

 [image: _images/logo_pros_small.png]

Welcome to pyPROS’s documentation!

Knowledge of surface precipitation type can be critical during
snow events at low altitudes or in regions not used to this phenomena.
For this purpose, previous studies developed several methodologies to
discriminate precipitation types using meteorological surface observations.
Some of them are implemented in this package.

Contents:

	Installation
	setup.py

	pip

	Anaconda

	Rain or Snow
	Single threshold

	Linear transition

	Koistinen and Saltikoff (KS)

	Dual thresholds

	API
	The PyPROS module

	Psychrometric calculations

	Rain or snow methodologies

	Examples
	PyPros class

	pypros_run script

	Single threshold

	Linear transition

	Koistinen-Saltikoff

Indices and tables

	Index

	Module Index

	Search Page

Installation

There are several ways to install this package

setup.py

python3 setup.py build

python3 setup.py install

pip

pip install -r requirements.txt

pip install pypros

Anaconda

conda install -c meteocat pypros

Rain or Snow

Knowledge of surface precipitation type can be critical during
snow events at low altitudes or in regions not used to this phenomena.
For this purpose, previous studies developed several methodologies to
discriminate precipitation types using meteorological surface observations.
Some of them are implemented in this package.

There are different approaches to address this issue:

	Single threshold

	Linear transition

	Koistinen and Saltikoff

	Dual threshold

Single threshold

A single temperature value is set as a threshold from which precipitation
type is discriminated. If temperature is above the threshold, precipitation
is classified as rain, otherwise as snow.

Air temperature (TA)

An air temperature (\(T_{a}\)) value is used to discriminate precipitation
between rain and snow. If precipitation occurs above the air temperature value
considered, rain is assumed. Otherwise, precipitation is classified as snow.

\[\begin{align}\begin{aligned}T_{a} <= T_{a_{threshold}} \longrightarrow Snow\\T_{a} > T_{a_{threshold}} \longrightarrow Rain\end{aligned}\end{align} \]

The best air temperature single threshold may be different depending on the
region. For more information on which is the most suitable threshold for your
area, see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5861046/.

Wet bulb temperature (TW)

A wet bulb temperature (\(T_{w}\)) value is used to discriminate
precipitation between rain and snow. If precipitation occurs above the air
temperature value considered, rain is assumed. Otherwise, precipitation is
classified as snow.

\[\begin{align}\begin{aligned}T_{w} <= T_{w_{threshold}} \longrightarrow Snow\\T_{w} > T_{w_{threshold}} \longrightarrow Rain\end{aligned}\end{align} \]

The best wet bulb temperature single threshold may be different depending
on the region. Still, it is common to use a wet bulb temperature value
of 1.5°C.

Linear transition

Two threshold values are set to discriminate precipitation type between rain
(th_r) and snow (th_r). It can be either used with any meteorological field,
but with thresholds properly defined. If a value of the meteorological field
is above th_r, precipitation is classified as rain. On the other hand, if
the value is below th_s, precipitation is classified as snow. A linear
transition is assumed for values between th_s and th_r, then precipitation
is classified as a mixed type.

If the meteorological field chosen to discriminate precipitation is air
temperature:

\[\begin{align}\begin{aligned}T_{a} <= T_{snow} \longrightarrow Snow\\T_{snow} < T_{a} < T_{rain} \longrightarrow Mixed\\T_{a} >= T_{rain} \longrightarrow Rain\end{aligned}\end{align} \]

Koistinen and Saltikoff (KS)

The methodology proposed by Koistinen and Saltikoff (1998) provides an
empirical formula to calculate the probability of precipitation type using
temperature and relative humidity observations. Formally, the formula
calculates the probability of rain and two thresholds are set to discriminate
between snow, sleet and rain. In our case, the equation is flipped, so
probability of snow is determined by (1) which may be expressed as

\[p(snow) = 1 - \dfrac{1}{1 + e^{22 - 2.7\cdot T - 0.2\cdot RH}}\]

where T corresponds to temperature in Celsius and RH to relative humidity in %.
If p(snow) obtained values are below 0.33 precipitation is in form of rain,
if they are between 0.33 and 0.66 in form of sleet and classified as snow
if they are above 0.66.

