PyPika - Python Query Builder

BuildStatus CoverageStatus Codacy Docs PyPi License

Abstract

What is PyPika?

PyPika is a Python API for building SQL queries. The motivation behind PyPika is to provide a simple interface for building SQL queries without limiting the flexibility of handwritten SQL. Designed with data analysis in mind, PyPika leverages the builder design pattern to construct queries to avoid messy string formatting and concatenation. It is also easily extended to take full advantage of specific features of SQL database vendors.

What are the design goals for PyPika?

PyPika is a fast, expressive and flexible way to replace handwritten SQL (or even ORM for the courageous souls amongst you). Validation of SQL correctness is not an explicit goal of PyPika. With such a large number of SQL database vendors providing a robust validation of input data is difficult. Instead you are encouraged to check inputs you provide to PyPika or appropriately handle errors raised from your SQL database - just as you would have if you were writing SQL yourself.

Contents

Installation

PyPika supports python 3.5+. It may also work on pypy, cython, and jython, but is not being tested for these versions.

To install PyPika run the following command:

pip install pypika

Tutorial

The main classes in pypika are pypika.Query, pypika.Table, and pypika.Field.

from pypika import Query, Table, Field

Selecting Data

The entry point for building queries is pypika.Query. In order to select columns from a table, the table must first be added to the query. For simple queries with only one table, tables and columns can be references using strings. For more sophisticated queries a pypika.Table must be used.

q = Query.from_('customers').select('id', 'fname', 'lname', 'phone')

To convert the query into raw SQL, it can be cast to a string.

str(q)

Alternatively, you can use the Query.get_sql() function:

q.get_sql()

Tables, Columns, Schemas, and Databases

In simple queries like the above example, columns in the “from” table can be referenced by passing string names into the select query builder function. In more complex examples, the pypika.Table class should be used. Columns can be referenced as attributes on instances of pypika.Table.

from pypika import Table, Query

customers = Table('customers')
q = Query.from_(customers).select(customers.id, customers.fname, customers.lname, customers.phone)

Both of the above examples result in the following SQL:

SELECT id,fname,lname,phone FROM customers

An alias for the table can be given using the .as_ function on pypika.Table

Table('x_view_customers').as_('customers')
q = Query.from_(customers).select(customers.id, customers.phone)
SELECT id,phone FROM x_view_customers customers

A schema can also be specified. Tables can be referenced as attributes on the schema.

from pypika import Table, Query, Schema

views = Schema('views')
q = Query.from_(views.customers).select(customers.id, customers.phone)
SELECT id,phone FROM views.customers

Also references to databases can be used. Schemas can be referenced as attributes on the database.

from pypika import Table, Query, Database

my_db = Database('my_db')
q = Query.from_(my_db.analytics.customers).select(customers.id, customers.phone)
SELECT id,phone FROM my_db.analytics.customers

Results can be ordered by using the following syntax:

from pypika import Order
Query.from_('customers').select('id', 'fname', 'lname', 'phone').orderby('id', order=Order.desc)

This results in the following SQL:

SELECT "id","fname","lname","phone" FROM "customers" ORDER BY "id" DESC
Arithmetic

Arithmetic expressions can also be constructed using pypika. Operators such as +, -, *, and / are implemented by pypika.Field which can be used simply with a pypika.Table or directly.

from pypika import Field

q = Query.from_('account').select(
    Field('revenue') - Field('cost')
)
SELECT revenue-cost FROM accounts

Using pypika.Table

accounts = Table('accounts')
q = Query.from_(accounts).select(
    accounts.revenue - accounts.cost
)
SELECT revenue-cost FROM accounts

An alias can also be used for fields and expressions.

q = Query.from_(accounts).select(
    (accounts.revenue - accounts.cost).as_('profit')
)
SELECT revenue-cost profit FROM accounts

More arithmetic examples

table = Table('table')
q = Query.from_(table).select(
    table.foo + table.bar,
    table.foo - table.bar,
    table.foo * table.bar,
    table.foo / table.bar,
    (table.foo+table.bar) / table.fiz,
)
SELECT foo+bar,foo-bar,foo*bar,foo/bar,(foo+bar)/fiz FROM table
Filtering

Queries can be filtered with pypika.Criterion by using equality or inequality operators

customers = Table('customers')
q = Query.from_(customers).select(
    customers.id, customers.fname, customers.lname, customers.phone
).where(
    customers.lname == 'Mustermann'
)
SELECT id,fname,lname,phone FROM customers WHERE lname='Mustermann'

Query methods such as select, where, groupby, and orderby can be called multiple times. Multiple calls to the where method will add additional conditions as

customers = Table('customers')
q = Query.from_(customers).select(
    customers.id, customers.fname, customers.lname, customers.phone
).where(
    customers.fname == 'Max'
).where(
    customers.lname == 'Mustermann'
)
SELECT id,fname,lname,phone FROM customers WHERE fname='Max' AND lname='Mustermann'

Filters such as IN and BETWEEN are also supported

customers = Table('customers')
q = Query.from_(customers).select(
    customers.id,customers.fname
).where(
    customers.age[18:65] & customers.status.isin(['new', 'active'])
)
SELECT id,fname FROM customers WHERE age BETWEEN 18 AND 65 AND status IN ('new','active')

Filtering with complex criteria can be created using boolean symbols &, |, and ^.

AND

customers = Table('customers')
q = Query.from_(customers).select(
    customers.id, customers.fname, customers.lname, customers.phone
).where(
    (customers.age >= 18) & (customers.lname == 'Mustermann')
)
SELECT id,fname,lname,phone FROM customers WHERE age>=18 AND lname='Mustermann'

OR

customers = Table('customers')
q = Query.from_(customers).select(
    customers.id, customers.fname, customers.lname, customers.phone
).where(
    (customers.age >= 18) | (customers.lname == 'Mustermann')
)
SELECT id,fname,lname,phone FROM customers WHERE age>=18 OR lname='Mustermann'

XOR

customers = Table('customers')
q = Query.from_(customers).select(
    customers.id, customers.fname, customers.lname, customers.phone
).where(
    (customers.age >= 18) ^ customers.is_registered
)
SELECT id,fname,lname,phone FROM customers WHERE age>=18 XOR is_registered
Convenience Methods

In the Criterion class, there are the static methods any and all that allow building chains AND and OR expressions with a list of terms.

from pypika import Criterion

customers = Table('customers')
q = Query.from_(customers).select(
    customers.id,
    customers.fname
).where(
    Criterion.all([
        customers.is_registered,
        customers.age >= 18,
        customers.lname == "Jones",
    ])
)
SELECT id,fname FROM customers WHERE is_registered AND age>=18 AND lname = "Jones"
Grouping and Aggregating

Grouping allows for aggregated results and works similar to SELECT clauses.

