set via the Preferences dialog window. A keyboard shortcuts list is also available for reference.

Getting started

Demonstration

The screencast below demonstrates how to install, configure and use PyQSO (focussing on version 1.0.0 only). Detailed instructions are also available in the sections that follow.

 Log management

Log management

Note 1: All the operations described below assume that a logbook is
already open.

Note 2: Any modifications made to the logs are permanent. Users
should make sure they keep up-to-date backups.

Creating a new log

To create a new log, click New Log in the Logbook menu and enter
the desired name of the log in the dialog window that appears (e.g. repeater_contacts, dx, mobile_log).
Alternatively, use the shortcut key combination Ctrl + N.

The log name must be unique (i.e. it cannot already exist in the
logbook). Furthermore, it can only be composed of alphanumeric
characters and the underscore character, and the first character in the
name must not be a number.

Note: When logs are stored in the database file, field/column names from
the ADIF standard are used. However, please note that only the following
subset of all the ADIF fields is considered: CALL, QSO_DATE, TIME_ON,
FREQ, BAND, MODE, SUBMODE, PROP_MODE, TX_PWR, RST_SENT, RST_RCVD, QSL_SENT, QSL_RCVD,
NOTES, NAME, ADDRESS, STATE, COUNTRY, DXCC, CQZ, ITUZ, IOTA, GRIDSQUARE, SAT_NAME, SAT_MODE. Visit the ADIF website [http://adif.org/] for more information about these fields.

Renaming a log

To rename the currently selected log, click Rename Selected Log... in
the Logbook menu. Remember that the log’s new name cannot be the
same as another log in the logbook.

Deleting a log

To delete the currently selected log, click Delete Selected Log in
the Logbook menu. As with all database operations in PyQSO, this is
permanent and cannot be undone.

Exporting a log

While PyQSO stores logbooks in SQL format, it is possible to export
individual logs in the well-known ADIF [http://www.adif.org/] and Cabrillo [http://wwrof.org/cabrillo/] formats. Select the log to export,
and click Export Log as ADIF... or Export Log as Cabrillo... in the Logbook menu.

Note for contesters: Cabrillo records typically require contest QSO information in the form CALL RST EXCH, where EXCH denotes exchange information (e.g. a serial number or US state). No dedicated field exists in PyQSO to store exchange information so the RST fields should be used to store both the RST report and exchange information, separated by a space. The RST Sent field should therefore contain the RST and exchange information that you give to the other station (e.g. 59 001), and the RST Received field should contain the RST and exchange information that the other station gives you (e.g. 57 029). The export process asks for your callsign (this should be the callsign used during the contest) and the contest’s name which can be selected from a drop-down list. If the contest name does not appear in this list, you may enter its name manually.

Importing a log

Records can be imported from an ADIF file. Upon importing,
users can choose to store the records in a new log, or append them to an
existing log in the logbook. To import, click Import Log... in the
Logbook menu.

Note that each QSO record being imported must conform to the ADIF standard, otherwise the record will be ignored.

Printing a log

The log that is currently selected can be printed out on paper or printed to a PDF file by clicking Print Log... in the Logbook menu. Each page uses a landscape orientation to maximise the amount of QSO information per line. The following data is included: Index, Callsign, Date, Time, Frequency, Mode, RST Sent, and RST Received.

Filtering by callsign

Entering an expression such as xyz into the Filter by callsign
box will instantly filter out all records whose callsign field does not
contain xyz.

Sorting by field

To sort a log by a particular field name, click the column header
that contains that field name. By default, it is the Index field
that is sorted in ascending order.

 Record management

Record management

Note: Any modifications made to the records are permanent. Users
should make sure they keep up-to-date backups.

Creating a new record (QSO)

A new QSO can be added by either:

	Clicking the Add Record button in the toolbar.

	Pressing Ctrl + R.

	Clicking Add Record... in the Records menu.

A dialog window will appear where details of the QSO can be entered (see
figure:edit_record). Note that the current date and time
are filled in automatically. When ready, click OK or press the Enter key to save the
changes.

[image: _images/edit_record.png]
Record dialog used to add new records and edit existing ones.

Callsign lookup

PyQSO can also resolve station-related information (e.g. the operator’s
name, address, and ITU Zone) by clicking the Callsign lookup
button adjacent to the Callsign data entry box. Note that the user must
first supply their qrz.com [http://qrz.com/] or hamqth.com [http://hamqth.com/] account information in the preferences dialog
window.