Dual thresholds

Two threshold values are set to discriminate precipitation type between rain
(th_r) and snow (th_r). It can be either used with any meteorological field,
but with thresholds properly defined. If a value of the meteorological field
is above th_r, precipitation is classified as rain. On the other hand, if
the value is below th_s, precipitation is classified as snow. Finally, if the
values are between th_s and th_r, then precipitation is classified as a mixed
type.

If the meteorological field chosen to discriminate precipitation is wet
bulb temperature:

\[\begin{align}\begin{aligned}T_{w} <= T_{snow} \longrightarrow Snow\\T_{snow} < T_{w} < T_{rain} \longrightarrow Mixed\\T_{w} >= T_{rain} \longrightarrow Rain\end{aligned}\end{align} \]

API

The PyPROS module

Functions to calculate the precipitation type.
For a point or numpy arrays

	
class pypros.pros.PyPros(variables_file, method='ks', threshold=None, data_format=None)

	Main project class. Discriminates precipitation type considering
different methodologies using surface observations.

	
__init__(variables_file, method='ks', threshold=None, data_format=None)

	
	Parameters

	
	variables_file (str, list) – The file paths containing air
temperature, dew point
temperature and (digital elevation
model) fields.

	method (str) – The precipitation type discrimination
method to use. Defaults to ks.

	Available:
	
	ks : Koistinen and Saltikoff method

	
	single_tw: A single wet bulb temperature
	threshold

	single_ta: A single air temperature threshold

	dual_tw : A dual wet bulb temperature thresholds

	dual_ta : A dual air temperature threshold

	
	linear_tr: Linear transition between rain
	and snow

	threshold (float, list) – Threshold value(s) to use in the
different methods available.

	Defaults to:
	
	static_tw: 1.5

	static_ta: 0.0

	linear_tr: [0, 3]

	data_format (dict, optional) – Defaults to None. The order of the
variables in the variables files.
Defaults to:
{‘vars_files’: [‘tair’,

’tdew’,
‘dem’]}

	Raises

	ValueError – Raised when the method is not valid

	
__weakref__

	list of weak references to the object (if defined)

	
refl_mask(refl)

	Calculates the precipitation type masked. The output classification
is as follows:

rain

	1dBZ : 1

	5dBZ: 2

	10dBZ : 3

	15dBZ: 4

	25dBZ : 5

sleet

	1dBZ: 6

	5dBZ : 7

	10dBZ: 8

	15dBZ : 9

	25dBZ: 10

snow

	1dBZ : 11

	5dBZ: 12

	10dBZ : 13

	15dBZ: 14

	25dbZ: 15

	Parameters

	refl (numpy.array) – Array with reflectivity values

	Raises

	IndexError – Raised if the types don’t match in size or type

	Returns

	The precipitation type classification value

	Return type

	float, numpy array

	
save_file(field, file_name)

	Saves the calculate field data into a file

	Parameters

	file_name (str) – The output file path

Psychrometric calculations

Psychrometric calculations

	
pypros.psychrometrics.get_tw_sadeghi(tair, tdew, z)

	Gets the wet bulb temperature from air temperature, dew point
temperature and pressure. Formula taken from:
https://journals.ametsoc.org/doi/pdf/10.1175/JTECH-D-12-00191.1

Results close to trhp2tw, but computationally efficient

	Parameters

	
	tair (float, numpy array) – The air temperature in Celsius

	tdew (float, numpy array) – The dew point temperature in Celsius

	z (float, numpy array) – The altitude in metres

	Returns

	The wet bulb temperature in Celsius

	Return type

	float, numpy array

	
pypros.psychrometrics.hr2td(temp, r_h)

	Returns the dew point from the relative humidity and the temperature
Formula from:
https://www.aprweather.com/pages/calc.htm