from pypika import functions as fn

customers = Table('customers')
q = Query \
    .from_(customers) \
    .where(customers.age >= 18) \
    .groupby(customers.id) \
    .select(customers.id, fn.Sum(customers.revenue))
SELECT id,SUM("revenue") FROM "customers" WHERE "age">=18 GROUP BY "id"

After adding a GROUP BY clause to a query, the HAVING clause becomes available. The method Query.having() takes a Criterion parameter similar to the method Query.where().

from pypika import functions as fn

payments = Table('payments')
q = Query \
    .from_(payments) \
    .where(payments.transacted[date(2015, 1, 1):date(2016, 1, 1)]) \
    .groupby(payments.customer_id) \
    .having(fn.Sum(payments.total) >= 1000) \
    .select(payments.customer_id, fn.Sum(payments.total))
SELECT customer_id,SUM(total) FROM payments
WHERE transacted BETWEEN '2015-01-01' AND '2016-01-01'
GROUP BY customer_id HAVING SUM(total)>=1000
Joining Tables and Subqueries

Tables and subqueries can be joined to any query using the Query.join() method. Joins can be performed with either a USING or ON clauses. The USING clause can be used when both tables/subqueries contain the same field and the ON clause can be used with a criterion. To perform a join, ...join() can be chained but then must be followed immediately by ...on(<criterion>) or ...using(*field).

Join Types

All join types are supported by PyPika.

Query \
    .from_(base_table)
    ...
    .join(join_table, JoinType.left)
    ...
Query \
    .from_(base_table)
    ...
    .left_join(join_table) \
    .right_join(join_table) \
    .inner_join(join_table) \
    .outer_join(join_table) \
    .cross_join(join_table) \
    ...

See the list of join types here pypika.enums.JoinTypes

Example of a join using ON
history, customers = Tables('history', 'customers')
q = Query \
    .from_(history) \
    .join(customers) \
    .on(history.customer_id == customers.id) \
    .select(history.star) \
    .where(customers.id == 5)
SELECT "history".* FROM "history" JOIN "customers" ON "history"."customer_id"="customers"."id" WHERE "customers"."id"=5

As a shortcut, the Query.join().on_field() function is provided for joining the (first) table in the FROM clause with the joined table when the field name(s) are the same in both tables.

Example of a join using ON
history, customers = Tables('history', 'customers')
q = Query \
    .from_(history) \
    .join(customers) \
    .on_field('customer_id', 'group') \
    .select(history.star) \
    .where(customers.group == 'A')
SELECT "history".* FROM "history" JOIN "customers" ON "history"."customer_id"="customers"."customer_id" AND "history"."group"="customers"."group" WHERE "customers"."group"='A'
Example of a join using USING
history, customers = Tables('history', 'customers')
q = Query \
    .from_(history) \
    .join(customers) \
    .using('customer_id') \
    .select(history.star) \
    .where(customers.id == 5)
SELECT "history".* FROM "history" JOIN "customers" USING "customer_id" WHERE "customers"."id"=5
Example of a correlated subquery in the SELECT
history, customers = Tables('history', 'customers')
last_purchase_at = Query.from_(history).select(
    history.purchase_at
).where(history.customer_id==customers.customer_id).orderby(
    history.purchase_at, order=Order.desc
).limit(1)
q = Query.from_(customers).select(
    customers.id, last_purchase_at._as('last_purchase_at')
)
SELECT
  "id",
  (SELECT "history"."purchase_at"
   FROM "history"
   WHERE "history"."customer_id" = "customers"."customer_id"
   ORDER BY "history"."purchase_at" DESC
   LIMIT 1) "last_purchase_at"
FROM "customers"
Unions

Both UNION and UNION ALL are supported. UNION DISTINCT is synonomous with “UNION`` so and PyPika does not provide a separate function for it. Unions require that queries have the same number of SELECT clauses so trying to cast a unioned query to string with through a UnionException if the column sizes are mismatched.

To create a union query, use either the Query.union() method or + operator with two query instances. For a union all, use Query.union_all() or the * operator.

provider_a, provider_b = Tables('provider_a', 'provider_b')
q = Query.from_(provider_a).select(
    provider_a.created_time, provider_a.foo, provider_a.bar
) + Query.from_(provider_b).select(
    provider_b.created_time, provider_b.fiz, provider_b.buz
)
SELECT "created_time","foo","bar" FROM "provider_a" UNION SELECT "created_time","fiz","buz" FROM "provider_b"
Date, Time, and Intervals

Using pypika.Interval, queries can be constructed with date arithmetic. Any combination of intervals can be used except for weeks and quarters, which must be used separately and will ignore any other values if selected.

from pypika import functions as fn

fruits = Tables('fruits')
q = Query.from_(fruits) \
    .select(fruits.id, fruits.name) \
    .where(fruits.harvest_date + Interval(months=1) < fn.Now())
SELECT id,name FROM fruits WHERE harvest_date+INTERVAL 1 MONTH<NOW()
Tuples

Tuples are supported through the class pypika.Tuple but also through the native python tuple wherever possible. Tuples can be used with pypika.Criterion in WHERE clauses for pairwise comparisons.

from pypika import Query, Tuple

q = Query.from_(self.table_abc) \
    .select(self.table_abc.foo, self.table_abc.bar) \
    .where(Tuple(self.table_abc.foo, self.table_abc.bar) == Tuple(1, 2))
SELECT "foo","bar" FROM "abc" WHERE ("foo","bar")=(1,2)

Using pypika.Tuple on both sides of the comparison is redundant and PyPika supports native python tuples.

from pypika import Query, Tuple

q = Query.from_(self.table_abc) \
    .select(self.table_abc.foo, self.table_abc.bar) \
    .where(Tuple(self.table_abc.foo, self.table_abc.bar) == (1, 2))
SELECT "foo","bar" FROM "abc" WHERE ("foo","bar")=(1,2)

Tuples can be used in IN clauses.

Query.from_(self.table_abc) \
        .select(self.table_abc.foo, self.table_abc.bar) \
        .where(Tuple(self.table_abc.foo, self.table_abc.bar).isin([(1, 1), (2, 2), (3, 3)]))
SELECT "foo","bar" FROM "abc" WHERE ("foo","bar") IN ((1,1),(2,2),(3,3))
Strings Functions

There are several string operations and function wrappers included in PyPika. Function wrappers can be found in the pypika.functions package. In addition, LIKE and REGEX queries are supported as well.

from pypika import functions as fn

customers = Tables('customers')
q = Query.from_(customers).select(
    customers.id,
    customers.fname,
    customers.lname,
).where(
    customers.lname.like('Mc%')
)
SELECT id,fname,lname FROM customers WHERE lname LIKE 'Mc%'
from pypika import functions as fn

customers = Tables('customers')
q = Query.from_(customers).select(
    customers.id,
    customers.fname,
    customers.lname,
).where(
    customers.lname.regex(r'^[abc][a-zA-Z]+&')
)
SELECT id,fname,lname FROM customers WHERE lname REGEX '^[abc][a-zA-Z]+&';
from pypika import functions as fn

customers = Tables('customers')
q = Query.from_(customers).select(
    customers.id,
    fn.Concat(customers.fname, ' ', customers.lname).as_('full_name'),
)
SELECT id,CONCAT(fname, ' ', lname) full_name FROM customers
Custom Functions

