

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

PyPractice

[image: _images/PyPractice.svg]Issues [https://github.com/Konrad-Ziarko/PyPractice/issues]
[image: _images/PyPractice1.svg]Build Status [https://travis-ci.org/Konrad-Ziarko/PyPractice]
[image: _images/8c7e18dd1c9545888a16a461cf6695d4.svg]Code Quality [https://app.codacy.com/app/Konrad-Ziarko/PyPractice?utm_source=github.com&utm_medium=referral&utm_content=Konrad-Ziarko/PyPractice&utm_campaign=Badge_Grade_Dashboard]
[image: _images/c06139e27997abbf6a72bdbe3a7c4e90881fabb2.svg]Documentation Status [https://pypractice.readthedocs.io/en/latest/?badge=latest]
[image: _images/PyPractice2.svg]License[image: _images/PyPractice3.svg]Size

Python snippets, performance comparisons and maybe good practices.

Dependencies

This software requires Python 3.6Other dependencies for packages

Issues

To post any issue use available issue templates:

	BUG

	FEATURE

Abstract

Have you ever wondered which approach is better (faster/more beautiful)? No more worries.This repository will provide you with wide variety of snippets, covering good practices and performance comparisons.Source code is provided so that you can test each approach in your specific environment and decide which path to take.

Table Of Content

	Good Practices

	Naming

	Generators

	Tests

	Performance Comparisons

	Data Structures

	Dictionary

	List

	Exceptions/If Else

	Math

	Maximum

	Power

	Tricks&Tips

	~~Annotations~~

	Running python code

	String formatting

	Data structures

	Classes

	~~Context-Managers~~

	Call Each And Every Function In This Repo

TODO

	[] pypractice/performance_comparisons README.md

	[] deque, heap, queue, tuple

	[] Generators

	[] docs/ sphinx

Links

	PEP8 [https://www.python.org/dev/peps/pep-0008]

	PEP484 [https://www.python.org/dev/peps/pep-0484/]

	Meta classes [https://stackoverflow.com/questions/100003/what-are-metaclasses-in-python/6581949#6581949]

	BOBP [https://gist.github.com/sloria/7001839]

	Cygwin [https://superuser.com/questions/1204522/dev-sda-equivalent-in-windows]

	exampleprogramming [http://exampleprogramming.com/specialvars.html]

name: Bug report
about: Create a report to help us improve
title: ‘’
labels: ‘’
assignees: ‘’

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:

	Go to ‘…’

	Click on ‘….’

	Scroll down to ‘….’

	See error

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

Desktop (please complete the following information):

	OS: [e.g. iOS]

	Browser [e.g. chrome, safari]

	Version [e.g. 22]

Additional context
Add any other context about the problem here.

name: Feature request
about: Suggest an idea for this project
title: ‘’
labels: ‘’
assignees: ‘’

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.

Table Of Content

	Recommendations

	Imports

	Try/except

	Return statement

	Prefixes & suffixes

	Type comparison

	Sequence length

	Boolean comparison

	Naming

	Generators

	Tests

Recommendations

Imports

Import entire modules instead of individual symbols within a module. For example, for a top-level module foo that has a file foo/bar.py.✔️

import foo
import foo.bar
from foo import bar

⚠️

from foo import baz # Symbol from foo/__init__.py
from foo.bar import quaz # Symbol from foo/bar.py

Put all imports at the top of the page with three sections, each separated by a blank line, in this order:

	System imports

	Third-party imports

	Local source tree imports

Try/except

Limit the try clause to the absolute minimum amount of code necessary

✔️

try:
 value = collection[key]
except KeyError:
 return key_not_found(key)
else:
 return handle_value(value)

⚠️

try:
 # Too broad!
 return handle_value(collection[key])
except KeyError:
 # Will also catch KeyError raised by handle_value()
 return key_not_found(key)

When catching exceptions, mention specific exceptions whenever possible instead of using a bare except: clause:

✔️

try:
 import platform_specific_module
except ImportError:
 platform_specific_module = None

⚠️

try:
 import platform_specific_module
except:
 platform_specific_module = None

Return statement

Be consistent in return statements. Either all return statements in a function should return an expression, or none of them should. If any return statement returns an expression, any return statements where no value is returned should explicitly state this as return None, and an explicit return statement should be present at the end of the function (if reachable).