Both float values or numpy matrices can be passed as input
and get as output

	Parameters

	
	temp (float, numpy array) – The temperature in Celsius

	r_h (float, numpy array) – The relative humidity in %

	Returns

	The dew point in Celsius

	Return type

	float, numpy array

	
pypros.psychrometrics.td2hr(temp, tempd)

	Returns the relative humidity from the temperature and the dew point
Formula from:
https://www.aprweather.com/pages/calc.htm

Both float values or numpy matrices can be passed as input
and get as output

	Parameters

	
	temp (float, numpy array) – The temperature in Celsius

	tempd (float, numpy array) – The dew point in Celsius

	Returns

	The relative humidity in %

	Return type

	float, numpy array

	
pypros.psychrometrics.trhp2tw(temp, rh, z)

	Gets the wet bulb temperature from the temperature, relative humidity
and pressure. Formula taken from:
https://www.weather.gov/epz/wxcalc_wetbulb (Brice and Hall, 2003)

	Parameters

	
	temp (float, numpy array) – The temperature in Celsius

	rh (float, numpy array) – The relative humidity in [0,1]

	z (float, numpy array) – The altitude in metres

	Returns

	The wet bulb temperature in Celsius

	Return type

	float, numpy array

	
pypros.psychrometrics.ttd2tw(temp, tempd)

	Gets the wet bulb temperature from the temperature and the dew point
Formula taken from:
https://journals.ametsoc.org/doi/full/10.1175/JAMC-D-11-0143.1

TODO: Take altitude in account (should change algorithm)

	Parameters

	
	temp (float, numpy array) – The temperature in Celsius

	tempd (float, numpy array) – The dew point in Celsius

	Returns

	The wet bulb temperature in Celsius

	Return type

	float, numpy array

Rain or snow methodologies

Implements several rain or snow methodologies.

	
pypros.ros_methods.calculate_dual_threshold(field, th_s, th_r)

	Calculates the precipitation type based on two threshold
values, one for rain and one for snow.
If value >= th_r –> rain –> 0
If value <= th_s –> snow –> 1
If th_s < value < th_r –> mixed –> 0.5

	Parameters

	
	field (float, numpy array) – Meteorological variable field

	th_s (float) – Snow threshold. Values below this threshold
classified as snow.

	th_r (float) – Rain threshold. Values above this threshold
classified as rain.

	Raises

	ValueError – Raised if th_r is smaller than th_s.

	Returns

	Precipitation type field

	Return type

	float, numpy array

	
pypros.ros_methods.calculate_koistinen_saltikoff(temp, tempd)

	Returns the Koistinen-Saltikoff value.

Koistinen J., Saltikoff E. (1998): Experience of customer products of
accumulated snow, sleet and rain,
COST 75 Final Seminar on Advanced Weather Radar Systems, Locarno,
Switzerland. EUR 18567 EN, 397-406.

The formula values are

	prob < 0.3 –> rain

	0.3 < prob < 0.7 –> sleet

	prob > 0.7 –> snow

Both float values or numpy matrices can be passed as input
and get as output

	Parameters

	
	temp (float, numpy array) – The temperature in Celsius

	tempd (float, numpy array) – The dew point in Celsius

	Returns

	The Koistinen J., Saltikoff E. formula value

	Return type

	float, numpy array

	
pypros.ros_methods.calculate_linear_transition(field, th_s, th_r)

	Calculates the probability of precipitation type based on
two threshold values, one for rain and one for snow. Assumes
a linear transition between them.
If value >= th_r –> rain –> 0
If value <= th_s –> snow –> 1
If th_s < value < th_r –> mixed –> (0, 1)

	Parameters

	
	field (float, numpy array) – Meteorological variable field

	th_s (float) – Snow threshold. Values below this threshold
classified as snow.

	th_r (float) – Rain threshold. Values above this threshold
classified as rain.

	Raises

	ValueError – Raised if th_r is smaller than th_s.

