

    
      
          
            
  
PyPICloud - PyPI backed by S3 or GCS

This is an implementation of the PyPI server for hosting your own python
packages. It uses a three layer system for storing and serving files:

+---------+        +-------+        +-----------+
| Storage | <----> | Cache | <----> | Pypicloud |
+---------+        +-------+        +-----------+





The Storage layer is where the actual package files will be kept and served
from. This can be S3, GCS, or a directory on the server running pypicloud.

The Cache layer stores information about which packages are in stored in
Storage. This can be DynamoDB, Redis, or any SQL database.

The Pypicloud webserver itself is stateless, and you can have any number of
them as long as they use the same Cache. (Scaling beyond a single cache requires
some additional work.)

Pypicloud is designed to be easy to set up for small deploys, and easy to scale
up when you need it. Go get started!

Code lives here: https://github.com/stevearc/pypicloud


User Guide



	Getting Started
	Installation

	Configuration

	Running

	Installing Packages

	Uploading Packages

	Searching Packages





	Advanced Configurations
	AWS

	Configuration

	Running





	Configuration Options
	PyPICloud

	Storage

	Cache

	Access Control

	Beaker





	Storage Backends
	Files

	S3

	CloudFront

	Google Cloud Storage





	Caching Backends
	SQLAlchemy

	Redis

	DynamoDB





	Access Control
	Users and Groups

	Config File

	SQL Database

	LDAP Authentication

	AWS Secrets Manager

	Remote Server





	Deploying to Production
	Configuration

	WSGI Server

	HTTPS and Reverse Proxies





	Upgrading
	Cache Database

	Access Control

	Changing Storage





	Extending PyPICloud

	HTTP API
	/simple/ (or /pypi/)

	/api/

	/admin/





	Developing

	Changelog
	1.0.11 - 2019/4/5

	1.0.10 - 2018/11/26

	1.0.9 - 2018/9/6

	1.0.8 - 2018/8/27

	1.0.7 - 2018/8/14

	1.0.6 - 2018/6/11

	1.0.5 - 2018/4/24

	1.0.4 - 2018/4/1

	1.0.3 - 2018/3/26

	1.0.2 - 2018/1/26

	1.0.1 - 2017/12/3

	1.0.0 - 2017/10/29

	0.5.6 - 2017/10/29

	0.5.5 - 2017/9/9

	0.5.4 - 2017/8/10

	0.5.3 - 2017/4/30

	0.5.2 - 2017/4/22

	0.5.1 - 2017/4/17

	0.5.0 - 2017/3/29

	0.4.6 - 2017/4/17

	0.4.5 - 2017/3/25

	0.4.4 - 2016/10/5

	0.4.3 - 2016/8/2

	0.4.2 - 2016/6/16

	0.4.1 - 2016/6/8

	0.4.0 - 2016/5/16

	0.3.13 - 2016/6/8

	0.3.12 - 2016/5/5

	0.3.11 - 2016/4/28

	0.3.10 - 2016/3/21

	0.3.9 - 2016/3/13

	0.3.8 - 2016/3/10

	0.3.7 - 2016/1/12

	0.3.6 - 2015/12/3

	0.3.5 - 2015/11/15

	0.3.4 - 2015/8/30

	0.3.3 - 2015/7/17

	0.3.2 - 2015/7/7

	0.3.1 - 2015/6/18

	0.3.0 - 2015/6/16

	0.2.13 - 2015/5/27

	0.2.12 - 2015/5/14

	0.2.11 - 2015/5/11

	0.2.10 - 2015/2/27

	0.2.9 - 2014/12/14

	0.2.8 - 2014/11/11

	0.2.7 - 2014/10/2

	0.2.6 - 2014/8/3

	0.2.5 - 2014/6/9

	0.2.4 - 2014/4/29

	0.2.3 - 2014/3/13

	0.2.2 - 2014/3/13

	0.2.1 - 2014/3/12

	0.2.0 - 2014/3/12

	0.1.0 - 2014/1/20












API Reference



	pypicloud package
	Subpackages
	pypicloud.access package

	pypicloud.cache package

	pypicloud.storage package

	pypicloud.views package





	Submodules
	pypicloud.auth module

	pypicloud.lambda_scripts module

	pypicloud.models module

	pypicloud.route module

	pypicloud.scripts module

	pypicloud.util module





	Module contents












Indices and tables


	Index


	Module Index


	Search Page










          

      

      

    

  

    
      
          
            
  
Getting Started

There is a docker container [https://github.com/stevearc/pypicloud-docker]
if you’re into that sort of thing.


