

PyPOM - Python Page Object Model

PyPOM, or Python Page Object Model, is a Python library that provides a base
page object model for use with Selenium [http://seleniumhq.org/] or Splinter [https://github.com/cobrateam/splinter] functional tests.

It is tested on Python 2.7 and 3.6.

Contributions are welcome. Feel free to fork [https://github.com/mozilla/PyPOM] and contribute!

	Installation
	Requirements

	Install PyPOM

	User Guide
	Upgrading to 2.0

	Drivers

	Pages

	Regions

	Locating elements

	Explicit waits

	Plugins
	Writing plugins

	Developer Interface
	Page

	Region

	Hooks

	Development
	Automated Testing

	Running Tests

	Release Notes

	2.2.0 (2018-10-29)
	Deprecations and Removals

	2.1.0 (2018-08-13)
	Bugfixes

	2.0.0 (2018-04-17)

	1.3.0 (2018-02-28)

	1.2.0 (2017-06-20)

	1.1.1 (2016-11-21)

	1.1.0 (2016-11-17)

	1.0.0 (2016-05-24)

Installation

Requirements

PyPOM requires Python >= 2.7.

Install PyPOM

To install PyPOM using pip [https://pip.pypa.io/]:

$ pip install PyPOM

If you want to use PyPOM with Splinter install the optional
splinter support:

$ pip install PyPOM[splinter]

To install from source:

$ python setup.py develop

User Guide

Contents

	User Guide

	Upgrading to 2.0

	Drivers

	Selenium

	Splinter

	Pages

	Base URL

	URL templates

	URL parameters

	Waiting for pages to load

	Regions

	Root elements

	Repeating regions

	Nested regions

	Shared regions

	Waiting for regions to load

	Locating elements

	Selenium

	Splinter

	Explicit waits

Upgrading to 2.0

Plugin support was introduced in v2.0, and if you’re upgrading from an earlier
version you may need to make some changes to take advantage of any plugins.
Before this version, to implement a custom wait for pages/regions to finish
loading it was necessary to implement wait_for_page_to_load or
wait_for_region_to_load. If you haven’t implemented either of these, you
don’t need to do anything to upgrade. If you have, then whilst your custom
waits will still work, we now support plugins that can be triggered after a
page/region load, and these calls are made from the base classes. By overriding
the default behaviour, you may be missing out on triggering any plugin
behaviours. Rather than having to remember to always call the same method from
the parent, you can simply change your custom wait to a new loaded property
that returns True when the page/region has loaded.

So, if you have implemented your own
wait_for_page_to_load() like this:

def wait_for_page_to_load(self):
 self.wait.until(lambda s: self.seed_url in s.current_url)

You will want to change it to use loaded like this:

@property
def loaded(self):
 return self.seed_url in self.selenium.current_url

Similarly, if you have implemented your own
wait_for_region_to_load() like this:

def wait_for_region_to_load(self):
 self.wait.until(lambda s: self.root.is_displayed())

You will want to change it to use loaded like
this:

@property
def loaded(self):
 return self.root.is_displayed()

Drivers

PyPOM requires a driver object to be instantiated, and supports multiple driver
types. The examples in this guide will assume that you have a driver instance.

Selenium

To instantiate a Selenium [http://docs.seleniumhq.org/] driver you will need a
WebDriver [https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webdriver.html#selenium.webdriver.remote.webdriver.WebDriver] object:

from selenium.webdriver import Firefox
driver = Firefox()

Splinter

To instantiate a Splinter [https://github.com/cobrateam/splinter] driver you will need a Browser
object:

from splinter import Browser
driver = Browser()

Pages

Page objects are representations of web pages. They provide functions to allow
simulating user actions, and providing properties that return state from the
page. The Page class provided by PyPOM provides a
simple implementation that can be sub-classed to apply to your project.

The following very simple example instantiates a page object representing the
landing page of the Mozilla website:

from pypom import Page

class Mozilla(Page):
 pass

page = Mozilla(driver)

If a page has a seed URL then you can call the open()
function to open the page in the browser. There are a number of ways to specify
a seed URL.