Custom Functions allows us to use any function on queries, as some functions are not covered by PyPika as default, we can appeal to Custom functions.

from pypika import CustomFunction

customers = Tables('customers')
DateDiff = CustomFunction('DATE_DIFF', ['interval', 'start_date', 'end_date'])

q = Query.from_(customers).select(
    customers.id,
    customers.fname,
    customers.lname,
    DateDiff('day', customers.created_date, customers.updated_date)
)
SELECT id,fname,lname,DATE_DIFF('day',created_date,updated_date) FROM customers
Case Statements

Case statements allow fow a number of conditions to be checked sequentially and return a value for the first condition met or otherwise a default value. The Case object can be used to chain conditions together along with their output using the when method and to set the default value using else_.

from pypika import Case, functions as fn

customers = Tables('customers')
q = Query.from_(customers).select(
    customers.id,
    Case()
       .when(customers.fname == "Tom", "It was Tom")
       .when(customers.fname == "John", "It was John")
       .else_("It was someone else.").as_('who_was_it')
)
SELECT "id",CASE WHEN "fname"='Tom' THEN 'It was Tom' WHEN "fname"='John' THEN 'It was John' ELSE 'It was someone else.' END "who_was_it" FROM "customers"
With Clause

With clause allows give a sub-query block a name, which can be referenced in several places within the main SQL query. The SQL WITH clause is basically a drop-in replacement to the normal sub-query.

from pypika import Table, AliasedQuery, Query

customers = Table('customers')

sub_query = (Query
            .from_(customers)
            .select('*'))

test_query = (Query
            .with_(sub_query, "an_alias")
            .from_(AliasedQuery("an_alias"))
            .select('*'))

You can use as much as .with_() as you want.

WITH an_alias AS (SELECT * FROM "customers") SELECT * FROM an_alias

Inserting Data

Data can be inserted into tables either by providing the values in the query or by selecting them through another query.

By default, data can be inserted by providing values for all columns in the order that they are defined in the table.

Insert with values
customers = Table('customers')

q = Query.into(customers).insert(1, 'Jane', 'Doe', 'jane@example.com')
INSERT INTO customers VALUES (1,'Jane','Doe','jane@example.com')
customers =  Table('customers')

q = customers.insert(1, 'Jane', 'Doe', 'jane@example.com')
INSERT INTO customers VALUES (1,'Jane','Doe','jane@example.com')

Multiple rows of data can be inserted either by chaining the insert function or passing multiple tuples as args.

customers = Table('customers')

q = Query.into(customers).insert(1, 'Jane', 'Doe', 'jane@example.com').insert(2, 'John', 'Doe', 'john@example.com')
customers = Table('customers')

q = Query.into(customers).insert((1, 'Jane', 'Doe', 'jane@example.com'),
                                 (2, 'John', 'Doe', 'john@example.com'))
Insert with on Duplicate Key Update
customers = Table('customers')

q = Query.into(customers)\
    .insert(1, 'Jane', 'Doe', 'jane@example.com')\
    .on_duplicate_key_update(customers.email, Values(customers.email))
INSERT INTO customers VALUES (1,'Jane','Doe','jane@example.com') ON DUPLICATE KEY UPDATE `email`=VALUES(`email`)

.on_duplicate_key_update works similar to .set for updating rows, additionally it provides the Values wrapper to update to the value specified in the INSERT clause.

Insert from a SELECT Sub-query
INSERT INTO customers VALUES (1,'Jane','Doe','jane@example.com'),(2,'John','Doe','john@example.com')

To specify the columns and the order, use the columns function.

customers = Table('customers')

q = Query.into(customers).columns('id', 'fname', 'lname').insert(1, 'Jane', 'Doe')
INSERT INTO customers (id,fname,lname) VALUES (1,'Jane','Doe','jane@example.com')

Inserting data with a query works the same as querying data with the additional call to the into method in the builder chain.

customers, customers_backup = Tables('customers', 'customers_backup')

q = Query.into(customers_backup).from_(customers).select('*')
INSERT INTO customers_backup SELECT * FROM customers
customers, customers_backup = Tables('customers', 'customers_backup')

q = Query.into(customers_backup).columns('id', 'fname', 'lname')
    .from_(customers).select(customers.id, customers.fname, customers.lname)
INSERT INTO customers_backup SELECT "id", "fname", "lname" FROM customers

The syntax for joining tables is the same as when selecting data

customers, orders, orders_backup = Tables('customers', 'orders', 'orders_backup')

q = Query.into(orders_backup).columns('id', 'address', 'customer_fname', 'customer_lname')
    .from_(customers)
    .join(orders).on(orders.customer_id == customers.id)
    .select(orders.id, customers.fname, customers.lname)
INSERT INTO "orders_backup" ("id","address","customer_fname","customer_lname")
SELECT "orders"."id","customers"."fname","customers"."lname" FROM "customers"
JOIN "orders" ON "orders"."customer_id"="customers"."id"

Updating Data

PyPika allows update queries to be constructed with or without where clauses.

customers = Table('customers')

Query.update(customers).set(customers.last_login, '2017-01-01 10:00:00')

Query.update(customers).set(customers.lname, 'smith').where(customers.id == 10)
UPDATE "customers" SET "last_login"='2017-01-01 10:00:00'

UPDATE "customers" SET "lname"='smith' WHERE "id"=10

The syntax for joining tables is the same as when selecting data

customers, profiles = Tables('customers', 'profiles')

Query.update(customers)
     .join(profiles).on(profiles.customer_id == customers.id)
     .set(customers.lname, profiles.lname)
UPDATE "customers"
JOIN "profiles" ON "profiles"."customer_id"="customers"."id"
SET "customers"."lname"="profiles"."lname"

Using pypika.Table alias to perform the update

customers = Table('customers')

customers.update()
        .set(customers.lname, 'smith')
        .where(customers.id == 10)
UPDATE "customers" SET "lname"='smith' WHERE "id"=10

Using limit for performing update

customers = Table('customers')

customers.update()
        .set(customers.lname, 'smith')
        .limit(2)
UPDATE "customers" SET "lname"='smith' LIMIT 2

Parametrized Queries

PyPika allows you to use Parameter(str) term as a placeholder for parametrized queries.

customers = Table('customers')

q = Query.into(customers).columns('id', 'fname', 'lname')
    .insert(Parameter(':1'), Parameter(':2'), Parameter(':3'))
INSERT INTO customers (id,fname,lname) VALUES (:1,:2,:3)

This allows you to build prepared statements, and/or avoid SQL-injection related risks.