Installation

First create and activate a virtualenv to contain the installation:

$ virtualenv mypypi
New python executable in mypypi/bin/python
Installing setuptools.............done.
Installing pip...............done.
$ source mypypi/bin/activate
(mypypi)$





Now install pypicloud and waitress. To get started, we’re using
waitress [https://pylons.readthedocs.org/projects/waitress/en/latest/] as
the WSGI server because it’s easy to set up.

(mypypi)$ pip install pypicloud[server]








Configuration

Generate a server configuration file. Choose filesystem when it asks where
you want to store your packages.

(mypypi)$ ppc-make-config -t server.ini






Warning

Note that this configuration should only be used for testing.  If you want
to set up your server for production, read the section on deploying.






Running

You can run the server using pserve

(mypypi)$ pserve server.ini





The server is running on port 6543. You can view the web interface at
http://localhost:6543/

Packages will be stored in a directory named packages next to the
server.ini file. Pypicloud will use a SQLite database in the same location
to cache the package index. This is the simplest configuration for pypicloud
because it is entirely self-contained on a single server.




Installing Packages

After you have the webserver started, you can install packages using:

pip install -i http://localhost:6543/simple/ PACKAGE1 [PACKAGE2 ...]





If you want to configure pip to always use pypicloud, you can put your
preferences into the $HOME/.pip/pip.conf file:

[global]
index-url = http://localhost:6543/simple/








Uploading Packages

To upload packages, you will need to add your server as an index server inside
your $HOME/.pypirc:

[distutils]
index-servers = pypicloud

[pypicloud]
repository: http://localhost:6543/simple/
username: <<username>>
password: <<password>>





Then you can run:

python setup.py sdist upload -r pypicloud








Searching Packages

After packages have been uploaded, you can search for them via pip:

pip search -i http://localhost:6543/pypi QUERY1 [QUERY2 ...]





If you want to configure pip to use pypicloud for search, you can update your
preferences in the $HOME/.pip/pip.conf file:

[search]
index = http://localhost:6543/pypi





Note that this will ONLY return results from the pypicloud repository. The
official PyPi repository will not be queried (regardless of your fallback setting)







          

      

      

    

  

    
      
          
            
  
Advanced Configurations

Now we’re going to try something a bit more complicated. We’re going to store
the packages in S3 and cache the package index in DynamoDB.

Follow the same installation instructions as before.


AWS

If you have not already, create an access key and secret by following the AWS
guide [http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html]

The default configuration should work, but if you get permission errors or
403’s, you will need to set a policy on your bucket.




Configuration

This time when you create a config file (ppc-make-config -t server_s3.ini),
choose S3 when it asks where you want to store your packages. Then add the
following configuration (replacing the <> strings with the values you want)

pypi.fallback = redirect

pypi.db = dynamo
db.region_name = <region>

pypi.storage = s3
storage.bucket = <my_bucket>
storage.region_name = <region>








Running

Since you’re using AWS services now, you need credentials. Put them somewhere
that boto can find them [http://boto3.readthedocs.io/en/latest/guide/configuration.html#configuring-credentials].
The easiest method is the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
environment variables, but you can also put them directly into the
server_s3.ini file if you wish (see dynamo and
s3)

Now you can run pserve server_s3.ini. On the first run it should create the S3
bucket and DynamoDB tables for you (you may need to tweak the provisioned
capacity for the DynamoDB tables, depending on your expected load).

If you uploaded any packages to the first server and have them stored locally,
you can migrate them to S3 using the ppc-migrate tool:

ppc-migrate server.ini server_s3.ini











          

      

      

    

  

    
      
          
            
  
Configuration Options

This is a list of all configuration parameters for pypicloud


PyPICloud


pypi.fallback

Argument: {‘redirect’, ‘cache’, ‘none’}, optional

This option defines what the behavior is when a requested package is not found
in the database. (default ‘redirect’)

redirect - Return a 302 to the package at the fallback_base_url.

cache - Download the package from fallback_base_url, store it in the
backend, and serve it. User must have cache_update permissions.

none - Return a 404

See also pypi.always_show_upstream below.