Base URL

A base URL can be passed to a page object on instantiation. If no URL template
is provided, then calling open() will open this base
URL:

from pypom import Page

class Mozilla(Page):
 pass

base_url = 'https://www.mozilla.org'
page = Mozilla(driver, base_url).open()

URL templates

By setting a value for URL_TEMPLATE, pages can
specify either an absolute URL or one that is relative to the base URL (when
provided). In the following example, the URL https://www.mozilla.org/about/
will be opened:

from pypom import Page

class Mozilla(Page):
 URL_TEMPLATE = '/about/'

base_url = 'https://www.mozilla.org'
page = Mozilla(driver, base_url).open()

As this is a template, any additional keyword arguments passed when
instantiating the page object will attempt to resolve any placeholders. In the
following example, the URL https://www.mozilla.org/de/about/ will be opened:

from pypom import Page

class Mozilla(Page):
 URL_TEMPLATE = '/{locale}/about/'

base_url = 'https://www.mozilla.org'
page = Mozilla(driver, base_url, locale='de').open()

URL parameters

Any keyword arguments provided that are not used as placeholders in the URL
template are added as query string parameters. In the following example, the
URL https://developer.mozilla.org/fr/search?q=bold&topic=css will be opened:

from pypom import Page

class Search(Page):
 URL_TEMPLATE = '/{locale}/search'

base_url = 'https://developer.mozilla.org/'
page = Search(driver, base_url, locale='fr', q='bold', topic='css').open()

Waiting for pages to load

Whenever a driver detects that a page is loading, it does its best to block
until it’s complete. Unfortunately, as the driver does not know your
application, it’s quite common for it to return earlier than a user would
consider the page to be ready. For this reason, the
loaded property can be overridden and customised
for your project’s needs by returning True when the page has loaded. This
property is polled by wait_for_page_to_load(), which
is called by open() after loading the seed URL, and
can be called directly by functions that cause a page to load.

The following example waits for the seed URL to be in the current URL. You can
use this so long as the URL is not rewritten or redirected by your
application:

from pypom import Page

class Mozilla(Page):

 @property
 def loaded(self):
 return self.seed_url in self.selenium.current_url

Other things to wait for might include when elements are displayed or enabled,
or when an element has a particular class. This will be very dependent on your
application.

Regions

Region objects represent one or more elements of a web page that are repeated
multiple times on a page, or shared between multiple web pages. They prevent
duplication, and can improve the readability and maintainability of your page
objects.

Root elements

It’s important for page regions to have a root element. This is the element
that any child elements will be located within. This means that page region
locators do not need to be unique on the page, only unique within the context
of the root element.

If your page region contains a _root_locator
attribute, this will be used to locate the root element every time an instance
of the region is created. This is recommended for most page regions as it
avoids issues when the root element becomes stale.

Alternatively, you can locate the root element yourself and pass it to the
region on construction. This is useful when creating regions that are repeated
on a single page.

The root element can later be accessed via the
root attribute on the region, which may be
necessary if you need to interact with it.

Repeating regions

Page regions are useful when you have multiple items on a page that share the
same characteristics, such as a list of search results. By creating a page
region, you can interact with any of these items in a common way:

The following example uses Selenium [http://docs.seleniumhq.org/] to locate all results on a page and return
a list of Result regions. This can be used to determine the number of
results, and each result can be accessed from this list for further state or
interactions. Refer to locating elements for more information on how to
write locators for your driver:

<!DOCTYPE html>
<html lang="en">
<body>
<h1>Repeated Regions Example</h1>

 <li class="result">
 Result 1
 detail

 <li class="result">
 Result 2
 detail

 <li class="result">
 Result 3
 detail

 <li class="result">
 Result 4
 detail

</body>
</html>

class Results(Page):
 _result_locator = (By.CLASS_NAME, "result")

 @property
 def results(self):
 return [
 self.Result(self, el) for el in self.find_elements(*self._result_locator)
]

 class Result(Region):
 _name_locator = (By.CLASS_NAME, "name")
 _detail_locator = (By.TAG_NAME, "a")