	Returns

	Probability of precipitation type field

	Return type

	float, numpy array

	
pypros.ros_methods.calculate_single_threshold(field, th)

	Calculates the precipitation type based on a threshold value.
If value > threshold –> rain –> 0
If value <= threshold –> snow –> 1

	Parameters

	
	field (float, numpy array) – Meteorological variable field

	th (float) – Threshold from which precipitation type is discriminated

	Returns

	Precipitation type field

	Return type

	float, numpy array

Examples

This section contains explanations and examples of the PyPros
class applications.

Jupyter Notebooks:

	PyPros class

	pypros_run script

	Single threshold

	Linear transition

	Koistinen-Saltikoff

PyPros class

PyPros is the main class of this library as it implements the different
methodologies available to discriminate the surface precipitation type
using surface observations.

In this notebook we’ll cover the parameters of PyPros class and their
format depending on the rain or snow methodology.

First of all, we’ll import PyPros class.

from pypros.pros import PyPros

PyPros class receives four parameters:

	variables_files: A list of the files paths containing the fields of
required variables

	method: The surface precipitation type method to use

	threshold: The value of the threshold(s) to be used by the chosen
method

	data_format: A dictionary containing the order of the fields in
variables_files

Variables_files

There are two mandatory fields to include: air temperature and dew point
temperature. Both fields allow to use all the implemented methodologies
of surface precipitation type discrimination.

Digital Elevation Model (DEM) is an optional field which allows to
calculate accurately the wet bulb temperature (if this method is
selected) by using altitude values. Otherwise, wet bulb temperature is
derived from air and dew point temperature fields only.

First, we’ll define the paths to each field and we’ll set
variables_file with all of them.

tair_file = '../sample-data/INT_TAIR_20170325_0030.tif'
tdew_file = '../sample-data/INT_TDEW_20170325_0030.tif'
dem_file = '../sample-data/DEM_CAT.tif'

variables_files = [tair_file, tdew_file, dem_file]

Method and threshold

The method is an optional parameter defaults to Koistinen and Saltikoff
method, which must be passed as ‘ks’. The following table illustrates
the different methodologies available, how they must be introduced in
PyPros class and the kind of threshold required. If no threshold is
set, it assumes the default one.

	Method

	Name

	Threshold

	Default

	Koistinen and
Saltikoff

	'ks'

	None

	None

	Air temperature
single
threshold

	'single_ta'

	float

	0.0

	Wet bulb
temperature
single
threshold

	'single_tw'

	float

	1.5

	Air temperature
linear
transition

	'linear_tr'

	[th_l, th_u]

	[0, 3]

Now, as an example, we’ll define wet bulb temperature single threshold
as the method to use and set threshold to 1.3\(^{\circ}\)C.

method = 'single_tw'
threshold = 1.3

Data format

This parameter is a dictionary containing a key, vars_files
providing the order of the fields in variables_files. The name of
the variables are the following ones:

	Field

	Name

	Air temperature

	'tair'

	Dew point temperature

	'tdew'

	Digital Elevation Model

	'dem'

Then, we’ll set data_format parameter following the
variables_files order:

data_format = {'vars_files': ['tair', 'tdew', 'dem']}

Now we’re ready to call PyPros class and obtain a surface
precipitation type field.

single_tw = PyPros(variables_files, method, threshold, data_format)

Once we’ve called the class, now we can obtain the surface precipitation
type field, apply the reflectivity mask available and save both in a
raster file.

To obtain the result, we must get the result attribute of the class.

single_tw_field = single_tw.result

And if we want to apply the reflectivity mask, we have to call
refl_mask function from the PyPros class, which requires the
reflectivity field as a parameter. So before calling refl_mask, we
have to prepare the reflectivity field.