See Fallbacks for more detail on exactly how each fallback option will
function.




pypi.always_show_upstream

Argument: bool, optional

Default False.

This adjusts the fallback behavior when one or more versions of the requested
package are stored in pypicloud. If False, pypicloud will only show the
client the versions that are stored. If True, the local versions will be
shown with the versions found at the fallback_base_url.




pypi.fallback_url


DEPRECATED see pypi.fallback_base_url

Argument: string, optional



The index server to handle the behavior defined in pypi.fallback (default
https://pypi.python.org/simple)




pypi.fallback_base_url

Argument: string, optional

This takes precendence over pypi.fallback by causing redirects to go to:
pypi.fallback_base_url/<simple|pypi>. (default https://pypi.python.org)




pypi.default_read

Argument: list, optional

List of groups that are allowed to read packages that have no explicit user or
group permissions (default [‘authenticated’])




pypi.default_write

Argument: list, optional

List of groups that are allowed to write packages that have no explicit user or
group permissions (default no groups, only admin users)




pypi.cache_update

Argument: list, optional

Only used when pypi.fallback = cache. This is
the list of groups that are allowed to trigger the operation that fetches
packages from fallback_base_url.  (default [‘authenticated’])




pypi.allow_overwrite

Argument: bool, optional

Allow users to upload packages that will overwrite an existing version (default
False)




pypi.realm

Argument: string, optional

The HTTP Basic Auth realm (default ‘pypi’)




pypi.download_url

Argument: string, optional

Overide for the root server URL displayed in the banner of the homepage.




pypi.stream_files

Argument: bool, optional

Whether or not to stream the raw package data from the storage database,
as opposed to returning a redirect link to the storage database. This is useful
for taking advantage of the local pip cache, which caches based on the URL
returned. Note that this will in most scenarios make fetching a package slower,
since the server will download the full package data before sending it to the client.




pypi.package_max_age

Argument: int, optional

The max-age parameter (in seconds) to use in the Cache-Control header when downloading packages.
If not set, the default will be 0, which will tell pip not to cache any downloaded packages.
In order to take advantage of the local pip cache, you should set this value to a relatively
high number.






Storage


pypi.storage

Argument: string, optional

A dotted path to a subclass of IStorage. The
default is FileStorage. Each storage option may
have additional configuration options. Documentation for the built-in storage
backends can be found at Storage Backends.






Cache


pypi.db

Argument: string, optional

A dotted path to a subclass of ICache. The
default is SQLCache. Each cache option
may have additional configuration options. Documentation for the built-in
cache backends can be found at Caching Backends.






Access Control


pypi.auth

Argument: string, optional

A dotted path to a subclass of IAccessBackend. The
default is ConfigAccessBackend. Each backend option
may have additional configuration options. Documentation for the built-in
backends can be found at Access Control.






Beaker

Beaker is the session manager that handles user auth for the web interface.
There are many configuration options, but these are the only ones you need to
know about.


session.encrypt_key

Argument: string

Encryption key to use for the AES cipher. Here is a reasonable way to generate one:

$ python -c 'import os, base64; print(base64.b64encode(os.urandom(32)))'








session.validate_key

Argument: string

Validation key used to sign the AES encrypted data.




session.secure

Argument: bool, optional

If True, only set the session cookie for HTTPS connections (default False).
When running a production server, make sure this is always set to true.









          

      

      

    

  

    
      
          
            
  
Storage Backends

The storage backend is where the actual package files are kept.


Files

This will store your packages in a directory on disk. It’s much simpler and
faster to set up if you don’t need the reliability and scalability of S3.

Set pypi.storage = file OR pypi.storage = pypicloud.storage.FileStorage
OR leave it out completely since this is the default.


storage.dir

Argument: string

The directory where the package files should be stored.






S3

This option will store your packages in S3.


Note

Be sure you have set the correct S3 Policy.



Set pypi.storage = s3 OR pypi.s3 = pypicloud.storage.S3Storage

A few key, required options are mentioned below, but pypicloud attempts to
support all options that can be passed to resource [http://boto3.readthedocs.io/en/latest/reference/core/session.html#boto3.session.Session.resource]
or to the Config [https://botocore.readthedocs.io/en/stable/reference/config.html#botocore.config.Config]
object. In general you can simply prefix the option with storage. and
pypicloud will pass it on. For example, to set the signature version on the
Config object:

storage.signature_version = s3v4





Note that there is a s3 option dict as well. Those options should also just
be prefixed with storage.. For example:

storage.use_accelerate_endpoint = true





Will pass the Config object the option Config(s3={'use_accelerate_endpoint': True}).