 @property
 def name(self):
 return self.find_element(*self._name_locator).text

 @property

Nested regions

Regions can be nested inside other regions (i.e. a menu region with multiple entry
regions). In the following example a main page contains two menu regions that
include multiple repeated entry regions:

<!DOCTYPE html>
<html lang="en">
<body>
<h1>Nested Regions Example</h1>
<div id="page">Main Page

 <div id="menu1" class="menu">

 <li class="entry">Menu1-Entry1
 <li class="entry">Menu1-Entry2
 <li class="entry">Menu1-Entry3
 <li class="entry">Menu1-Entry4
 <li class="entry">Menu1-Entry5

 </div>
 <div id="menu2" class="menu">

 <li class="entry">Menu2-Entry1
 <li class="entry">Menu2-Entry2
 <li class="entry">Menu2-Entry3

 </div>
</div>
</body>
</html>

As a region requires a page object to be passed you need
to pass self.page when instantiating nested regions:

class MainPage(Page):
 @property
 def menu1(self):
 root = self.find_element(By.ID, "menu1")
 return Menu(self, root=root)

 @property
 def menu2(self):
 root = self.find_element(By.ID, "menu2")
 return Menu(self, root=root)

class Menu(Region):
 @property
 def entries(self):
 return [
 Entry(self.page, item) for item in self.find_elements(*Entry.entry_locator)
]

class Entry(Region):
 entry_locator = (By.CLASS_NAME, "entry")

 @property
 def name(self):
 return self.root.text

Shared regions

Pages with common characteristics can use regions to avoid duplication.
Examples of this include page headers, navigation menus, login forms, and
footers. These regions can either be defined in a base page object that is
inherited by the pages that contain the region, or they can exist in their own
module:

In the following example, any page objects that extend Base will inherit
the header property, and be able to check if it’s displayed. Refer to
locating elements for more information on how to write locators for your
driver:

from pypom import Page, Region
from selenium.webdriver.common.by import By

class Base(Page):

 @property
 def header(self):
 return self.Header(self)

 class Header(Region):
 _root_locator = (By.ID, 'header')

 def is_displayed(self):
 return self.root.is_displayed()

Waiting for regions to load

The loaded property function can be
overridden and customised for your project’s needs by returning True when
the region has loaded to ensure it’s ready for interaction. This property is
polled by wait_for_region_to_load, which is
called whenever a region is instantiated, and can be called directly by
functions that a region to reload.

The following example waits for an element within a page region to be
displayed:

from pypom import Region

class Header(Region):

 @property
 def loaded(self):
 return self.root.is_displayed()

Other things to wait for might include when elements are displayed or enabled,
or when an element has a particular class. This will be very dependent on your
application.

Locating elements

Each driver has its own approach to locating elements. A suggested approach is
to store your locators at the top of your page/region classes. Ideally these
should be preceeded with a single underscore to indicate that they’re primarily
reserved for internal use. These attributes can be stored as a two item tuple
containing both the strategy and locator, and can then be unpacked when passed
to a method that requires the arguments to be separated.

Selenium

The By [https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.by.html#selenium.webdriver.common.by.By] class covers the common
locator strategies for Selenium [http://docs.seleniumhq.org/]. The following example shows a locator being
defined and used in a page object:

from pypom import Page
from selenium.webdriver.common.by import By

class Mozilla(Page):
 _logo_locator = (By.ID, 'logo')

 @property
 def loaded(self):
 logo = self.find_element(*self._logo_locator)
 return logo.is_displayed()

Splinter

The available locator strategies for Splinter [https://github.com/cobrateam/splinter] are:

	name

	id

	css

	xpath

	text

	value

	tag

The following example shows a locator being defined and used in a page object:

from pypom import Page
from selenium.webdriver.common.by import By

class Mozilla(Page):
 _logo_locator = ('id', 'logo')

 @property
 def loaded(self):
 logo = self.find_element(*self._logo_locator)
 return logo.is_displayed()