✔️

def foo(x):
 if x >= 0:
 return math.sqrt(x)
 else:
 return None

def bar(x):
 if x < 0:
 return None
 return math.sqrt(x)

⚠️

def foo(x):
 if x >= 0:
 return math.sqrt(x)

def bar(x):
 if x < 0:
 return
 return math.sqrt(x)

Prefixes & suffixes

Use ‘’.startswith() and ‘’.endswith() instead of string slicing to check for prefixes or suffixes.

✔️

if foo.startswith('bar'):

⚠️

if foo[:3] == 'bar':

Type comparison

Object type comparisons should always use isinstance() instead of comparing types directly.

✔️

if isinstance(obj, int):

⚠️

if type(obj) is type(1):

Sequence length

For sequences, (strings, lists, tuples), use the fact that empty sequences are false.

✔️

if not seq:
 print('Sequence empty')
if seq:
 print('Sequence contains items')

⚠️

if not len(seq):
 print('Sequence empty')
if len(seq):
 print('Sequence contains items')

Boolean comparison

Don’t compare boolean values to True or False using ==.

✔️

if boolean:
 print('True')

⚠️

if boolean == False:
 print('False')
if boolean is False:
 print('False')

Generators

Instead of constructing whole list/sequence, yield each value

✔️

def yield_fibonacci(n):
 val_a, val_b = 0, 1
 for i in range(n):
 yield val_b
 val_a, val_b = val_b, val_a + val_b

⚠️

def list_fibonacci(n):
 val_a, val_b = 0, 1
 fib_seq = []
 for i in range(n):
 fib_seq.append(val_b)
 val_a, val_b = val_b, val_a + val_b
 return fib_seq

Naming (PEP8 [https://www.python.org/dev/peps/pep-0008])

Table Of Content

	Packages and modules

	Variables, functions and methods

	Classes and exceptions

	Protected methods and internal functions

	“Private” methods

	Constants

	Names to avoid

	Indentation

Packages and modules

import subprocess
from setuptools import setup

Modules should have short, all-lowercase names. Underscores can be used in the module name if it improves readability.Python packages should also have short, all-lowercase names, although the use of underscores is discouraged.

Variables, functions and methods

variable_with_long_name = 1

NOTE: For global variables, modules that are designed for use via from M import * should use the __all__ mechanism to prevent exporting globals,
or use the older convention of prefixing such globals with an underscore.

def function_with_long_name(foo, bar=boo):
 pass

Function names should be lowercase, with words separated by underscores as necessary to improve readability.

class ExampleClass:
 def method_with_long_name(self, input_variable):
 self.set(input_variable)
 [...]

For methods, use the lowercase with words separated by underscores as necessary to improve readability.

Classes and exceptions

class ExampleClass:
 def __init__(self):
 pass

 @classmethod
 def class_method(cls):
 pass

 @staticmethod
 def static_method():
 pass

Class names should normally use the CapWords convention.

NOTE: Always use self for the first argument to instance methods.Always use cls for the first argument to class methods.

raise WrongGearError('HiThere')

Because exceptions should be classes, the class naming convention applies here.
However, you should use the suffix “Error” on your exception names (if the exception actually is an error).

Protected methods and internal functions

class ExampleClass:
 def __init__(self):
 pass
 def _do_protected_method(self):
 pass

Use one leading underscore only for non-public methods and instance variables.

def _internal_function(*args):
 pass

NOTE: from M import * does not import objects whose name starts with an underscore

“Private” methods

class Foo:
 def __init__(self):
 pass
 def __bar_private_method(self):
 pass

NOTE: when naming a class attribute, invokes name mangling (inside class Foo, __bar_private_method becomes _Foo__bar_private_method).

NOTE: __double_leading_and_trailing_underscore__: “magic” objects or attributes that live in user-controlled namespaces. E.g. __init__, __import__ or __file__.Never invent such names; only use them as documented.

Constants

CONST_VARIABLE = 3.14159265359

Constants are usually defined on a module level and written in all capital letters with underscores separating words.

Names to avoid

Never use the characters l, O, or I as single character variable names.In some fonts, these characters are indistinguishable from the numerals one and zero. When tempted to use l, use L instead.

Capitalized_Words_With_Underscores (ugly!)

Indentation

Use 4 spaces - never tabs

Table Of Content

	General

	Unit tests

	Functional tests

General

	Use long, descriptive names. This often obviates the need for doctrings in test methods.