Note

If you plan to run pypicloud in multiple regions, read more about
syncing pypicloud caches using S3 notifications




storage.bucket

Argument: string

The name of the S3 bucket to store packages in.




storage.region_name

Argument: string, semi-optional

The AWS region your bucket is in. If your bucket does not yet exist, it will be
created in this region on startup. If blank, the classic US region will be used.


Warning

If your bucket name has a . character in it, or if it is in a newer region
(such as eu-central-1), you must specify the storage.region_name!






storage.aws_access_key_id, storage.aws_secret_access_key

Argument: string, optional

Your AWS access key id and secret access key. If they are not specified then
pypicloud will attempt to get the values from the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY or any other credentials
source [http://boto3.readthedocs.io/en/latest/guide/configuration.html#configuring-credentials].




storage.prefix

Argument: string, optional

If present, all packages will be prefixed with this value when stored in S3.
Use this to store your packages in a subdirectory, such as “packages/”




storage.prepend_hash

Argument: bool, optional

Prepend a 4-letter hash to all S3 keys (default True). This helps S3 load
balance when traffic scales. See the AWS documentation [http://docs.aws.amazon.com/AmazonS3/latest/dev/request-rate-perf-considerations.html]
on the subject.




storage.expire_after

Argument: int, optional

How long (in seconds) the generated S3 urls are valid for (default 86400 (1
day)). In practice, there is no real reason why these generated urls need to
expire at all. S3 does it for security, but expiring links isn’t part of the
python package security model. So in theory you can bump this number up.




storage.redirect_urls

Argument: bool, optional

The short story: set this to true if you only use pip and don’t have to
support easy_install. It will dramatically speed up your server.

The long story: Why you should set redirect_urls = True




storage.server_side_encryption

Argument: str, optional

Enables AES-256 transparent server side encryption. See the AWS documention [http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html].
Default is None.




storage.object_acl

Argument: string, optional

Sets uploaded object’s “canned” ACL. See the AWS documentation [http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl].
Default is “private”, i.e. only the account owner will get full access.
May be useful, if the bucket and pypicloud are hosted in different AWS accounts.




storage.public_url

Argument: bool, optional

If true, use public urls (in the form
https://us-east-1.s3.amazonaws.com/<bucket>/<path>) instead of signed urls. If
you configured your bucket to be public and are okay with anyone being able to
read your packages, this will give you a speed boost (no expensive hashing
operations) and should provide better HTTP caching behavior for the packages.
Default is false.






CloudFront

This option will store your packages in S3 but use CloudFront to deliver the packages.
This is an extension of the S3 storage backend and require the same settings as above,
but also the settings listed below.

Set pypi.storage = cloudfront OR pypi.s3 = pypicloud.storage.CloudFrontS3Storage


storage.cloud_front_domain

Argument: string

The CloudFront domain you have set up. This CloudFront distribution must be set up to
use your S3 bucket as the origin.

Example: https://dabcdefgh12345.cloudfront.net




storage.cloud_front_key_id

Argument: string, optional

If you want to protect your packages from public access you need to set up the CloudFront
distribution to use signed URLs. This setting specifies the key id of the CloudFront key pair [http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-trusted-signers.html]
that is currently active on your AWS account.




storage.cloud_front_key_file

Argument: string, optional

Only needed when setting up CloudFront with signed URLs. This setting should be
set to the full path of the CloudFront private key file.




storage.cloud_front_key_string

Argument: string, optional

The same as cloud_front_key_file, but contains the raw private key instead
of a path to a file.






Google Cloud Storage

This option will store your packages in GCS.

Set pypi.storage = gcs OR pypi.s3 = pypicloud.storage.GoogleCloudStorage


Note

The gcs client libraries are not installed by default.  To use this backend,
you should install pypicloud with pip install pypicloud[gcs].



This backend supports most of the same configuration settings as the S3 backend,
and is configured in the same manner as that backend (via config settings of the
form storage.<key> = <value>).

Settings supported by the S3 backend that are not currently supported by the
GCS backend are server_side_encryption and public_url.