Editing a record

An existing record can be edited by:

	Double-clicking on it.

	Selecting it and clicking the Edit Record button in the toolbar.

	Selecting it and clicking Edit Selected Record... in the
Records menu.

This will bring up the same dialog window as before.

Copying/pasting a record

An existing record can be copied and pasted by:

	Selecting it and right-clicking to bring up the popup menu.

	Selecting Copy.

	Right-clicking again and selecting Paste. This will duplicate the record, with the duplicate becoming the latest record in the selected log.

Deleting a record

An existing record can be deleted by:

	Selecting it and clicking the Delete Record button in the
toolbar.

	Selecting it and pressing the Delete key.

	Selecting it and clicking Delete Selected Record... in the
Records menu.

Removing duplicate records

PyQSO can find and delete duplicate records in a log. A record is a
duplicate of another if its data in the Callsign, Date, and Time fields are the same. Click Remove Duplicate Records in the
Records menu.

 Toolbox

Toolbox

The toolbox is hidden by default. To show it, click Toolbox in the
View menu.

DX cluster

A DX cluster is essentially a server through which amateur radio
operators can report and receive updates about QSOs that are in progress
across the bands. PyQSO is able to connect to a DX cluster that operates
using the Telnet protocol to provide a text-based alert service. As a
result of the many different Telnet-based software products that DX
clusters run, PyQSO currently outputs the raw data received from the DX
cluster rather than trying to parse it in some way.

Click on Connect to Telnet Server then New... in the Connection menu, and enter the DX server
details in the dialog that appears. If no port is specified, PyQSO will
use the default value of 23. A username and password may also need to be
supplied. Frequently used servers can be bookmarked for next time; bookmarked server details are stored in ~/.config/pyqso/bookmarks.ini, where ~ denotes the user’s home directory.

Once connected, the server output will appear in the DX
cluster frame (see figure:dx_cluster). A command can also
be sent to the server by typing it into the entry box beneath the server output and clicking the
adjacent Send Command button (or pressing the Enter key).

[image: _images/dx_cluster.png]
The DX cluster frame.

World map

The world map tool (see figure:world_map) can be used to plot the QTH of your station and stations that you have contacted. It also features a grey line to check which parts of the world are in darkness. The position of the grey line is automatically updated every 30 minutes.

The user’s QTH can be pinpointed on the map by specifying the QTH’s location (e.g. city name) and latitude-longitude coordinates in the preferences. If the geocoder [https://pypi.python.org/pypi/geocoder] library is installed then these coordinates can be filled in for you by clicking the lookup button after entering the QTH’s name, otherwise the coordinates will need to be entered manually.

The location of a worked station may also be plotted by right-clicking on the relevant QSO in the main window and selecting Pinpoint from the popup menu.

[image: _images/world_map.png]
The world map tool with the user’s QTH (e.g. Southampton) pinpointed in red, and several other worked stations pinpointed in yellow. Worked grid squares are shaded purple.

Awards

The awards progress tracker (see figure:awards) updates its data
each time a record is added, deleted, or modified. Currently only the
DXCC award is supported (visit the ARRL DXCC website [http://www.arrl.org/dxcc] for more
information).

[image: _images/awards.png]
The award progress tracker.

 Preferences

Preferences

PyQSO user preferences are stored in a configuration file located at
~/.config/pyqso/preferences.ini, where ~ denotes the user’s home directory.

General

Under the General tab, the user can choose to:

	Always show the toolbox (see the Toolbox section) when PyQSO is started.

	Display yearly logbook statistics on the Summary page when a logbook is opened (see figure:summary).

	Open a default logbook file.

	Keep the Add Record dialog window open after a new QSO is added, in preparation for the next QSO.

[image: _images/summary.png]
The Summary page which appears after a logbook is opened. This presents some basic logbook statistics.

View

Not all the available fields have to be displayed in the logbook. The user can choose to hide a subset by unchecking them in the View tab. PyQSO must be restarted in order for any changes to take effect.

Records

The records tab comprises options concerning the Add/Edit Record dialog window. It allows users to:

	Use the UTC timezone when autocompleting the date and time fields.