Due to the mix of syntax for parameters, depending on connector/driver, it is required that you specify the parameter token explicitly.

An example of some common SQL parameter styles used in Python drivers are:

PostgreSQL:
$number OR %s + :name (depending on driver)
MySQL:
%s
SQLite:
?
Vertica:
:name
Oracle:
:number + :name
MSSQL:
%(name)s OR :name + :number (depending on driver)

You can find out what parameter style is needed for DBAPI compliant drivers here: https://www.python.org/dev/peps/pep-0249/#paramstyle or in the DB driver documentation.

Advanced Query Features

This section covers the range of functions that are not widely standardized across all SQL databases or meet special needs. PyPika intends to support as many features across different platforms as possible. If there are any features specific to a certain platform that PyPika does not support, please create a GitHub issue requesting that it be added.

Handling different database platforms

There can sometimes be differences between how database vendors implement SQL in their platform, for example which quote characters are used. To ensure that the correct SQL standard is used for your platform, the platform-specific Query classes can be used.

from pypika import MySQLQuery, MSSQLQuery, PostgreSQLQuery, OracleQuery, VerticaQuery

You can use these query classes as a drop in replacement for the default Query class shown in the other examples. Again, if you encounter any issues specific to a platform, please create a GitHub issue on this repository.

GROUP BY Modifiers

The ROLLUP modifier allows for aggregating to higher levels that the given groups, called super-aggregates.

from pypika import Rollup, functions as fn

products = Table('products')

query = Query.from_(products) \
    .select(products.id, products.category, fn.Sum(products.price)) \
    .rollup(products.id, products.category)
SELECT "id","category",SUM("price") FROM "products" GROUP BY ROLLUP("id","category")

Pseudo Column

A pseudo-column is an SQL assigned value (pseudo-field) used in the same context as an column, but not stored on disk. The pseudo-column can change from database to database, so here it’s possible to define them.

from pypika import Query, PseudoColumn

CurrentDate = PseudoColumn('current_date')

Query.from_('products').select(CurrentDate)
SELECT current_date FROM "products"

Analytic Queries

The package pypika.analytic contains analytic function wrappers. These can be used in SELECT clauses when building queries for databases that support them. Different functions have different arguments but all require some sort of partitioning.

NTILE and RANK

The NTILE function requires a constant integer argument while the RANK function takes no arguments. clause.

from pypika import Query, Table, analytics as an, functions as fn

store_sales_fact, date_dimension = Table('store_sales_fact', schema='store'), Table('date_dimension')

total_sales = fn.Sum(store_sales_fact.sales_quantity).as_('TOTAL_SALES')
calendar_month_name = date_dimension.calendar_month_name.as_('MONTH')
ntile = an.NTile(4).order_by(total_sales).as_('NTILE')

query = Query.from_(store_sales_fact) \
    .join(date_dimension).using('date_key') \
    .select(calendar_month_name, total_sales, ntile) \
    .groupby(calendar_month_name) \
    .orderby(ntile)
SELECT "date_dimension"."calendar_month_name" "MONTH",SUM("store_sales_fact"."sales_quantity") "TOTAL_SALES",NTILE(4) OVER(PARTITION BY  ORDER BY SUM("store_sales_fact"."sales_quantity")) "NTILE" FROM "store"."store_sales_fact" JOIN "date_dimension" USING ("date_key") GROUP BY "date_dimension"."calendar_month_name" ORDER BY NTILE(4) OVER(PARTITION BY  ORDER BY SUM("store_sales_fact"."sales_quantity"))
FIRST_VALUE and LAST_VALUE

FIRST_VALUE and LAST_VALUE both expect a single argument. They also support an additional IGNORE NULLS clause.

from pypika import Query, Table, analytics as an

t_month = Table('t_month')

first_month = an.FirstValue(t_month.month) \
    .over(t_month.season) \
    .orderby(t_month.id)

last_month = an.LastValue(t_month.month) \
    .over(t_month.season) \
    .orderby(t_month.id) \
    .ignore_nulls()

query = Query.from_(t_month) \
    .select(first_month, last_month)
SELECT FIRST_VALUE("month") OVER(PARTITION BY "season" ORDER BY "id"),LAST_VALUE("month" IGNORE NULLS) OVER(PARTITION BY "season" ORDER BY "id") FROM "t_month"
MEDIAN, AVG and STDDEV

These functions take one or more arguments

from pypika import Query, Table, analytics as an

customer_dimension = Table('customer_dimension')

median_income = an.Median(customer_dimension.annual_income).over(customer_dimension.customer_state).as_('MEDIAN')
avg_income = an.Avg(customer_dimension.annual_income).over(customer_dimension.customer_state).as_('AVG')
stddev_income = an.StdDev(customer_dimension.annual_income).over(customer_dimension.customer_state).as_('STDDEV')

query = Query.from_(customer_dimension) \
    .select(median_income, avg_income, stddev_income) \
    .where(customer_dimension.customer_state.isin(['DC', 'WI'])) \
    .orderby(customer_dimension.customer_state)
SELECT MEDIAN("annual_income") OVER(PARTITION BY "customer_state") "MEDIAN",AVG("annual_income") OVER(PARTITION BY "customer_state") "AVG",STDDEV("annual_income") OVER(PARTITION BY "customer_state") "STDDEV" FROM "customer_dimension" WHERE "customer_state" IN ('DC','WI') ORDER BY "customer_state"

Window Frames

Functions which use window aggregation expose the functions rows() and range() with varying parameters to define the window. Both of these functions take one or two parameters which specify the offset boundaries. Boundaries can be set either as the current row with an.CURRENT_ROW or a value preceding or following the current row with an.Preceding(constant_value) and an.Following(constant_value). The ranges can be unbounded preceding or following the current row by omitting the constant_value parameter like an.Preceding() or an.Following().

FIRST_VALUE and LAST_VALUE also support window frames.

from pypika import Query, Table, analytics as an

t_transactions = Table('t_customers')

rolling_7_sum = an.Sum(t_transactions.total) \
    .over(t_transactions.item_id) \
    .orderby(t_transactions.day) \
    .rows(an.Preceding(7), an.CURRENT_ROW)

query = Query.from_(t_transactions) \
    .select(rolling_7_sum)
SELECT SUM("total") OVER(PARTITION BY "item_id" ORDER BY "day" ROWS BETWEEN 7 PRECEDING AND CURRENT ROW) FROM "t_customers"

Extending PyPika

SQL Functions not included in PyPika

PyPika includes a couple of the most common SQL functions, but due to many differences between different SQL databases, many are not included. Any SQL function can be implemented in PyPika by extended the pypika.Function class.