This backend requires a service account JSON key file in order to authenticate
against the GCS API, even when the server is running in Google Cloud Platform (
for example, on Google Compute Engine).  The JSON key filename is passed to
pypicloud via one of two mechanisms:


	By setting the GOOGLE_APPLICATION_CREDENTIALS environment variable. For example:

GOOGLE_APPLICATION_CREDENTIALS=/path/to/my/keyfile.json pserve pypicloud.ini







	Via the config setting storage.gcp_service_account_json_filename, documented below.




For more information on setting up a service account, see the GCS documentation [https://cloud.google.com/storage/docs/authentication#service_accounts].


storage.bucket

Argument: string

The name of the GCS bucket to store packages in.




storage.region_name

Argument: string, semi-optional

The GCS region your bucket is in. If your bucket does not yet exist, it will be
created in this region on startup. If blank, a default US multi-regional bucket
will be created.




storage.gcp_service_account_json_filename

Argument: string, semi-optional

Path to a local file containing a GCP service account JSON key.  This argument
is required unless the path is provided via the GOOGLE_APPLICATION_CREDENTIALS
environment variable.




storage.gcp_project_id

Argument: string, optional

ID of the GCP project that contains your storage bucket.  This is only used when
creating the bucket, and if you would like the bucket to be created in a project
other than the project to which your GCP service account belongs.




storage.prefix

Argument: string, optional

If present, all packages will be prefixed with this value when stored in GCS.
Use this to store your packages in a subdirectory, such as “packages/”




storage.prepend_hash

Argument: bool, optional

Prepend a 4-letter hash to all GCS keys (default True). This may help GCS load
balance when traffic scales, although this is not as well-documented for GCS
as for S3.




storage.expire_after

Argument: int, optional

How long (in seconds) the generated GCS urls are valid for (default 86400 (1
day)). In practice, there is no real reason why these generated urls need to
expire at all. GCS does it for security, but expiring links isn’t part of the
python package security model. So in theory you can bump this number up.




storage.redirect_urls

Argument: bool, optional

The short story: set this to true if you only use pip and don’t have to
support easy_install. It will dramatically speed up your server.

The long story: Why you should set redirect_urls = True




storage.object_acl

Argument: string, optional

Sets uploaded object’s “predefined” ACL. See the GCS documentation [https://cloud.google.com/storage/docs/access-control/lists#predefined-acl].
Default is “private”, i.e. only the account owner will get full access.
May be useful, if the bucket and pypicloud are hosted in different GCS accounts.




storage.storage_class

Argument: string, optional

Sets uploaded object’s storage class.  See the GCS documentation [https://cloud.google.com/storage/docs/per-object-storage-class]. Defaults to
the default storage class of the bucket, if the bucket is preexisting, or
“regional” otherwise.









          

      

      

    

  

    
      
          
            
  
Caching Backends

PyPICloud stores the packages in a storage backend (typically S3), but that backend
is not necessarily efficient for frequently reading metadata. So instead of
hitting S3 every time we need to find a list of package versions, we store all
that metadata in a cache. The cache does not have to be backed up because it is
only a local cache of data that is permanently stored in the storage backend.


SQLAlchemy

Set pypi.db = sql OR pypi.db = pypicloud.cache.SQLCache OR leave it out
completely since this is the default.


db.url

Argument: string

The database url to use for the caching database. Should be a SQLAlchemy url [http://docs.sqlalchemy.org/en/rel_0_9/core/engines.html]


	sqlite: sqlite:///%(here)s/db.sqlite


	sqlite (in-memory): sqlite://


	mysql: mysql://root@127.0.0.1:3306/pypi?charset=utf8mb4


	postgres: postgresql://postgres@127.0.0.1:5432/postgres





Warning

You must specify the charset= parameter if you’re using MySQL, otherwise
it will choke on unicode package names. If you’re using 5.5.3 or greater you
can specify the utf8mb4 charset, otherwise use utf8.






db.graceful_reload

Argument: bool, optional

When reloading the cache from storage, keep the cache in a usable state while
adding and removing the necessary packages. Note that this may take longer
because multiple passes will be made to ensure correctness. (default False)






Redis

Set pypi.db = redis OR pypi.db = pypicloud.cache.RedisCache

You will need to pip install redis before running the server.