	Choose whether the band should be automatically determined from the frequency field.

	Specify default values for the Power, Mode, and Submode fields.

	Enter the QSO’s frequency in a unit other than MHz (note that the frequency will always be presented in MHz in the main window, regardless of this preference).

	Specify the callsign lookup settings.

Callsign lookup

The user can enter their login details to access the qrz.com [http://qrz.com/] or hamqth.com [http://hamqth.com/] database and perform callsign lookups. Note that these details are currently stored in plain text (unencrypted) format.

If the Ignore callsign prefixes and/or suffixes box is checked, then PyQSO will perform the callsign lookup whilst ignoring all prefixes (i.e. anything before a preceding “/” in the callsign) and the suffixes “P”, “M”, “A”, “PM”, “MM”, “AM”, and “QRP”. For example, if the callsign to be looked up is F/MYCALL/QRP, only MYCALL will be looked up. If you get ‘Callsign not found’ errors, try enabling this option.

Import/Export

PyQSO currently supports the NOTES field in the ADIF specification, but not the COMMENTS field. When a user imports a log in ADIF format, they can choose to merge any existing text in the COMMENTS field with the NOTES field by checking the ‘merge’ checkbox. This way, no information in the COMMENTS field is discarded during the import process.

Hamlib support

PyQSO features rudimentary support for the Hamlib [http://hamlib.sourceforge.net/] library. The name and path of the radio device connected to the user’s computer can be specified in the Hamlib tab of the preferences dialog. Upon adding a new record to the log, PyQSO will use Hamlib to retrieve the current frequency and mode that the radio device is set to and automatically fill in the Frequency and Mode fields.

World Map

The user can pinpoint their QTH on the world map by specifying the latitude-longitude coordinates (or looking them up based on the QTH’s name, e.g. city name) in the World Map tab. Maidenhead grid squares can also be rendered, with worked grid squares shaded, which is particularly useful for satellite operating.

 Keyboard shortcuts

Keyboard shortcuts

	Description

	Shortcut

	Open logbook

	Ctrl + O

	Close logbook

	Ctrl + W

	New log

	Ctrl + N

	Print log

	Ctrl + P

	Quit

	Ctrl + Q

	Add record

	Ctrl + R

	Edit record

	Ctrl + E

	Delete record

	Delete

 pyqso package

pyqso package

Submodules

pyqso.adif module

	
class pyqso.adif.ADIF

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The ADIF class supplies methods for reading, parsing, and writing log files in the Amateur Data Interchange Format (ADIF).
For more information, visit http://adif.org/

	
is_valid(field_name, data, data_type)

	Validate the data in a field with respect to the ADIF specification.

	Parameters

	
	field_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the ADIF field.

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The data of the ADIF field to validate.

	data_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of data to be validated. See http://www.adif.org/304/ADIF_304.htm#Data_Types for the full list with descriptions.

	Returns

	True or False to indicate whether the data is valid or not.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
parse_adi(text)

	Parse some raw text (defined in the ‘text’ argument) for ADIF field data.

	Parameters

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The raw text from the ADIF file to parse.

	Returns

	A list of dictionaries (one dictionary per QSO). Each dictionary contains the field-value pairs, e.g. {“FREQ”: “145.500”, “BAND”: “2M”, “MODE”: “FM”}.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
read(path)

	Read an ADIF file and parse it.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the ADIF file to read.

	Returns

	A list of dictionaries (one dictionary per QSO), with each dictionary containing field-value pairs, e.g. {FREQ:145.500, BAND:2M, MODE:FM}. If the file cannot be read, the method returns None.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – If the ADIF file does not exist or cannot be read (e.g. due to lack of read permissions).

	
write(records, path)

	Write an ADIF file containing all the QSOs in the ‘records’ list.

	Parameters

	
	records (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of QSO records to write.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The desired path of the ADIF file to write to.

	Returns

	None

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – If the ADIF file cannot be written (e.g. due to lack of write permissions).

pyqso.auxiliary_dialogs module

pyqso.awards module

pyqso.blank module

pyqso.cabrillo module

	
class pyqso.cabrillo.Cabrillo

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The Cabrillo class supplies methods for writing log files in the Cabrillo format (v3.0).
For more information, visit http://wwrof.org/cabrillo/

	
write(records, path, contest='', mycall='')

	Write a list of QSO records to a file in the Cabrillo format.