First of all, as it’s a .tif file, we’ll import gdal library.

from osgeo import gdal
refl_file = '../sample-data/CAPPI_XRAD_20170325_0030.tif'
refl_array = gdal.Open(refl_file).ReadAsArray()

In this case we used gdal because we have the reflectivity field stored
in a .tif file, but for the refl_mask only an array is needed. So
any format can be used, as long as it is transformed into a numpy array.

single_tw_masked = single_tw.refl_mask(refl_array)

Now, we’ve obtained two fields that we can save in raster files using
save_result function from PyPros class. This function receives two
parameters: the field matrix we want to save and the file path
destination.

single_tw.save_file(single_tw_field, '../sample-data/output/single_tw.tif')
single_tw.save_file(single_tw_masked, '../sample-data/output/single_tw_masked.tif')

We can have a look at single_tw result by plotting it with imshow:

import matplotlib.pyplot as plt

plt.imshow(single_tw.result)
plt.colorbar()
plt.show()

We have finished the introduction to PyPros class! Change the threshold values

and methods and see how the snow level varies!

pypros_run script

If you want to run PyPros form terminal directly, you can use
pypros_run script. Now we’ll how it must be called.

pypros_run receives up to six arguments, since two of them are
optional. The arguments and their order are the following ones:

	Order

	Argument

	Description

	Mandatory

	1

	tair

	Air temperature field file path

	☑

	2

	tdew

	Dew point temperature field file path

	☑

	3

	config_file

	Configuration file path

	☑

	4

	out_file

	Digital Elevation Model file path

	☑

	5

	dem

	Digital Elevation Model file path

	☐

The configuration file is a .json including the following parameters:

{
 "method": "single_tw",
 "threshold": 1.0,
 "data_format": {"vars_files": ["tair", "tdew", "dem"]},
 "refl_masked": "True"
}

For more information about the pypros_run script configuration
parameters, see PyPros Class.

In order to execute the script you must have pyPROS package installed,
see Documentation.

A configuration file and sample fields for air temperature, dew point
temperature, digital elevation model and radar reflectivity are
available in ../sample-data/ directory. We’ll introduce two examples
of how pypros_run script is run.

Air temperature single threshold

The configuration file must look like the following one. We’ll set the
threshold to 1.0\(^{\circ}\)C.

{
 "method": "single_ta",
 "threshold": 1.0,
 "data_format": {"vars_files": ["tair", "tdew"]},
 "refl_masked": "False"
}

Since we set refl_masked to False we do not have to import any
radar reflectivity field. We would execute the script this way:

> pypros_run [path to air temperature field] [path to dew point temperature field] [path to configuration file] [output path]

Wet bulb temperature threshold

The configuration file should include the following parameters. We’ll
set the threshold to 1.5\(^{\circ}\)C.

{
 "method": "single_tw",
 "threshold": 1.5,
 "data_format": {"vars_files": ["tair", "tdew", "dem"]},
 "refl_masked": "True"
}

Since we set refl_masked to True we have to include the radar
reflectivity field in the configuration file and as an script argument.
In addition, we have also included dem in order to take into account
altitude when calculating wet bulb temperature. We would execute the
script this way:

> pypros_run [path to air temperature field] [path to dew point temperature field] [path to configuration file] [output path] --dem [path to dem] --refl [path to radar reflectivity file]

Single threshold

A single meteorological variable value is set as a threshold from which
precipitation type is discriminated. If the meteorological variable
value is above the threshold, precipitation is classified as rain,
otherwise as snow.

If air temperature (\(T_{a}\)) is chosen as meteorological variable:

\(\begin{equation*}
T_{a} <= T_{a_{threshold}} \longrightarrow Snow \\
T_{a} > T_{a_{threshold}} \longrightarrow Rain
\end{equation*}\)

In the following example we’ll show how PyPROS classifies precipitation
considering the single threshold methodology.

First of all, we’ll import the required libraries.

from pypros.pros import PyPros

As an example, we’ll get the precipitation type classification from
different methodologies for Catalonia on 2017-03-25 00.30 UTC. For this
purpose we’ll use an air temperature, dew point temperature, digital
elevation model (DEM) and reflectivity fields.