	Tests should be isolated. Don’t interact with a real database or network. Use a separate test database that gets torn down or use mock objects.

	Prefer factories to fixtures.

	Never let incomplete tests pass, else you run the risk of forgetting about them. Instead, add a placeholder like assert False, "TODO: finish me".

Unit tests

	Focus on one tiny bit of functionality.

	Should be fast, but a slow test is better than no test.

	It often makes sense to have one testcase class for a single class or model.

import unittest
import factories

class PersonTest(unittest.TestCase):
 def setUp(self):
 self.person = factories.PersonFactory()

 def test_has_age_in_dog_years(self):
 self.assertEqual(self.person.dog_years, self.person.age / 7)

Functional tests

Functional tests are higher level tests that are closer to how an end-user would interact with your application. They are typically used for web and GUI applications.

	Write tests as scenarios. Testcase and test method names should read like a scenario description.

	Use comments to write out stories, before writing the test code.

import unittest

class TestAUser(unittest.TestCase):

 def test_can_write_a_blog_post(self):
 # Goes to the his dashboard
 ...
 # Clicks "New Post"
 ...
 # Fills out the post form
 ...
 # Clicks "Submit"
 ...
 # Can see the new post
 ...

Table Of Content

	MISC

	Cygwin

	File descriptor for drives

	List drives

	List mount points

	~~Annotations~~

	Running python code

	String formatting

	Data structures

	Classes

	~~Context-Managers~~

MISC

Cygwin

File descriptor for drives

For Windows \\?\Device\Harddisk1\Partition0 is equivalent for /dev/sda

import io
block = b'\0' * 4096
with io.FileIO('/dev/sda', 'w') as f:
 while f.write(block):
 pass

this one requires Cygwin
import io
block = b'\0' * 4096
with io.FileIO('\\?\Device\Harddisk1\Partition0', 'w') as f:
 while f.write(block):
 pass

List drives

Run this command to list all system drives

for F in /dev/s* ; do echo "$F $(cygpath -w ${F})" ; done

Example result:

$ for F in /dev/s* ; do echo "$F $(cygpath -w ${F})" ; done
/dev/scd0 \\.\E:
/dev/scd1 \\.\F:
/dev/sda \\.\Disk{dc9927e0-d232-e04c-2c75-77f787df605d}
/dev/sda1 \\.\Volume{1200e263-fc48-458c-a1d6-115b385b372c}
/dev/sda2 \\.\HarddiskVolume2
/dev/sda3 \\.\STORAGE#Volume#{7c54accc-b533-11e6-9cce-806e6f6e6963}#0000000025900000#{7f108a28-9833-4b3b-b780-2c6b5fa5c062}
/dev/sda4 \\.\C:
/dev/sda5 \\.\Volume{c3553ab1-e8a5-4d7b-a324-544b32fe3d3e}
/dev/sdb \\.\Disk{ff7e8c9f-7aa2-1f15-8d02-d126ff13dfb5}
/dev/sdb1 \\.\D:
/dev/sdc \\.\Disk{07352cef-974b-9296-720f-70f1ae015a85}
/dev/sdc1 \\.\G:
/dev/shm C:\cygwin64\dev\shm
/dev/sr0 \\.\E:
/dev/sr1 \\.\F:
/dev/stderr /dev/pty0
/dev/stdin /dev/pty0
/dev/stdout /proc/3888/fd/pipe:[94489288360]

List mount points

$ mount
C:/cygwin64/bin on /usr/bin type ntfs (binary,auto)
C:/cygwin64/lib on /usr/lib type ntfs (binary,auto)
C:/cygwin64 on / type ntfs (binary,auto)
C: on /cygdrive/c type ntfs (binary,posix=0,user,noumount,auto)
D: on /cygdrive/d type ntfs (binary,posix=0,user,noumount,auto)
E: on /cygdrive/e type udf (binary,posix=0,user,noumount,auto)
F: on /cygdrive/f type iso9660 (binary,posix=0,user,noumount,auto)
G: on /cygdrive/g type exfat (binary,posix=0,user,noumount,auto)

Table Of Content

	Method, class method, static method

	Classes as objects

	Dynamically created classes

	Meta class

Method, class method, static method

class A(object):
 def foo(self,x):
 print ('executing foo({},{})'.format(self,x))

 @classmethod
 def class_foo(cls,x):
 print ('executing class_foo({},{})'.format(cls,x))