When defining SQL function wrappers, it is necessary to define the name of the SQL function as well as the arguments it requires.

from pypika import Function

class CurDate(Function):
    def __init__(self, alias=None):
        super(CurDate, self).__init__('CURRENT_DATE', alias=alias)

q = Query.select(CurDate())
from pypika import Function

class DateDiff(Function):
    def __init__(self, interval, start_date, end_date, alias=None):
        super(DateDiff, self).__init__('DATEDIFF', interval, start_date, end_date, alias=alias)

There is also a helper function pypika.CustomFunction which enables 1-line creation of a SQL function wrapper.

from pypika import CustomFunction

customers = Tables('customers')
DateDiff = CustomFunction('DATE_DIFF', ['interval', 'start_date', 'end_date'])

q = Query.from_(customers).select(
    customers.id,
    customers.fname,
    customers.lname,
    DateDiff('day', customers.created_date, customers.updated_date)
)

Similarly analytic functions can be defined by extending pypika.AnalyticFunction.

from pypika import AnalyticFunction

class RowNumber(AnalyticFunction):
    def __init__(self, **kwargs):
        super(RowNumber, self).__init__('ROW_NUMBER', **kwargs)


expr =

q = Query.from_(self.table_abc) \
        .select(an.RowNumber()
                    .over(self.table_abc.foo)
                    .orderby(self.table_abc.date))
SELECT ROW_NUMBER() OVER(PARTITION BY "foo" ORDER BY "date") FROM "abc"

API Reference

pypika package

pypika.enums module
class pypika.enums.Arithmetic[source]

Bases: enum.Enum

An enumeration.

add = '+'
div = '/'
mul = '*'
sub = '-'
class pypika.enums.Boolean[source]

Bases: pypika.enums.Comparator

An enumeration.

and_ = 'AND'
false = 'FALSE'
or_ = 'OR'
true = 'TRUE'
xor_ = 'XOR'
class pypika.enums.Comparator[source]

Bases: enum.Enum

An enumeration.

class pypika.enums.DatePart[source]

Bases: enum.Enum

An enumeration.

day = 'DAY'
hour = 'HOUR'
microsecond = 'MICROSECOND'
minute = 'MINUTE'
month = 'MONTH'
quarter = 'QUARTER'
second = 'SECOND'
week = 'WEEK'
year = 'YEAR'
class pypika.enums.Dialects[source]

Bases: enum.Enum

An enumeration.

CLICKHOUSE = 'clickhouse'
MSSQL = 'mssql'
MYSQL = 'mysql'
ORACLE = 'oracle'
POSTGRESQL = 'postgressql'
REDSHIFT = 'redshift'
SNOWFLAKE = 'snowflake'
SQLLITE = 'sqllite'
VERTICA = 'vertica'
class pypika.enums.Equality[source]

Bases: pypika.enums.Comparator

An enumeration.

eq = '='
gt = '>'
gte = '>='
lt = '<'
lte = '<='
ne = '<>'
class pypika.enums.JSONOperators[source]

Bases: enum.Enum

An enumeration.

CONTAINED_BY = '<@'
CONTAINS = '@>'
GET_JSON_VALUE = '->'
GET_PATH_JSON_VALUE = '#>'
GET_PATH_TEXT_VALUE = '#>>'
GET_TEXT_VALUE = '->>'
HAS_ANY_KEYS = '?|'
HAS_KEY = '?'
HAS_KEYS = '?&'
class pypika.enums.JoinType[source]

Bases: enum.Enum

An enumeration.

cross = 'CROSS'
full_outer = 'FULL OUTER'
inner = ''
left = 'LEFT'
left_outer = 'LEFT OUTER'
outer = 'FULL OUTER'
right = 'RIGHT'
right_outer = 'RIGHT OUTER'
class pypika.enums.Matching[source]

Bases: pypika.enums.Comparator

An enumeration.

bin_regex = ' REGEX BINARY '
ilike = ' ILIKE '
like = ' LIKE '
not_ilike = ' NOT ILIKE '
not_like = ' NOT LIKE '
regex = ' REGEX '
class pypika.enums.Order[source]

Bases: enum.Enum

An enumeration.

asc = 'ASC'
desc = 'DESC'
class pypika.enums.SqlType(name)[source]

Bases: object

get_sql(**kwargs)[source]
class pypika.enums.SqlTypeLength(name, length)[source]

Bases: object

get_sql(**kwargs)[source]
class pypika.enums.SqlTypes[source]

Bases: object

BINARY = <pypika.enums.SqlType object>
BOOLEAN = 'BOOLEAN'
CHAR = <pypika.enums.SqlType object>
DATE = 'DATE'
FLOAT = 'FLOAT'
INTEGER = 'INTEGER'
LONG_VARBINARY = <pypika.enums.SqlType object>
LONG_VARCHAR = <pypika.enums.SqlType object>
NUMERIC = 'NUMERIC'
SIGNED = 'SIGNED'
TIME = 'TIME'
TIMESTAMP = 'TIMESTAMP'
UNSIGNED = 'UNSIGNED'
VARBINARY = <pypika.enums.SqlType object>
VARCHAR = <pypika.enums.SqlType object>
class pypika.enums.UnionType[source]

Bases: enum.Enum

An enumeration.

all = ' ALL'
distinct = ''
pypika.functions module

Package for SQL functions wrappers

class pypika.functions.Abs(term, alias=None)[source]

Bases: pypika.terms.AggregateFunction

class pypika.functions.ApproximatePercentile(term, percentile, alias=None)[source]

Bases: pypika.terms.AggregateFunction

get_special_params_sql(**kwargs)[source]
class pypika.functions.Ascii(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Avg(term, alias=None)[source]

Bases: pypika.terms.AggregateFunction

class pypika.functions.Bin(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Cast(term, as_type, alias=None)[source]

Bases: pypika.terms.Function

get_special_params_sql(**kwargs)[source]
class pypika.functions.Coalesce(term, *default_values, **kwargs)[source]

Bases: pypika.terms.Function

class pypika.functions.Concat(*terms, **kwargs)[source]

Bases: pypika.terms.Function

class pypika.functions.Convert(term, encoding, alias=None)[source]

Bases: pypika.terms.Function

get_special_params_sql(**kwargs)[source]
class pypika.functions.Count(param, alias=None)[source]

Bases: pypika.functions.DistinctOptionFunction

class pypika.functions.CurDate(alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.CurTime(alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.CurTimestamp(alias=None)[source]

Bases: pypika.terms.Function

get_function_sql(**kwargs)[source]
class pypika.functions.Date(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.DateAdd(date_part, interval, term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.DateDiff(interval, start_date, end_date, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.DistinctOptionFunction(name, *args, **kwargs)[source]

Bases: pypika.terms.AggregateFunction

distinct(*args, **kwargs)
get_function_sql(**kwargs)[source]
class pypika.functions.Extract(date_part, field, alias=None)[source]

Bases: pypika.terms.Function

get_special_params_sql(**kwargs)[source]
class pypika.functions.First(term, alias=None)[source]

Bases: pypika.terms.AggregateFunction

class pypika.functions.Floor(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.IfNull(condition, term, **kwargs)[source]