Those fields can be found in notebooks/data directory and we’ll keep the
path for all of them:

tair_file = '../sample-data/INT_TAIR_20170325_0030.tif'
tdew_file = '../sample-data/INT_TDEW_20170325_0030.tif'
dem_file = '../sample-data/DEM_CAT.tif'

Now, we’ll define those parameters that PyPros class uses and are the
same whether the methodology changes or not. These parameters are:
variables_files and data_format. For more information on this
class, see PyPros Class notebook.

variables_files = [tair_file,
 tdew_file,
 dem_file]
data_format = {'vars_files':['tair', 'tdew', 'dem']}

Air temperature threshold

Since we want to apply a single air temperature threshold, first we’ll
define method PyPros parameter as 'single_ta' and then we’ll set
the threshold parameter to 1.0\(^{\circ}\)C.

method = 'single_ta'
threshold = 1.0

Now, we’re ready to call PyPros class!

single_ta = PyPros(variables_files, method, threshold, data_format)

We can get a quicklook of the obtained field using plot_pros
function:

import matplotlib.pyplot as plt
plt.imshow(single_ta.result)
plt.show()

In addition, we can save the precipitation type field in a raster file
using save_file function:

single_ta.save_file(single_ta.result, '../sample-data/output/single_ta.tif')

If we have a reflectivity field, we can also apply it as a mask by using
refl_mask function and save it as a raster file. However, we’ll have
to read first the reflectivity field. For this purpose we need to import
gdal.

from osgeo import gdal

refl_file = '../sample-data/CAPPI_XRAD_20170325_0030.tif'
refl_array = gdal.Open(refl_file).ReadAsArray()

Once we’ve read the refl_field we can call the refl_mask
function.

single_ta_masked = single_ta.refl_mask()

single_ta.save_file(single_ta_masked, '../sample-data/output/single_ta_masked.tif')

Wet bulb temperature threshold

We want to apply a single wet bulb temperature threshold, so first we’ll
define method PyPros parameter as 'single_tw' and then we’ll set
the threshold parameter to 1.5\(^{\circ}\)C.

method = 'single_tw'
threshold = 1.5

Now, we’re ready to call PyPros class!

single_tw = PyPros(variables_files, method, threshold, data_format)

We can get a quicklook of the obtained field using plot_pros
function:

import matplotlib.pyplot as plt
plt.imshow(single_tw.result)
plt.show()

In addition, we can save the precipitation type field in a raster file
using save_file function:

single_tw.save_file(single_tw.result, '../sample-data/output/single_tw.tif')

If we have a reflectivity field, we can also apply it as a mask by using
refl_mask function and save it as a raster file. However, we’ll have
to read first the reflectivity field. For this purpose we need to import
gdal.

from osgeo import gdal

refl_file = '../sample-data/CAPPI_XRAD_20170325_0030.tif'
refl_array = gdal.Open(refl_file).ReadAsArray()

Once we’ve read the refl_file we can call the refl_mask
function.

single_tw_masked = single_tw.refl_mask(refl_array)

single_tw.save_file(single_tw_masked, '../sample-data/output/single_tw_masked.tif')

Linear transition

Two threshold values are set to discriminate precipitation type between
rain (\(th_{rain}\)) and snow (\(th_{snow}\)). It can be either
used with any meteorological field, but with thresholds properly
defined. If a value of the meteorological field is above
\(th_{rain}\), precipitation is classified as rain. On the other
hand, if the values is below \(th_{snow}\), precipitation is
classified as snow. A linear transition is assumed for values between
\(th_{snow}\) and \(th_{rain}\), then precipitation is
classified as a mixed type.

If the meteorological field chosen to discriminate air is air
temperature:

\(\begin{equation*}
T_{a} <= T_{snow} \longrightarrow Snow \\
T_{snow} < T_{a} < T_{rain} \longrightarrow Mixed \\
T_{a} >= T_{rain} \longrightarrow Rain
\end{equation*}\)

In the following example we’ll show how PyPROS classifies precipitation
considering the linear transition methodology.

First of all, we’ll import the required libraries.

from pypros.pros import PyPros

As an example, we’ll get the precipitation type classification from
different methodologies for Catalonia on 2017-03-25 00.30 UTC. For this
purpose we’ll use an air temperature, dew point temperature, digital
elevation model (DEM) and reflectivity fields.