db.url

Argument: string

The database url to use for the caching database. The format looks like this:
redis://username:password@localhost:6379/0




db.graceful_reload

Argument: bool, optional

When reloading the cache from storage, keep the cache in a usable state while
adding and removing the necessary packages. Note that this may take longer
because multiple passes will be made to ensure correctness. (default False)






DynamoDB

Set pypi.db = dynamo OR pypi.db = pypicloud.cache.dynamo.DynamoCache


Note

Make sure to pip install pypicloud[dynamo] before running the server to
install the necessary DynamoDB libraries. Also, be sure you have set the
correct DynamoDB Policy.




db.region_name

Argument: string

The AWS region to use for the cache tables.




db.aws_access_key_id, db.aws_secret_access_key

Argument: string, optional

Your AWS access key id and secret access key. If they are not specified then
pypicloud will attempt to get the values from the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY or any other credentials
source [http://boto3.readthedocs.io/en/latest/guide/configuration.html#configuring-credentials].




db.namespace

Argument: string, optional

If specified, all of the created Dynamo tables will have this as a prefix in
their name. Useful to avoid name collisions.




db.tablenames

Argument: list<string>, optional

If specified, these will be the names of the two DynamoDB tables. Must be a
2-element whitespace-delimited list. Note that these names will still be
prefixed by the db.namespace. (default DynamoPackage PackageSummary)




db.host

Argument: string, optional

The hostname to connect to. This is normally used to connect to a DynamoDB
Local instance.




db.port

Argument: int, optional

The port to connect to when using db.host (default 8000)




db.secure

Argument: bool, optional

Force https connection when using db.host (default False)




db.graceful_reload

Argument: bool, optional

When reloading the cache from storage, keep the cache in a usable state while
adding and removing the necessary packages. Note that this may take longer
because multiple passes will be made to ensure correctness. (default False)









          

      

      

    

  

    
      
          
            
  
Access Control

PyPICloud has a complete access control system that allows you to fine-tune who
has access to your packages. There are several choices for where to store your
user credentials and access rules.

If you ever need to change your access backend, or you want to back up your
current state, check out the import/export functionality.

If you want an in-depth look at your options for managing users, see the
User Management section.


Users and Groups

The access control uses a combination of users and groups. A group is a list of
users. There are also admin users, who always have read/write permissions for
everything, and can do a few special operations besides. There are two special
groups:


	everyone - This group refers to any anonymous user making a request


	authenticated - This group refers to all logged-in users




You will never need to specify the members of these groups, as membership is
automatic.




Config File

The simplest access control available (which is the default) pulls user, group,
and package permission information directly from the config file.

Here is a sample configuration to get you started:

# USERS
# user: stevearc, pass: gunface
user.stevearc = $5$rounds=80000$yiWi67QBJLDTvbI/$d6qIG/bIoM3hp0lxH8v/vzxg8Qc4CJbxbxiUH4MlnE7
# user: dsa, pass: paranoia
user.dsa = $5$rounds=80000$U/lot7eW6gFvuvna$KDyrQvi40XXWzMRkBq1Z/0odJEXzqUVNaPIArL/W0s6
# user: donlan, pass: osptony
user.donlan = $5$rounds=80000$Qjz9eRNXrybydMz.$PoD.5vAR9Z2IYlOCPYbza1cKvQ.8kuz1cP0zKl314g0

# GROUPS
group.sharkfest =
    stevearc
    dsa
group.brotatos =
    donlan
    dsa

# PACKAGES
package.django_unchained.user.stevearc = rw
package.django_unchained.group.sharkfest = rw

package.polite_requests.user.dsa = rw
package.polite_requests.group.authenticated = r
package.polite_requests.group.brotatos = rw

package.pyramid_head.group.brotatos = rw
package.pyramid_head.group.everyone = r





Here is a table that describes who has what permissions on these packages. Note
that if the entry is none, that user will not even see the package listed,
depending on your pypi.default_read and pypi.default_write settings.