 @staticmethod
 def static_foo(x):
 print ('executing static_foo({})'.format(x))

Usual way an object instance calls a method

a.foo(1)
executing foo(<__main__.A object at 0xb7dbef0c>,1)

With class methods, the class of the object instance is implicitly passed as the first argument instead of self.

a.class_foo(1)
executing class_foo(<class '__main__.A'>,1)

You can also call class_foo using the class.
In fact, if you define something to be a class method, it is probably because you intend to call it from the class rather than from a class instance.
A.foo(1) would have raised a TypeError, but A.class_foo(1) works just fine:

A.class_foo(1)
executing class_foo(<class '__main__.A'>,1)

With static methods, neither self (the object instance) nor cls (the class) is implicitly passed as the first argument.
They behave like plain functions except that you can call them from an instance or the class:

a.static_foo(1)
executing static_foo(1)

A.static_foo('hi')
executing static_foo(hi)

Static methods are used to group functions which have some logical connection with a class to the class.

foo is just a function, but when you call a.foo you don’t just get the function, you get a “partially applied” version of the
function with the object instance a bound as the first argument to the function.
foo expects 2 arguments, while a.foo only expects 1 argument.

a is bound to foo. That is what is meant by the term “bound” below:

print(a.foo)
<bound method A.foo of <__main__.A object at 0xb7d52f0c>>

With a.class_foo, a is not bound to class_foo, rather the class A is bound to class_foo.

print(a.class_foo)
<bound method type.class_foo of <class '__main__.A'>>

Here, with a staticmethod, even though it is a method, a.static_foo just returns a old function with no arguments bound. static_foo expects 1 argument,
and a.static_foo expects 1 argument too.

print(a.static_foo)
<function static_foo at 0xb7d479cc>

And of course the same thing happens when you call static_foo with the class A instead.

print(A.static_foo)
<function static_foo at 0xb7d479cc>

Classes as objects link [https://stackoverflow.com/questions/100003/what-are-metaclasses-in-python/6581949#6581949]

In most languages, classes are just pieces of code that describe how to produce an object.But classes are more than that in Python. Classes are objects too.

>>> class ObjectCreator(object):
... pass
...

>>> my_object = ObjectCreator()
>>> print(my_object)
<__main__.ObjectCreator object at 0x8974f2c>

As soon as you use the keyword class, Python executes it and creates an OBJECT.This object (the class) is itself capable of creating objects (the instances), and this is why it’s a class.

But still, it’s an object, and therefore you can:

	assign it to a variable

	copy it

	add attributes to it

	pass it as a function parameter

>>> print(ObjectCreator) # you can print a class because it's an object
<class '__main__.ObjectCreator'>
>>> def echo(o):
... print(o)
...
>>> echo(ObjectCreator) # you can pass a class as a parameter
<class '__main__.ObjectCreator'>
>>> print(hasattr(ObjectCreator, 'new_attribute'))
False
>>> ObjectCreator.new_attribute = 'foo' # you can add attributes to a class
>>> print(hasattr(ObjectCreator, 'new_attribute'))
True
>>> print(ObjectCreator.new_attribute)
foo
>>> ObjectCreatorMirror = ObjectCreator # you can assign a class to a variable
>>> print(ObjectCreatorMirror.new_attribute)
foo
>>> print(ObjectCreatorMirror())
<__main__.ObjectCreator object at 0x8997b4c>

Dynamically created classes

Since classes are objects, you can create them on the fly, like any object.First, you can create a class in a function using class:

>>> def choose_class(name):
... if name == 'foo':
... class Foo(object):
... pass
... return Foo # return the class, not an instance
... else:
... class Bar(object):
... pass
... return Bar
...
>>> MyClass = choose_class('foo')
>>> print(MyClass) # the function returns a class, not an instance
<class '__main__.Foo'>
>>> print(MyClass()) # you can create an object from this class
<__main__.Foo object at 0x89c6d4c>

Since classes are objects, they must be generated by something.
type can create classes on the fly.
It can take the description of a class as parameters, and return a class.type works this way:

type(name of the class,
 tuple of the parent class (for inheritance, can be empty),
 dictionary containing attributes names and values)

>>> class MyShinyClass(object):
... pass

can be created manually this way:

>>> MyShinyClass = type('MyShinyClass', (), {}) # returns a class object
>>> print(MyShinyClass)
<class '__main__.MyShinyClass'>
>>> print(MyShinyClass()) # create an instance with the class
<__main__.MyShinyClass object at 0x8997cec>

type accepts a dictionary to define the attributes of the class.