Bases: pypika.terms.Function

class pypika.functions.Insert(term, start, stop, subterm, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.IsNull(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Last(term, alias=None)[source]

Bases: pypika.terms.AggregateFunction

class pypika.functions.Length(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Lower(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Max(term, alias=None)[source]

Bases: pypika.terms.AggregateFunction

class pypika.functions.Min(term, alias=None)[source]

Bases: pypika.terms.AggregateFunction

class pypika.functions.NVL(condition, term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Now(alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.NullIf(term, condition, **kwargs)[source]

Bases: pypika.terms.Function

class pypika.functions.RegexpLike(term, pattern, modifiers=None, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.RegexpMatches(term, pattern, modifiers=None, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Reverse(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Signed(term, alias=None)[source]

Bases: pypika.functions.Cast

class pypika.functions.SplitPart(term, delimiter, index, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Sqrt(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Std(term, alias=None)[source]

Bases: pypika.terms.AggregateFunction

class pypika.functions.StdDev(term, alias=None)[source]

Bases: pypika.terms.AggregateFunction

class pypika.functions.Substring(term, start, stop, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Sum(term, alias=None)[source]

Bases: pypika.functions.DistinctOptionFunction

class pypika.functions.TimeDiff(start_time, end_time, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Timestamp(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.TimestampAdd(date_part, interval, term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.ToChar(term, as_type, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.ToDate(value, format_mask, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Trim(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.Unsigned(term, alias=None)[source]

Bases: pypika.functions.Cast

class pypika.functions.Upper(term, alias=None)[source]

Bases: pypika.terms.Function

class pypika.functions.UtcTimestamp(alias=None)[source]

Bases: pypika.terms.Function

pypika.queries module
class pypika.queries.AliasedQuery(name, query=None)[source]

Bases: pypika.queries.Selectable

get_sql(**kwargs)[source]
class pypika.queries.Column(column_name, column_type=None)[source]

Bases: object

get_sql(**kwargs)[source]
class pypika.queries.CreateQueryBuilder(dialect=None)[source]

Bases: object

Query builder used to build CREATE queries.

ALIAS_QUOTE_CHAR = None
QUOTE_CHAR = '"'
SECONDARY_QUOTE_CHAR = "'"
as_select(*args, **kwargs)
columns(*args, **kwargs)
create_table(*args, **kwargs)
get_sql(**kwargs)[source]
temporary(*args, **kwargs)
class pypika.queries.Database(name, parent=None)[source]

Bases: pypika.queries.Schema

class pypika.queries.Join(item, how)[source]

Bases: object

get_sql(**kwargs)[source]
replace_table(*args, **kwargs)
validate(_from, _joins)[source]
class pypika.queries.JoinOn(item, how, criteria, collate=None)[source]

Bases: pypika.queries.Join

get_sql(**kwargs)[source]
replace_table(*args, **kwargs)
validate(_from, _joins)[source]
class pypika.queries.JoinUsing(item, how, fields)[source]

Bases: pypika.queries.Join

get_sql(**kwargs)[source]
replace_table(*args, **kwargs)
validate(_from, _joins)[source]
class pypika.queries.Joiner(query, item, how, type_label)[source]

Bases: object

cross()[source]

Return cross join

on(criterion, collate=None)[source]
on_field(*fields)[source]
using(*fields)[source]
class pypika.queries.Query[source]

Bases: object

Query is the primary class and entry point in pypika. It is used to build queries iteratively using the builder design pattern.

This class is immutable.

classmethod create_table(table)[source]

Query builder entry point. Initializes query building and sets the table name to be created. When using this function, the query becomes a CREATE statement.

Parameters:table – An instance of a Table object or a string table name.
Returns:CreateQueryBuilder
classmethod from_(table)[source]

Query builder entry point. Initializes query building and sets the table to select from. When using this function, the query becomes a SELECT query.

Parameters:table

Type: Table or str

An instance of a Table object or a string table name.

:returns QueryBuilder

classmethod into(table)[source]

Query builder entry point. Initializes query building and sets the table to insert into. When using this function, the query becomes an INSERT query.

Parameters:table

Type: Table or str

An instance of a Table object or a string table name.

:returns QueryBuilder

classmethod select(*terms)[source]

Query builder entry point. Initializes query building without a table and selects fields. Useful when testing SQL functions.

Parameters:terms

Type: list[expression]

A list of terms to select. These can be any type of int, float, str, bool, or Term. They cannot be a Field unless the function Query.from_ is called first.

:returns QueryBuilder

classmethod update(table)[source]

Query builder entry point. Initializes query building and sets the table to update. When using this function, the query becomes an UPDATE query.

Parameters:table

Type: Table or str

An instance of a Table object or a string table name.

:returns QueryBuilder

classmethod with_(table, name)[source]
class pypika.queries.QueryBuilder(dialect=None, wrap_union_queries=True, wrapper_cls=<class 'pypika.terms.ValueWrapper'>)[source]

Bases: pypika.queries.Selectable, pypika.terms.Term

Query Builder is the main class in pypika which stores the state of a query and offers functions which allow the state to be branched immutably.

ALIAS_QUOTE_CHAR = None
QUOTE_CHAR = '"'
SECONDARY_QUOTE_CHAR = "'"
columns(*args, **kwargs)
cross_join(item)[source]
delete(*args, **kwargs)
distinct(*args, **kwargs)
do_join(join)[source]
fields()[source]
force_index(*args, **kwargs)
from_(*args, **kwargs)
get_sql(with_alias=False, subquery=False, **kwargs)[source]
groupby(*args, **kwargs)
having(*args, **kwargs)
ignore(*args, **kwargs)
inner_join(item)[source]
insert(*args, **kwargs)
into(*args, **kwargs)
is_joined(table)[source]
join(*args, **kwargs)
left_join(item)[source]
limit(*args, **kwargs)
offset(*args, **kwargs)
orderby(*args, **kwargs)
outer_join(item)[source]
prewhere(*args, **kwargs)
replace(*args, **kwargs)
replace_table(*args, **kwargs)
right_join(item)[source]
rollup(*args, **kwargs)
select(*args, **kwargs)
set(*args, **kwargs)
union(*args, **kwargs)
union_all(*args, **kwargs)
update(*args, **kwargs)
where(*args, **kwargs)
with_(*args, **kwargs)
with_totals(*args, **kwargs)
class pypika.queries.Schema(name, parent=None)[source]

Bases: object

get_sql(quote_char=None, **kwargs)[source]
class pypika.queries.Selectable(alias)[source]

Bases: object

as_(*args, **kwargs)
field(name)[source]
star
class pypika.queries.Table(name, schema=None, alias=None)[source]

Bases: pypika.queries.Selectable

get_sql(**kwargs)[source]
insert(*terms)[source]

Perform an INSERT operation on the current table

Parameters:terms

Type: list[expression]

A list of terms to select. These can be any type of int, float, str, bool or any other valid data

Returns:QueryBuilder
select(*terms)[source]

Perform a SELECT operation on the current table

Parameters:terms

Type: list[expression]

A list of terms to select. These can be any type of int, float, str, bool or Term or a Field.