	User

	django_unchained

	polite_requests

	pyramid_head





	stevearc

	rw (user)

	r (authenticated)

	r (everyone)



	dsa

	rw (sharkfest)

	rw (user)

	rw (brotatos)



	donlan

	none

	rw (brotatos)

	rw (brotatos)



	everyone

	none

	none

	r (everyone)







Configuration

Set pypi.auth = config OR pypi.auth =
pypicloud.access.ConfigAccessBackend OR leave it out completely since this is
the default.


auth.rounds

Argument: int, optional

The number of rounds to use when hashing passwords. See PassLib’s docs on
choosing rounds values [http://passlib.readthedocs.io/en/stable/narr/hash-tutorial.html#choosing-the-right-rounds-value].
The default value will be secure, but possibly slow. If you find the hashing to
take a long time, you can edit this value lower.




user.<username>

Argument: string

Defines a single user login. You may specify any number of users in the file.
Use ppc-gen-password to create the password hashes.




package.<package>.user.<user>

Argument: {r, rw}

Give read or read/write access on a package to a single user.




package.<package>.group.<group>

Argument: {r, rw}

Give read or read/write access on a package to a group of users. The group must
be defined in a group.<group> field.




auth.admins

Argument: list

Whitespace-delimited list of users with admin privileges. Admins have
read/write access to all packages, and can perform maintenance tasks.




group.<group>

Argument: list

Whitespace-delimited list of users that belong to this group. Groups can have
separately-defined read/write permissions on packages.








SQL Database

You can opt to store all user and group permissions inside a SQL database. The
advantages are that you can dynamically change these permissions using the web
interface. The disadvantages are that this information is not stored anywhere
else, so unlike the cache database, it actually needs to be
backed up. There is an import/export command that makes this easy.

After you set up a new server using this backend, you will need to use the web
interface to create the initial admin user.


Configuration

Set pypi.auth = sql OR pypi.auth =
pypicloud.access.sql.SQLAccessBackend

The SQLite engine is constructed by calling engine_from_config [http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.engine_from_config]
with the prefix auth.db., so you can pass in any valid parameters that way.


auth.db.url

Argument: string

The database url to use for storing user and group permissions. This may be the
same database as db.url (if you are also using the SQL caching database).




auth.rounds

Argument: int, optional

The number of rounds to use when hashing passwords. See auth.rounds




auth.signing_key

Argument: string, optional

Encryption key to use for the token signing HMAC. Here is a reasonable way to
generate one:

$ python -c 'import os, base64; print(base64.b64encode(os.urandom(32)))'





For more about generating and using tokens, see Registration via Tokens.
Changing this value will retroactively apply to tokens issued in the past.




auth.token_expire

Argument: number, optional

How long (in seconds) the generated registration tokens will be valid for
(default one week).








LDAP Authentication

You can opt to authenticate all users through a remote LDAP or compatible
server. There is aggressive caching in the LDAP backend in order to keep
chatter with your LDAP server at a minimum. If you experience a change in your
LDAP layout, group modifications etc, restart your pypicloud process.

Note that you will need to pip install pypicloud[ldap] OR
pip install -e .[ldap] (from source) in order to get the dependencies for
the LDAP authentication backend.

At the moment there is no way for pypicloud to discern groups from LDAP, so it
only has the built-in admin, authenticated, and everyone as the
available groups. All authorization is configured using pypi.default_read,
pypi.default_write, and pypi.cache_update. If you need to use groups,
you can use the auth.ldap.fallback setting below.


Configuration

Set pypi.auth = ldap OR pypi.auth =
pypicloud.access.ldap_.LDAPAccessBackend


auth.ldap.url

Argument: string

The LDAP url to use for remote verification. It should include the protocol and
port, as an example: ldap://10.0.0.1:389




auth.ldap.service_dn

Argument: string, optional

The FQDN of the LDAP service account used. A service account is required to
perform the initial bind with. It only requires read access to your LDAP. If not
specified an anonymous bind will be used.




auth.ldap.service_password

Argument: string, optional

The password for the LDAP service account.




auth.ldap.service_username

Argument: string, optional

If provided, this will allow allow you to log in to the pypicloud interface as
the provided service_dn using this username. This account will have admin
privileges.




auth.ldap.user_dn_format

Argument: string, optional

This is used to find a user when they attempt to log in. If the username is part
of the DN, then you can provide this templated string where {username} will
be replaced with the searched username. For example, if your LDAP directory
looks like this:

dn: CN=bob,OU=users
cn: bob
-





Then you could use the setting auth.ldap.user_dn_format =
CN={username},OU=users.