>>> class Foo(object):
... bar = True

Can be translated to:

>>> Foo = type('Foo', (), {'bar':True})

Eventually you’ll want to add methods to your class.
Just define a function with the proper signature and assign it as an attribute.

>>> def echo_bar(self):
... print(self.bar)
...
>>> FooChild = type('FooChild', (Foo,), {'echo_bar': echo_bar})
>>> hasattr(Foo, 'echo_bar')
False
>>> hasattr(FooChild, 'echo_bar')
True
>>> my_foo = FooChild()
>>> my_foo.echo_bar()
True

And you can add even more methods after you dynamically create the class,
just like adding methods to a normally created class object.

>>> def echo_bar_more(self):
... print('yet another method')
...
>>> FooChild.echo_bar_more = echo_bar_more
>>> hasattr(FooChild, 'echo_bar_more')
True

Meta class

The main purpose of a metaclass is to change the class automatically, when it’s created.
Meta classes are the classes’ classes, you can picture them this way:

MyClass = MetaClass()
my_object = MyClass()

Everything, and I mean everything, is an object in Python.
That includes ints, strings, functions and classes. All of them are objects.
And all of them have been created from a class:

>>> age = 35
>>> age.__class__
<type 'int'>
>>> name = 'bob'
>>> name.__class__
<type 'str'>
>>> def foo(): pass
>>> foo.__class__
<type 'function'>
>>> class Bar(object): pass
>>> b = Bar()
>>> b.__class__
<class '__main__.Bar'>

Now, what is the __class__ of any __class__ ?

>>> age.__class__.__class__
<type 'type'>
>>> name.__class__.__class__
<type 'type'>
>>> foo.__class__.__class__
<type 'type'>
>>> b.__class__.__class__
<type 'type'>

So, a metaclass is just the stuff that creates class objects.
You can call it a ‘class factory’ if you wish.type is the built-in metaclass Python uses, but of course, you can create your own metaclass.

In Python you can add metaclass keyword argument when you write a class:

class Foo(object, metaclass=something):
 ...

You can also pass attributes as keyword-arguments into a metaclass, like so:

class Foo(object, metaclass=something, kwarg1=value1, kwarg2=value2):
 ...

Context-Managers

Introduction

Context managers allow you to allocate and release resources precisely when you want to. The most widely used example of context managers is the with statement.

Implementation

class ContextManager:
 def __init__(self):
 pass
 def __enter__(self):
 pass
 def __exit__(self):
 pass

Links

pythontips.com [http://book.pythontips.com/en/latest/context_managers.html]

Lists

Removing

Limit the try clause to the absolute minimum amount of code necessary

list_collection[2:3] = [] # removes 2nd(count from 0) element
list_collection[123:150] = [] # removes from 123rd element to 149th

values_to_delete = [43337, 762994]
list_collection.remove(values_to_delete) # remove elements from one list in another

 Execution time for chosen functions (running python script) in milliseconds

Function name\Repeats in run	1	10	100	1000	10000
:——————————	——–:	——-:	——-:	——-:	——-:
pypractice_run_code_via_os_lib	25.48766	18.79177	15.20466	14.01597	13.85993
pypractice_run_code_via_runpy_run_module	0.56005	0.12229	0.07320	0.07439	0.07285
pypractice_run_code_via_runpy_run_path	1.81317	0.29104	0.08921	0.07547	0.07474
pypractice_run_code_via_subprocess_call	17.560005	16.16221	13.51520	13.54750	13.51867
pypractice_run_code_via_subprocess_popen	1.02663	7.48718	6.97125	7.08428	7.08620
pypractice_run_code_via_subprocess_run	21.457911	24.31002	13.66226	13.56885	13.60521

Bar chart
[image: ../../../_images/run_script.png]bar chart

 _static/ajax-loader.gif

_images/run_script.png
0.00030

0.00025

0.00020

miliseconds per run
=
g
5

0.00010

0.00005

0.00000

m pypractice_run_code_via_os_lib W pypractice_run_code_via_runpy_run_module m pypractice_run_code_via_runpy_run_path

W pypractice_run_code_via_subprocess_call M pypractice_run_code_via_subprocess_popen M pypractice_run_code_via_subprocess_run

M

Cycles in loop

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