Returns:QueryBuilder
update()[source]

Perform an UPDATE operation on the current table

Returns:QueryBuilder
pypika.queries.make_columns(*names)[source]

Shortcut to create many columns. If names param is a tuple, the first position will refer to the name while the second will be its type. Any other data structure will be treated as a whole as the name.

pypika.queries.make_tables(*names, **kwargs)[source]

Shortcut to create many tables. If names param is a tuple, the first position will refer to the _table_name while the second will be its alias. Any other data structure will be treated as a whole as the _table_name.

pypika.terms module
class pypika.terms.AggregateFunction(name, *args, **kwargs)[source]

Bases: pypika.terms.Function

is_aggregate = True
class pypika.terms.AnalyticFunction(name, *args, **kwargs)[source]

Bases: pypika.terms.Function

get_function_sql(**kwargs)[source]
get_partition_sql(**kwargs)[source]
is_analytic = True
orderby(*args, **kwargs)
over(*args, **kwargs)
class pypika.terms.ArithmeticExpression(operator, left, right, alias=None)[source]

Bases: pypika.terms.Term

Wrapper for an arithmetic function. Can be simple with two terms or complex with nested terms. Order of operations are also preserved.

add_order = [<Arithmetic.add: '+'>, <Arithmetic.sub: '-'>]
fields()[source]
get_sql(with_alias=False, **kwargs)[source]
is_aggregate

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

mul_order = [<Arithmetic.mul: '*'>, <Arithmetic.div: '/'>]
replace_table(*args, **kwargs)
tables_
class pypika.terms.Array(*values)[source]

Bases: pypika.terms.Tuple

get_sql(**kwargs)[source]
class pypika.terms.BasicCriterion(comparator, left, right, alias=None)[source]

Bases: pypika.terms.Criterion

fields()[source]
get_sql(quote_char='"', with_alias=False, **kwargs)[source]
is_aggregate

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

replace_table(*args, **kwargs)
tables_
class pypika.terms.BetweenCriterion(term, start, end, alias=None)[source]

Bases: pypika.terms.Criterion

fields()[source]
get_sql(**kwargs)[source]
is_aggregate

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

replace_table(*args, **kwargs)
tables_
class pypika.terms.BitwiseAndCriterion(term, value, alias=None)[source]

Bases: pypika.terms.Criterion

fields()[source]
get_sql(**kwargs)[source]
replace_table(*args, **kwargs)
tables_
class pypika.terms.Bracket(term)[source]

Bases: pypika.terms.Tuple

get_sql(**kwargs)[source]
class pypika.terms.Case(alias=None)[source]

Bases: pypika.terms.Term

else_(*args, **kwargs)
fields()[source]
get_sql(with_alias=False, **kwargs)[source]
is_aggregate

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

replace_table(*args, **kwargs)
tables_
when(*args, **kwargs)
class pypika.terms.ComplexCriterion(comparator, left, right, alias=None)[source]

Bases: pypika.terms.BasicCriterion

fields()[source]
get_sql(subcriterion=False, **kwargs)[source]
needs_brackets(term)[source]
class pypika.terms.ContainsCriterion(term, container, alias=None)[source]

Bases: pypika.terms.Criterion

fields()[source]
get_sql(subquery=None, **kwargs)[source]
is_aggregate

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

negate()[source]
replace_table(*args, **kwargs)
tables_
class pypika.terms.Criterion(alias=None)[source]

Bases: pypika.terms.Term

static all(terms=())[source]
static any(terms=())[source]
fields()[source]
get_sql()[source]
class pypika.terms.CustomFunction(name, params=None)[source]

Bases: object

class pypika.terms.EmptyCriterion[source]

Bases: object

is_aggregate = None
tables_ = {}
class pypika.terms.Field(name, alias=None, table=None)[source]

Bases: pypika.terms.Criterion, pypika.terms.JSON

fields()[source]
get_sql(with_alias=False, with_namespace=False, quote_char=None, secondary_quote_char="'", **kwargs)[source]
replace_table(*args, **kwargs)
tables_
class pypika.terms.Function(name, *args, **kwargs)[source]

Bases: pypika.terms.Criterion

fields()[source]
get_function_sql(**kwargs)[source]
get_special_params_sql(**kwargs)[source]
get_sql(with_alias=False, with_namespace=False, quote_char=None, dialect=None, **kwargs)[source]
is_aggregate

This is a shortcut that assumes if a function has a single argument and that argument is aggregated, then this function is also aggregated. A more sophisticated approach is needed, however it is unclear how that might work. :returns:

True if the function accepts one argument and that argument is aggregate.
replace_table(*args, **kwargs)
tables_
class pypika.terms.IgnoreNullsAnalyticFunction(name, *args, **kwargs)[source]

Bases: pypika.terms.AnalyticFunction

get_special_params_sql(**kwargs)[source]
ignore_nulls(*args, **kwargs)
class pypika.terms.Index(name, alias=None)[source]

Bases: pypika.terms.Term

get_sql(quote_char=None, **kwargs)[source]
class pypika.terms.Interval(years=0, months=0, days=0, hours=0, minutes=0, seconds=0, microseconds=0, quarters=0, weeks=0, dialect=None)[source]

Bases: object

fields()[source]
get_sql(**kwargs)[source]
labels = ['YEAR', 'MONTH', 'DAY', 'HOUR', 'MINUTE', 'SECOND', 'MICROSECOND']
tables_
templates = {<Dialects.MYSQL: 'mysql'>: 'INTERVAL {expr} {unit}', <Dialects.POSTGRESQL: 'postgressql'>: "INTERVAL '{expr} {unit}'", <Dialects.REDSHIFT: 'redshift'>: "INTERVAL '{expr} {unit}'", <Dialects.VERTICA: 'vertica'>: "INTERVAL '{expr} {unit}'", <Dialects.ORACLE: 'oracle'>: "INTERVAL '{expr}' {unit}"}
trim_pattern = re.compile('(^0+\\.)|(\\.0+$)|(^[0\\-.: ]+[\\-: ])|([\\-:. ][0\\-.: ]+$)')
units = ['years', 'months', 'days', 'hours', 'minutes', 'seconds', 'microseconds']
class pypika.terms.JSON(value, alias=None)[source]

Bases: pypika.terms.Term

contained_by(other)[source]
contains(other)[source]
get_json_value(key_or_index: Union[str, int])[source]
get_path_json_value(path_json: str)[source]
get_path_text_value(path_json: str)[source]
get_sql(secondary_quote_char="'", **kwargs)[source]
get_text_value(key_or_index: Union[str, int])[source]
has_any_keys(other: Iterable[T_co])[source]
has_key(other)[source]
has_keys(other: Iterable[T_co])[source]
table = None
class pypika.terms.Mod(term, modulus, alias=None)[source]