	Parameters

	
	records (list [https://docs.python.org/3/library/stdtypes.html#list]) – The list of QSO records to write.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The desired path of the Cabrillo file to write to.

	contest (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the contest.

	mycall (str [https://docs.python.org/3/library/stdtypes.html#str]) – The callsign used during the contest.

	Returns

	None

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – If the Cabrillo file cannot be written (e.g. due to lack of write permissions).

pyqso.cabrillo_export_dialog module

	
class pyqso.cabrillo_export_dialog.CabrilloExportDialog(application)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A handler for the Gtk.Dialog through which a user can specify Cabrillo log details.

	
contest

	Return the name of the contest.

	Returns

	The name of the contest.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
mycall

	Return the callsign used during the contest.

	Returns

	The callsign used during the contest.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

pyqso.calendar_dialog module

	
class pyqso.calendar_dialog.CalendarDialog(application)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Handler for a simple dialog containing a Gtk.Calendar widget. Using this ensures the date is in the correct YYYYMMDD format required by ADIF.

	
date

	Return the date from the Gtk.Calendar widget in YYYYMMDD format.

	Returns

	The date from the calendar in YYYYMMDD format.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

pyqso.callsign_lookup module

pyqso.compare module

	
pyqso.compare.compare_date_and_time(model, row1, row2, user_data)

	Compare two rows (let’s call them A and B) in a Gtk.ListStore, and sort by both date and time.

	Parameters

	
	model (Gtk.TreeModel) – The model used to sort the log data.

	row1 (Gtk.TreeIter) – The pointer to row A.

	row2 (Gtk.TreeIter) – The pointer to row B.

	user_data – The specific column from which to retrieve data for rows A and B.

	Returns

	-1 if Row B’s date/time is more recent than Row A’s; 0 if both dates and times are the same; 1 if Row A’s date/time is more recent than Row B’s.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
pyqso.compare.compare_default(model, row1, row2, user_data)

	The default sorting function for all Gtk.ListStore objects.

	Parameters

	
	model (Gtk.TreeModel) – The model used to sort the log data.

	row1 (Gtk.TreeIter) – The pointer to row A.

	row2 (Gtk.TreeIter) – The pointer to row B.

	user_data – The specific column from which to retrieve data for rows A and B.

	Returns

	-1 if the value of Row A’s column value is less than Row B’s column value; 0 if both values are the same; 1 if Row A’s column value is greater than Row B’s column value.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

pyqso.dx_cluster module

pyqso.grey_line module

pyqso.log module

pyqso.log_name_dialog module

	
class pyqso.log_name_dialog.LogNameDialog(application, title=None, name=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A handler for the Gtk.Dialog through which a user can specify the name of a Log object.

	
name

	Return the log name specified in the Gtk.Entry box by the user.

	Returns

	The log’s name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

pyqso.logbook module

pyqso.menu module

pyqso.preferences_dialog module

pyqso.printer module

pyqso.record_dialog module

pyqso.summary module

pyqso.telnet_connection_dialog module

	
class pyqso.telnet_connection_dialog.TelnetConnectionDialog(application)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A handler for the Gtk.Dialog through which a user can specify Telnet connection details.

	
bookmark

	Return True if a new bookmark should be created, otherwise return False.

	Returns

	True if a new bookmark should be created, otherwise False.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
host

	Return the Telnet server’s host name.

	Returns

	The server’s host name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
password

	Return the user’s password.

	Returns

	The user’s password.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
port

	Return the Telnet server’s port number (as a string).

	Returns

	The server’s port number (as a string).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
username

	Return the user’s username.

	Returns

	The user’s username.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

pyqso.toolbar module

	
class pyqso.toolbar.Toolbar(application)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The toolbar underneath the menu bar.

	
set_logbook_button_sensitive(sensitive)

	Enable/disable logbook-related toolbar items.

	Parameters

	sensitive (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, enable the ‘new logbook’ and ‘open logbook’ toolbar items. If False, disable them.

	
set_record_buttons_sensitive(sensitive)

	Enable/disable record-related toolbar items.