Explicit waits

For convenience, a WebDriverWait [https://seleniumhq.github.io/selenium/docs/api/py/webdriver_support/selenium.webdriver.support.wait.html#selenium.webdriver.support.wait.WebDriverWait]
object is instantiated with an optional timeout (with a default of 10 seconds)
for every page. This allows your page objects to define an explicit wait
whenever an interaction causes a reponse that a real user would wait for before
continuing. For example, checking a box might make a button become enabled. If
we didn’t wait for the button to become enabled we may try clicking on it too
early, and nothing would happen. Another example of where explicit waits are
common is when waiting for pages to load or waiting for regions to load.

The following example uses Selenium [http://docs.seleniumhq.org/] to demonstrate a wait that is necessary
after checking a box that causes a button to become enabled. Refer to
locating elements for more information on how to write locators for your
driver:

from pypom import Page
from selenium.webdriver.common.by import By

class Mozilla(Page):
 _privacy_policy_locator = (By.ID, 'privacy')
 _sign_me_up_locator = (By.ID, 'sign_up')

 def accept_privacy_policy(self):
 self.find_element(*self._privacy_policy_locator).click()
 sign_me_up = self.find_element(*self._sign_me_up_locator)
 self.wait.until(lambda s: sign_me_up.is_enabled())

You can either specify a timeout by passing the optional timeout keyword
argument when instantiating a page object, or you can override the
__init__() method if you want your timeout to be
inherited by a base project page class.

Note

The default timeout of 10 seconds may be considered excessive, and you may
wish to reduce it. It it not recommended to increase the timeout however. If
you have interactions that take longer than the default you may find that you
have a performance issue that will considerably affect the user experience.

Plugins

Plugin support was added in v2.0.

Writing plugins

PyPOM uses pluggy [https://pluggy.readthedocs.io/] to enable support for plugins. In order to write a plugin
you can create an installable Python package with a specific entry point. For
example, the following (incomplete) setup.py will register a plugin named
screenshot:

from setuptools import setup

setup(name='PyPOM-screenshot',
 description='plugin for PyPOM that takes a lot of screenshots',
 packages=['pypom_screenshot'],
 install_requires=['PyPOM'],
 entry_points={'pypom.plugin': ['screenshot = pypom_screenshot.plugin']})

Then, in your package implement one or more of the plugin Hooks provided
by PyPOM. The following example will take a screenshot whenever a page or
region has finished loading:

from pypom import hookimpl

@hookimpl
def pypom_after_wait_for_page_to_load(page):
 page.selenium.get_screenshot_as_file(page.__class__.__name__ + '.png')

@hookimpl
def pypom_after_wait_for_region_to_load(region):
 region.root.screenshot(region.__class__.__name__ + '.png')

Developer Interface

This part of the documentation describes the interfaces for using PyPOM.

Page

	
class pypom.page.Page(driver, base_url=None, timeout=10, **url_kwargs)

	A page object.

Used as a base class for your project’s page objects.

	Parameters

	
	driver (WebDriver [https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webdriver.html#selenium.webdriver.remote.webdriver.WebDriver] or Browser) – A driver.

	base_url (str) – (optional) Base URL.

	timeout (int) – (optional) Timeout used for explicit waits. Defaults to 10.

	url_kwargs – (optional) Keyword arguments used when generating the seed_url.

Usage (Selenium):

from pypom import Page
from selenium.webdriver import Firefox

class Mozilla(Page):
 URL_TEMPLATE = 'https://www.mozilla.org/{locale}'

driver = Firefox()
page = Mozilla(driver, locale='en-US')
page.open()

Usage (Splinter):

from pypom import Page
from splinter import Browser

class Mozilla(Page):
 URL_TEMPLATE = 'https://www.mozilla.org/{locale}'

driver = Browser()
page = Mozilla(driver, locale='en-US')
page.open()

	
find_elements(strategy, locator)

	Finds elements on the page.

	Parameters

	
	strategy (str) – Location strategy to use. See By [https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.by.html#selenium.webdriver.common.by.By] or ALLOWED_STRATEGIES.

	locator (str) – Location of target elements.