Bases: pypika.terms.Function

class pypika.terms.Negative(term)[source]

Bases: pypika.terms.Term

get_sql(**kwargs)[source]
is_aggregate

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

class pypika.terms.NestedCriterion(comparator, nested_comparator, left, right, nested, alias=None)[source]

Bases: pypika.terms.Criterion

fields()[source]
get_sql(with_alias=False, **kwargs)[source]
is_aggregate

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

replace_table(*args, **kwargs)
tables_
class pypika.terms.Not(term, alias=None)[source]

Bases: pypika.terms.Criterion

fields()[source]
get_sql(**kwargs)[source]
replace_table(*args, **kwargs)
tables_
class pypika.terms.NullCriterion(term, alias=None)[source]

Bases: pypika.terms.Criterion

fields()[source]
get_sql(**kwargs)[source]
replace_table(*args, **kwargs)
tables_
class pypika.terms.NullValue(alias=None)[source]

Bases: pypika.terms.Term

fields()[source]
get_sql(**kwargs)[source]
class pypika.terms.Parameter(placeholder)[source]

Bases: pypika.terms.Term

fields()[source]
get_sql(**kwargs)[source]
is_aggregate = None
class pypika.terms.Pow(term, exponent, alias=None)[source]

Bases: pypika.terms.Function

class pypika.terms.PseudoColumn(name)[source]

Bases: pypika.terms.Term

Represents a pseudo column (a “column” which yields a value when selected but is not actually a real table column).

fields()[source]
get_sql(**kwargs)[source]
class pypika.terms.Rollup(*terms)[source]

Bases: pypika.terms.Function

class pypika.terms.Star(table=None)[source]

Bases: pypika.terms.Field

get_sql(with_alias=False, with_namespace=False, quote_char=None, **kwargs)[source]
tables_
class pypika.terms.Term(alias=None)[source]

Bases: object

as_(*args, **kwargs)
between(lower, upper)[source]
bin_regex(pattern)[source]
bitwiseand(value)[source]
eq(other)[source]
fields()[source]
get_sql(**kwargs)[source]
gt(other)[source]
gte(other)[source]
ilike(expr)[source]
is_aggregate = False
isin(arg)[source]
isnull()[source]
like(expr)[source]
lt(other)[source]
lte(other)[source]
ne(other)[source]
negate()[source]
not_ilike(expr)[source]
not_like(expr)[source]
notin(arg)[source]
notnull()[source]
regex(pattern)[source]
replace_table(current_table, new_table)[source]

Replaces all occurrences of the specified table with the new table. Useful when reusing fields across queries. The base implementation returns self because not all terms have a table property.

Parameters:
  • current_table – The table to be replaced.
  • new_table – The table to replace with.
Returns:

Self.

tables_
static wrap_constant(val, wrapper_cls=None)[source]

Used for wrapping raw inputs such as numbers in Criterions and Operator.

For example, the expression F(‘abc’)+1 stores the integer part in a ValueWrapper object.

Parameters:
  • val – Any value.
  • wrapper_cls – A pypika class which wraps a constant value so it can be handled as a component of the query.
Returns:

Raw string, number, or decimal values will be returned in a ValueWrapper. Fields and other parts of the querybuilder will be returned as inputted.

static wrap_json(val, wrapper_cls=None)[source]
class pypika.terms.Tuple(*values)[source]

Bases: pypika.terms.Criterion

fields()[source]
get_sql(**kwargs)[source]
is_aggregate

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

replace_table(*args, **kwargs)
class pypika.terms.ValueWrapper(value, alias=None)[source]

Bases: pypika.terms.Term

fields()[source]
get_sql(quote_char=None, secondary_quote_char="'", **kwargs)[source]
get_value_sql(**kwargs)[source]
is_aggregate = None
class pypika.terms.Values(field)[source]

Bases: pypika.terms.Term

get_sql(quote_char=None, **kwargs)[source]
class pypika.terms.WindowFrameAnalyticFunction(name, *args, **kwargs)[source]

Bases: pypika.terms.AnalyticFunction

class Edge(value=None)[source]

Bases: object

get_frame_sql()[source]
get_partition_sql(**kwargs)[source]
range(*args, **kwargs)
rows(*args, **kwargs)
pypika.utils module
exception pypika.utils.CaseException[source]

Bases: Exception

exception pypika.utils.DialectNotSupported[source]

Bases: Exception

exception pypika.utils.FunctionException[source]

Bases: Exception

exception pypika.utils.GroupingException[source]

Bases: Exception

exception pypika.utils.JoinException[source]

Bases: Exception

exception pypika.utils.QueryException[source]

Bases: Exception

exception pypika.utils.RollupException[source]

Bases: Exception

exception pypika.utils.UnionException[source]

Bases: Exception

pypika.utils.builder(func)[source]

Decorator for wrapper “builder” functions. These are functions on the Query class or other classes used for building queries which mutate the query and return self. To make the build functions immutable, this decorator is used which will deepcopy the current instance. This decorator will return the return value of the inner function or the new copy of the instance. The inner function does not need to return self.

pypika.utils.format_alias_sql(sql, alias, quote_char=None, alias_quote_char=None, **kwargs)[source]
pypika.utils.format_quotes(value, quote_char)[source]
pypika.utils.ignore_copy(func)[source]

Decorator for wrapping the __getattr__ function for classes that are copied via deepcopy. This prevents infinite recursion caused by deepcopy looking for magic functions in the class. Any class implementing __getattr__ that is meant to be deepcopy’d should use this decorator.

deepcopy is used by pypika in builder functions (decorated by @builder) to make the results immutable. Any data model type class (stored in the Query instance) is copied.

pypika.utils.resolve_is_aggregate(values)[source]

Resolves the is_aggregate flag for an expression that contains multiple terms. This works like a voter system, each term votes True or False or abstains with None.

Parameters:values – A list of booleans (or None) for each term in the expression
Returns:If all values are True or None, True is returned. If all values are None, None is returned. Otherwise, False is returned.
pypika.utils.validate(*args, exc=None, type=None)[source]
Module contents

PyPika is divided into a couple of modules, primarily the queries and terms modules.

pypika.queries

This is where the Query class can be found which is the core class in PyPika. Also, other top level classes such as Table can be found here. Query is a container that holds all of the Term types together and also serializes the builder to a string.

pypika.terms

This module contains the classes which represent individual parts of queries that extend the Term base class.

pypika.functions

Wrappers for common SQL functions are stored in this package.

pypika.enums

Enumerated values are kept in this package which are used as options for Queries and Terms.

pypika.utils

This contains all of the utility classes such as exceptions and decorators.

Indices and tables

License

Copyright 2016 KAYAK Germany, GmbH

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with the License. You may obtain a copy of the License at

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Crafted with ♥ in Berlin.