	Parameters

	sensitive (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, enable all the record-related toolbar items. If False, disable them all.

pyqso.toolbox module

Module contents

 Python Module Index

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyqso	

 	
 	
 pyqso.adif	

 	
 	
 pyqso.cabrillo	

 	
 	
 pyqso.cabrillo_export_dialog	

 	
 	
 pyqso.calendar_dialog	

 	
 	
 pyqso.compare	

 	
 	
 pyqso.log_name_dialog	

 	
 	
 pyqso.telnet_connection_dialog	

 	
 	
 pyqso.toolbar	

 Index

Index

 A
 | B
 | C
 | D
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	ADIF (class in pyqso.adif)

B

 	
 	bookmark (pyqso.telnet_connection_dialog.TelnetConnectionDialog attribute)

C

 	
 	Cabrillo (class in pyqso.cabrillo)

 	CabrilloExportDialog (class in pyqso.cabrillo_export_dialog)

 	CalendarDialog (class in pyqso.calendar_dialog)

 	
 	compare_date_and_time() (in module pyqso.compare)

 	compare_default() (in module pyqso.compare)

 	contest (pyqso.cabrillo_export_dialog.CabrilloExportDialog attribute)

D

 	
 	date (pyqso.calendar_dialog.CalendarDialog attribute)

H

 	
 	host (pyqso.telnet_connection_dialog.TelnetConnectionDialog attribute)

I

 	
 	is_valid() (pyqso.adif.ADIF method)

L

 	
 	LogNameDialog (class in pyqso.log_name_dialog)

M

 	
 	mycall (pyqso.cabrillo_export_dialog.CabrilloExportDialog attribute)

N

 	
 	name (pyqso.log_name_dialog.LogNameDialog attribute)

P

 	
 	parse_adi() (pyqso.adif.ADIF method)

 	password (pyqso.telnet_connection_dialog.TelnetConnectionDialog attribute)

 	port (pyqso.telnet_connection_dialog.TelnetConnectionDialog attribute)

 	pyqso (module)

 	pyqso.adif (module)

 	pyqso.cabrillo (module)

 	
 	pyqso.cabrillo_export_dialog (module)

 	pyqso.calendar_dialog (module)

 	pyqso.compare (module)

 	pyqso.log_name_dialog (module)

 	pyqso.telnet_connection_dialog (module)

 	pyqso.toolbar (module)

R

 	
 	read() (pyqso.adif.ADIF method)

S

 	
 	set_logbook_button_sensitive() (pyqso.toolbar.Toolbar method)

 	
 	set_record_buttons_sensitive() (pyqso.toolbar.Toolbar method)

T

 	
 	TelnetConnectionDialog (class in pyqso.telnet_connection_dialog)

 	
 	Toolbar (class in pyqso.toolbar)

U

 	
 	username (pyqso.telnet_connection_dialog.TelnetConnectionDialog attribute)

W

 	
 	write() (pyqso.adif.ADIF method)

 	(pyqso.cabrillo.Cabrillo method)

_static/up.png

_images/dx_cluster.png
Toolbox:
DXClxlerHWnrHMapHAmrds‘

Connection
DX 0 ARSBT—7UTES GASEX—CW TN
DXdeW3LPL: 180768 6YSW) HeardinMDandNH 2141ZFM19
DX de DF2GB: 1296030.0 GACCH JN39<eme cw>1094 241z
DXdeVEIDT: 7022.0 LA7GIA 21412 GNos
DXdeAAZB: 7017.0 WIEG CW. 21422 20
DXdeVEZFK: 70160 UTAU UKFEICW. 21422 FN68.
DXdeAA3B: 70178 GIWI CW 2142220

DXde MIGWMN: 71310 S51CK 5/9Northernlreland 214221064
DXdeW3LPL: 10108.9 CU2DX 21422 N9
DXdeW3LPL: 3537.5 MM2N 21422 N9
DXdeADOK: 180975 KekPH CW 21422

DXde MM3AWD: 7027.0 VO1BQ CW 21422
DXdeJETBM): 141820 S92HP easy 21422
DXdeWSZPA: 140711 VA3FLF PSK31 2132

|| send command

_images/edit_record.png
Edit Record 17

FADXV/P

| @] rovse

20171103

|| « | RoTReceived

1057

|| » | astsen

QS Received

| ® cancel ||

o |

_images/awards.png
DXCC Award

odes | 706m | 2m [am | 0m | 12m | 15m | 17m | 20m | 30m | aom | s | 1som

Phoe 2 7 0 0 0 0 0 2 0 2 0 0
w o 0o 0o 0o 0o 0o 0 0 0o 0 0 o
Digtl 0 0 o0 o0 0 0 0 0 0 0 0 o0
Mxed 2 7 0 0 0 0 0 2 0 2 0 0