Those fields can be found in notebooks/data directory and we’ll keep the
path for all of them:

tair_file = '../sample-data/INT_TAIR_20170325_0030.tif'
tdew_file = '../sample-data/INT_TDEW_20170325_0030.tif'
dem_file = '../sample-data/DEM_CAT.tif'

Now, we’ll define those parameters that PyPros class uses and are the
same whether the methodology changes or not. These parameters are:
variables_files and data_format. For more information on this
class, see PyPros Class notebook.

variables_files = [tair_file,
 tdew_file,
 dem_file]
data_format = {'vars_files':['tair', 'tdew', 'dem']}

Air temperature transition

Since we want to apply an air temperature linear transition, first we’ll
define method PyPros parameter as 'linear_tr' and then we’ll set
the threshold parameter to [0, 3] (\(^{\circ}\)C).

method = 'linear_tr'
threshold = [0, 3]

Now, we’re ready to call PyPros class!

linear_tr = PyPros(variables_files, method, threshold, data_format)

We can get a quicklook of the obtained field using plot_pros
function:

import matplotlib.pyplot as plt
plt.imshow(linear_tr.result)
plt.show()

In addition, we can save the precipitation type field in a raster file
using save_file function:

linear_tr.save_file(linear_tr.result, '../sample-data/output/linear_tr.tif')

If we have a reflectivity field, we can also apply it as a mask by using
refl_mask function and save it as a raster file. However, we’ll have
to read first the reflectivity field. For this purpose we need to import
gdal.

from osgeo import gdal

refl_file = '../sample-data/CAPPI_XRAD_20170325_0030.tif'
refl_array = gdal.Open(refl_file).ReadAsArray()

Once we’ve read the refl_field we can call the refl_mask
function.

linear_tr_masked = linear_tr.refl_mask(refl_array)

linear_tr.save_file(linear_tr_masked, '../sample-data/output/linear_tr_masked.tif')

Koistinen-Saltikoff

The methodology proposed by Koistinen and Saltikoff (1998) provides an
empirical formula to calculate the probability of precipitation type
using temperature and relative humidity observations. Formally, the
formula calculates the probability of rain and two thresholds are set to
discriminate between snow, sleet and rain. In our case, the equation is
flipped, so probability of snow is determined by (1) which may be
expressed as

\(\begin{equation*}
p(snow) = 1 - \dfrac{1}{1 + e^{22 - 2.7\cdot T - 0.2\cdot RH}}
\end{equation*}\)

where T corresponds to temperature in Celsius and RH to relative
humidity in %. If p(snow) obtained values are below 0.33 precipitation
is in form of rain, if they are between 0.33 and 0.66 in form of sleet
and classified as snow if they are above 0.66.

In the following example we’ll show how PyPROS classifies precipitation
considering the Koistinen-Saltikoff methodology.

First of all, we’ll import the required libraries.

from pypros.pros import PyPros

As an example, we’ll get the precipitation type classification from
different methodologies for Catalonia on 2017-03-25 00.30 UTC. For this
purpose we’ll use an air temperature, dew point temperature, digital
elevation model (DEM) and reflectivity fields.

Those fields can be found in notebooks/data directory and we’ll keep the
path for all of them:

tair_file = '../sample-data/INT_TAIR_20170325_0030.tif'
tdew_file = '../sample-data/INT_TDEW_20170325_0030.tif'
dem_file = '../sample-data/DEM_CAT.tif'

Now, we’ll define those parameters that PyPros class uses and are the
same whether the methodology changes or not. These parameters are:
variables_files and data_format. For more information on this
class, see PyPros Class notebook.

variables_files = [tair_file,
 tdew_file,
 dem_file]
data_format = {'vars_files':['tair', 'tdew', 'dem']}

Since we want to apply the Koistinen-Saltikoff methodology, first we’ll
define method PyPros parameter as 'ks' and then we’ll set the
threshold parameter to None.

method = 'ks'
threshold = None

Now, we’re ready to call PyPros class!