	Returns

	List of WebElement [https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement] or ElementList [https://splinter.readthedocs.io/en/latest/api/element-list.html#splinter.element_list.ElementList]

	Return type

	list

	
is_element_displayed(strategy, locator)

	Checks whether an element is displayed.

	Parameters

	
	strategy (str) – Location strategy to use. See By [https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.by.html#selenium.webdriver.common.by.By] or ALLOWED_STRATEGIES.

	locator (str) – Location of target element.

	Returns

	True if element is displayed, else False.

	Return type

	bool

	
is_element_present(strategy, locator)

	Checks whether an element is present.

	Parameters

	
	strategy (str) – Location strategy to use. See By [https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.by.html#selenium.webdriver.common.by.By] or ALLOWED_STRATEGIES.

	locator (str) – Location of target element.

	Returns

	True if element is present, else False.

	Return type

	bool

	
loaded

	Loaded state of the page.

By default the driver will try to wait for any page loads to be
complete, however it’s not uncommon for it to return early. To address
this you can override loaded to return True when the
page has finished loading.

	Returns

	True if page is loaded, else False.

	Return type

	bool

Usage (Selenium):

from pypom import Page
from selenium.webdriver.common.by import By

class Mozilla(Page):

 @property
 def loaded(self):
 body = self.find_element(By.TAG_NAME, 'body')
 return 'loaded' in body.get_attribute('class')

Usage (Splinter):

from pypom import Page

class Mozilla(Page):

 def loaded(self):
 body = self.find_element('tag', 'body')
 return 'loaded' in body['class']

Examples:

wait for the seed_url value to be in the current URL
self.seed_url in self.selenium.current_url

	
open()

	Open the page.

Navigates to seed_url and calls wait_for_page_to_load().

	Returns

	The current page object.

	Return type

	Page

	Raises

	UsageError

	
seed_url

	A URL that can be used to open the page.

The URL is formatted from URL_TEMPLATE, which is then
appended to base_url unless the template results in an
absolute URL.

	Returns

	URL that can be used to open the page.

	Return type

	str

	
selenium

	Backwards compatibility attribute

	
wait_for_page_to_load()

	Wait for the page to load.

Region

	
class pypom.region.Region(page, root=None)

	A page region object.

Used as a base class for your project’s page region objects.

	Parameters

	
	page (Page) – Page object this region appears in.

	root (WebElement [https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement] or WebDriverElement) – (optional) element that serves as the root for the region.

Usage (Selenium):

from pypom import Page, Region
from selenium.webdriver import Firefox
from selenium.webdriver.common.by import By

class Mozilla(Page):
 URL_TEMPLATE = 'https://www.mozilla.org/'

 @property
 def newsletter(self):
 return Newsletter(self)

 class Newsletter(Region):
 _root_locator = (By.ID, 'newsletter-form')
 _submit_locator = (By.ID, 'footer_email_submit')

 def sign_up(self):
 self.find_element(*self._submit_locator).click()

driver = Firefox()
page = Mozilla(driver).open()
page.newsletter.sign_up()

Usage (Splinter):

from pypom import Page, Region
from splinter import Browser

class Mozilla(Page):
 URL_TEMPLATE = 'https://www.mozilla.org/'

 @property
 def newsletter(self):
 return Newsletter(self)

 class Newsletter(Region):
 _root_locator = ('id', 'newsletter-form')
 _submit_locator = ('id', 'footer_email_submit')

 def sign_up(self):
 self.find_element(*self._submit_locator).click()

driver = Browser()
page = Mozilla(driver).open()
page.newsletter.sign_up()

	
find_element(strategy, locator)

	Finds an element on the page.

	Parameters

	
	strategy (str) – Location strategy to use. See By [https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.by.html#selenium.webdriver.common.by.By] or ALLOWED_STRATEGIES.

	locator (str) – Location of target element.

	Returns

	An element.

	Rytpe

	WebElement [https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement] or WebDriverElement

	
find_elements(strategy, locator)

	Finds elements on the page.