_images/world_map.png
2mosoL
“Southampton

Faacvo

& |

z||&|2||=| 2 |a| || 2|2

el

O
m
0
)
A
w
0
"
0
0
0
0

_static/ajax-loader.gif

_images/logbook.png
PyQso
Logbook Records View Help
0|5 =] | #|] x| Fiterbycalsion

Summary [5050 Vi UHF | HF | Acss | #

Index v | Callsign \Da(e \T\me \rvequency(wz)}aana }Moae }rxpowev(m‘Rstsw}nsrkecewea\Gnasmve

16 MISGTY 20171103 1056 | 145850 m s B E) 1064 1
17 [FDXVP 20171103 1057 | 145850 s [ERRE) T Nosie 1
18 (IWIRZR 20171128 | 2040 | 145850 s [ERRE) Tnas 1
15 JONAUC 120171230 1910 | 145850 s [ERRE) ' 1
0 G 120171230 | 1914 | 145850 s [ERRE) ' 1
21 iAo 120180223 | 2125 | 145850 s [ERRE) = 1
2GS 120180327 | 1954 | 145850 s [ERRE) 11050 1
5 GoABl 120180327 | 1956 | 145850 s [ERRE) " 1080bu 1
2 s8R0 120180327 | 1957 | 145850 s [EE]) ' |
2 VP 20180401 1840 145850 m M5 E E 10915k
Toolbox

DX Cluster | World Map | Awards

T 00

30N

&

30°s

60°s

180°W 120°W 60w 0 60°E 120 180°E

‘ ~» -8 38.38, 75.78 (75.778932°N, 38.379229°)

Logbook: home/christian/Documents/amateur-radio/MOUOS.db

_images/summary.png
PyQso
Logbook Records View Help

® | | # | 8] ®| riterbycalisign:
summary B 5050 VHE_UHF | HF| Aoss | #

MOUOS.db

Number of logs: 4
Total number of Q50s: 31
Date modified: 01 April 2018 @ 19:58

Display statistics for year: | 2017 ~

Modes used

Number of QSOs

o
Jan FebMar AprMay un Jul Aug Sep Oct Nov Dec

Logbook: home/christian/Documents/amateur-radio/MOUOS.db

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyQSO’s documentation!

 		
 Introduction

 		
 Overview

 		
 Data storage model

 		
 Licensing

 		
 Contact

 		
 Structure of this documentation

 		
 Getting started

 		
 Demonstration

 		
 System requirements

 		
 Installation and running

 		
 Command-line options

 		
 Creating and opening a logbook

 		
 Closing a logbook

 		
 Log management

 		
 Creating a new log

 		
 Renaming a log

 		
 Deleting a log

 		
 Exporting a log

 		
 Importing a log

 		
 Printing a log

 		
 Filtering by callsign

 		
 Sorting by field

 		
 Record management

 		
 Creating a new record (QSO)

 		
 Callsign lookup

 		
 Editing a record

 		
 Copying/pasting a record

 		
 Deleting a record

 		
 Removing duplicate records

 		
 Toolbox

 		
 DX cluster

 		
 World map

 		
 Awards

 		
 Preferences

 		
 General

 		
 View

 		
 Records

 		
 Callsign lookup

 		
 Import/Export

 		
 Hamlib support

 		
 World Map

 		
 Keyboard shortcuts

 		
 pyqso package

 		
 Submodules

 		
 pyqso.adif module

 		
 pyqso.auxiliary_dialogs module

 		
 pyqso.awards module

 		
 pyqso.blank module

 		
 pyqso.cabrillo module

 		
 pyqso.cabrillo_export_dialog module

 		
 pyqso.calendar_dialog module

 		
 pyqso.callsign_lookup module

 		
 pyqso.compare module

 		
 pyqso.dx_cluster module

 		
 pyqso.grey_line module

 		
 pyqso.log module

 		
 pyqso.log_name_dialog module

 		
 pyqso.logbook module

 		
 pyqso.menu module