ks = PyPros(variables_files, method, threshold, data_format)

We can get a quicklook of the obtained field using plot_pros
function:

import matplotlib.pyplot as plt
plt.imshow(ks.result)
plt.show()

In addition, we can save the precipitation type field in a raster file
using save_file function:

ks.save_file(ks.result, '../sample-data/output/ks.tif')

If we have a reflectivity field, we can also apply it as a mask by using
refl_mask function and save it as a raster file. However, we’ll have
to read first the reflectivity field. For this purpose we need to import
gdal.

from osgeo import gdal

refl_file = '../sample-data/CAPPI_XRAD_20170325_0030.tif'
refl_array = gdal.Open(refl_file).ReadAsArray()

Once we’ve read the refl_field we can call the refl_mask
function.

ks_masked = ks.refl_mask(refl_array)

ks.save_file(ks_masked, '../sample-data/output/ks_masked.tif')

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pypros	

 	
 	
 pypros.pros	

 	
 	
 pypros.psychrometrics	

 	
 	
 pypros.ros_methods	

Index

 _
 | C
 | G
 | H
 | P
 | R
 | S
 | T

_

 	
 	__init__() (pypros.pros.PyPros method)

 	
 	__weakref__ (pypros.pros.PyPros attribute)

C

 	
 	calculate_dual_threshold() (in module pypros.ros_methods)

 	calculate_koistinen_saltikoff() (in module pypros.ros_methods)

 	
 	calculate_linear_transition() (in module pypros.ros_methods)

 	calculate_single_threshold() (in module pypros.ros_methods)

G

 	
 	get_tw_sadeghi() (in module pypros.psychrometrics)

H

 	
 	hr2td() (in module pypros.psychrometrics)

P

 	
 	PyPros (class in pypros.pros)

 	pypros.pros (module)

 	
 	pypros.psychrometrics (module)

 	pypros.ros_methods (module)

R

 	
 	refl_mask() (pypros.pros.PyPros method)

S

 	
 	save_file() (pypros.pros.PyPros method)

T

 	
 	td2hr() (in module pypros.psychrometrics)

 	
 	trhp2tw() (in module pypros.psychrometrics)

 	ttd2tw() (in module pypros.psychrometrics)

 _images/logo_pros_small.png
PR

_static/logo_pros_small.png
PR

_static/minus.png

_static/file.png

_static/nmq_ros.png
Surface wet bulb temperature < 0°C? yes
and surface temperature < 2°C

Jno

Vertically integrated liquid density > 1g/m3?

s

Warm rain identified?
(Xu et al. 2008; J. Hydromet; vol.9, P.885-902)

Ino

Composite reflectivity > 50 dBZ
or, reflectivity at -10°C height > 30 dBZ?

/ snow /

warm rain

/ stratiform / convective
4 rain 4 rain

_static/output_13_0.png
w00 &0 800

_static/output_23_0.png
20 40 60 B0

nav.xhtml

 Table of Contents

 		
 Welcome to pyPROS’s documentation!

 		
 Installation

 		
 setup.py

 		
 pip

 		
 Anaconda

 		
 Rain or Snow

 		
 Single threshold

 		
 Air temperature (TA)

 		
 Wet bulb temperature (TW)

 		
 Linear transition

 		
 Koistinen and Saltikoff (KS)

 		
 Dual thresholds

 		
 API

 		
 The PyPROS module

 		
 Psychrometric calculations

 		
 Rain or snow methodologies

 		
 Examples

 		
 PyPros class

 		
 Variables_files

 		
 Method and threshold

 		
 pypros_run script

 		
 Air temperature single threshold

 		
 Wet bulb temperature threshold

 		
 Single threshold

 		
 Air temperature threshold

 		
 Wet bulb temperature threshold

 		
 Linear transition

 		
 Air temperature transition

 		
 Koistinen-Saltikoff

_static/plus.png

_static/output_34_0.png
w00 &0 800

_static/output_44_0.png
w00 &0 800

_static/pypros_class_out.png
20 40 60