	Parameters

	
	strategy (str) – Location strategy to use. See By [https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.by.html#selenium.webdriver.common.by.By] or ALLOWED_STRATEGIES.

	locator (str) – Location of target elements.

	Returns

	List of WebElement [https://seleniumhq.github.io/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement] or ElementList [https://splinter.readthedocs.io/en/latest/api/element-list.html#splinter.element_list.ElementList]

	Return type

	list

	
is_element_displayed(strategy, locator)

	Checks whether an element is displayed.

	Parameters

	
	strategy (str) – Location strategy to use. See By [https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.by.html#selenium.webdriver.common.by.By] or ALLOWED_STRATEGIES.

	locator (str) – Location of target element.

	Returns

	True if element is displayed, else False.

	Return type

	bool

	
is_element_present(strategy, locator)

	Checks whether an element is present.

	Parameters

	
	strategy (str) – Location strategy to use. See By [https://seleniumhq.github.io/selenium/docs/api/py/webdriver/selenium.webdriver.common.by.html#selenium.webdriver.common.by.By] or ALLOWED_STRATEGIES.

	locator (str) – Location of target element.

	Returns

	True if element is present, else False.

	Return type

	bool

	
loaded

	Loaded state of the page region.

You may need to initialise your page region before it’s ready for you
to interact with it. If this is the case, you can override
loaded to return True when the region has finished
loading.

	Returns

	True if page is loaded, else False.

	Return type

	bool

Usage (Selenium):

from pypom import Page, Region
from selenium.webdriver.common.by import By

class Mozilla(Page):
 URL_TEMPLATE = 'https://www.mozilla.org/'

 @property
 def newsletter(self):
 return Newsletter(self)

 class Newsletter(Region):
 _root_locator = (By.ID, 'newsletter-form')

 @property
 def loaded(self):
 return 'loaded' in self.root.get_attribute('class')

Usage (Splinter):

from pypom import Page, Region

class Mozilla(Page):
 URL_TEMPLATE = 'https://www.mozilla.org/'

 @property
 def newsletter(self):
 return Newsletter(self)

 class Newsletter(Region):
 _root_locator = ('id', 'newsletter-form')

 @property
 def loaded(self):
 return 'loaded' in self.root['class']

	
root

	Root element for the page region.

Page regions should define a root element either by passing this on
instantiation or by defining a _root_locator attribute. To
reduce the chances of hitting StaleElementReferenceException [https://seleniumhq.github.io/selenium/docs/api/py/common/selenium.common.exceptions.html#selenium.common.exceptions.StaleElementReferenceException]
or similar you should use _root_locator, as this is looked up every
time the root property is accessed.

	
selenium

	Backwards compatibility attribute

	
wait_for_region_to_load()

	Wait for the page region to load.

Hooks

	
pypom.hooks.pypom_after_wait_for_page_to_load(page)

	Called after waiting for the page to load

	
pypom.hooks.pypom_after_wait_for_region_to_load(region)

	Called after waiting for the region to load

Development

Automated Testing

All pull requests and merges are tested in Travis CI [https://travis-ci.org/]
based on the .travis.yml file.

Usually, a link to your specific travis build appears in pull requests, but if
not, you can find it on the
pull requests page [https://travis-ci.org/mozilla/pypom/pull_requests]

The only way to trigger Travis CI to run again for a pull request, is to submit
another change to the pull branch.

Running Tests

You will need Tox [http://tox.testrun.org/] installed to run the tests
against the supported Python versions.

$ pip install tox
$ tox

Release Notes

2.2.0 (2018-10-29)

Deprecations and Removals

	Removed PhantomJS support from Splinter driver due to removal in Splinter v0.9.0. (#93)

2.1.0 (2018-08-13)

Bugfixes

	Replace use of implprefix with HookimplMarker due to deprecation.

Existing PyPOM plugins will need to be updated to import the hookimpl and use
it to decorate hook implementations rather than rely on the prefix of the
function names.

Before:

def pypom_after_wait_for_page_to_load(page):
 pass

After:

from pypom import hookimpl

@hookimpl
def pypom_after_wait_for_page_to_load(page):
 pass (#90)

2.0.0 (2018-04-17)

	Added support for plugins.

	This introduces plugin hooks pypom_after_wait_for_page_to_load and
pypom_after_wait_for_region_to_load.

	In order to take advantage of plugin support you must avoid implementing
wait_for_page_to_load or wait_for_region_to_load in your page
objects.

	This was previously the only way to implement a custom wait for your pages
and regions, but now means the calls to plugin hooks would be bypassed.

	Custom waits can now be achieved by implementing a loaded property on
the page or region, which returns True when the page or region has
finished loading.

	See the user guide for more details.

	Any unused url_kwargs after formatting URL_TEMPLATE are added as URL
query string parameters.

1.3.0 (2018-02-28)

	Added support for EventFiringWebDriver

	Thanks to @Greums [https://github.com/Greums] for the PR

1.2.0 (2017-06-20)

	Dropped support for Python 2.6

1.1.1 (2016-11-21)

	Fixed packaging of pypom.interfaces

1.1.0 (2016-11-17)

	Added support for Splinter

	Thanks to @davidemoro [https://github.com/davidemoro] for the PR

1.0.0 (2016-05-24)

	Official release

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pypom	

 	
 	
 pypom.hooks	

 	
 	
 pypom.page	

 	
 	
 pypom.region	

Index

 F
 | I
 | L
 | O
 | P
 | R
 | S
 | W

F

 	
 	find_element() (pypom.region.Region method)

 	
 	find_elements() (pypom.page.Page method)

 	(pypom.region.Region method)

I

 	
 	is_element_displayed() (pypom.page.Page method)

 	(pypom.region.Region method)

 	
 	is_element_present() (pypom.page.Page method)

 	(pypom.region.Region method)

L

 	
 	loaded (pypom.page.Page attribute)

 	(pypom.region.Region attribute)

O

 	
 	open() (pypom.page.Page method)

P

 	
 	Page (class in pypom.page)

 	pypom.hooks (module)

 	pypom.page (module)

 	
 	pypom.region (module)

 	pypom_after_wait_for_page_to_load() (in module pypom.hooks)

 	pypom_after_wait_for_region_to_load() (in module pypom.hooks)

R

 	
 	Region (class in pypom.region)

 	
 	root (pypom.region.Region attribute)

S

 	
 	seed_url (pypom.page.Page attribute)

 	
 	selenium (pypom.page.Page attribute)

 	(pypom.region.Region attribute)

W

 	
 	wait_for_page_to_load() (pypom.page.Page method)

 	
 	wait_for_region_to_load() (pypom.region.Region method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 PyPOM - Python Page Object Model

 		
 Installation

 		
 Requirements

 		
 Install PyPOM

 		
 User Guide

 		
 Upgrading to 2.0

 		
 Drivers

 		
 Selenium

 		
 Splinter

 		
 Pages

 		
 Base URL

 		
 URL templates

 		
 URL parameters

 		
 Waiting for pages to load

 		
 Regions

 		
 Root elements

 		
 Repeating regions

 		
 Nested regions

 		
 Shared regions

 		
 Waiting for regions to load

 		
 Locating elements

 		
 Selenium

 		
 Splinter

 		
 Explicit waits

 		
 Plugins

 		
 Writing plugins

 		
 Developer Interface

 		
 Page

 		
 Region

 		
 Hooks

 		
 Development

 		
 Automated Testing

 		
 Running Tests

 		
 Release Notes

 		
 2.2.0 (2018-10-29)

 		
 Deprecations and Removals

 		
 2.1.0 (2018-08-13)

 		
 Bugfixes

 		
 2.0.0 (2018-04-17)

 		
 1.3.0 (2018-02-28)

 		
 1.2.0 (2017-06-20)

 		
 1.1.1 (2016-11-21)

 		
 1.1.0 (2016-11-17)

 		
 1.0.0 (2016-05-24)

_static/up-pressed.png

_static/up.png