This option is the preferred method if possible because you can provide the full
DN when doing the search, which is more efficient. If your directory is not in
this format, you will need to instead use base_dn and
user_search_filter.




auth.ldap.base_dn

Argument: string, optional

The base DN under which all of your user accounts are organized in LDAP. Used
in combination with the user_search_filter to find users. See also:
user_dn_format.

base_dn and user_search_filter should be used if your directory format
does not put the username in the DN of the user entry. For example:

dn: CN=Robert Paulson,OU=users
cn: Robert Paulson
unixname: bob
-





For that directory structure, you would use the following settings:

auth.ldap.base_dn = OU=users
auth.ldap.user_search_filter = (unixname={username})








auth.ldap.user_search_filter

Argument: string, optional

An LDAP search filter, which when used with the base_dn results a user entry.
The string {username} will be replaced with the username being searched for.
For example, (cn={username}) or (&(objectClass=person)(name={username}))

Note that the result of the search must be exactly one entry.




auth.ldap.admin_field

Argument: string, optional

When fetching the user entry, check to see if the admin_field attribute
contains any of admin_value. If so, the user is an admin. This will
typically be used with the memberOf overlay [https://www.openldap.org/doc/admin24/overlays.html#Reverse%20Group%20Membership%20Maintenance].

For example, if this is your LDAP directory:

dn: uid=user1,ou=test
cn: user1
objectClass: posixAccount

dn: cn=pypicloud_admin,dc=example,dc=org
objectClass: groupOfUniqueNames
uniqueMember: uid=user1,ou=test





You would use these settings:

auth.ldap.admin_field = uniqueMemberOf
auth.ldap.admin_value = cn=pypicloud_admin,dc=example,dc=org





Since the logic is just checking the value of an attribute, you could also use
admin_value to specify the usernames of admins:

auth.ldap.admin_field = cn
auth.ldap.admin_value =
  user1
  user2








auth.ldap.admin_value

Argument: string, optional

See admin_field




auth.ldap.admin_group_dn

Argument: string, optional

An alternative to using admin_field and admin_value. If you don’t have
access to the memberOf overlay, you can provide admin_group_dn. When a
user is looked up, pypicloud will search this group to see if the user is a
member.

Note that to use this setting you must also use user_dn_format.




auth.ldap.cache_time

Argument: int, optional

When a user entry is pulled via searching with base_dn and
user_search_filter, pypicloud will cache that entry to decrease load on your
LDAP server. This value determines how long (in seconds) to cache the user
entries for.

The default behavior is to cache users forever (clearing the cache requires a
server restart).




auth.ldap.ignore_cert

Argument: bool, optional

If true then the ldap option to not verify the certificate is used. This is not
recommended but useful if the cert name does not match the fqdn. Default is false.




auth.ldap.ignore_referrals

Argument: bool, optional

If true then the ldap option to not follow referrals is used. This is not
recommended but useful if the referred servers does not work. Default is false.




auth.ldap.ignore_multiple_results

Argument: bool, optional

If true then the a warning is issued if multiple users are found. This is not
recommended but useful if there are more than user matching a given search criteria.
Default is false.




auth.ldap.fallback

Argument: string, optional

Since we do not support configuring groups or package permissions via LDAP, this
setting allows you to use another system on top of LDAP for that purpose. LDAP
will be used for user login and to determine admin status, but this other access
backend will be used to determine group membership and package permissions.

Currently the only value supported is config, which will use the
Config File values.








AWS Secrets Manager

This stores all the user data in a single JSON blob using AWS Secrets Manager.

After you set up a new server using this backend, you will need to use the web
interface to create the initial admin user.


Configuration

Set pypi.auth = aws_secrets_manager OR pypi.auth =
pypicloud.access.aws_secrets_manager.AWSSecretsManagerAccessBackend

The JSON format should look like this:

{
    "users": {
        "user1": "hashed_password1",
        "user2": "hashed_password2",
        "user3": "hashed_password3",
        "user4": "hashed_password4",
        "user5": "hashed_password5",
    },
    "groups": {
        "admins": [
        "user1",
        "user2"
        ],
        "group1": [
        "user3"
        ]
    },
    "admins": [
        "user1"
    ]
    "packages": {
        "mypackage": {
            "groups": {
                "group1": ["read', "write"],
                "group2": ["read"],
                "group3": [],
            },
            "users": {
                "user1": ["read", "write"],
                "user2": ["read"],
                "user3": [],
                "user5": ["read"],
            }
        }
    }
}





If the secret is not already created, it will be when you make edits using the
web interface.


auth.region_name

Argument: string

The AWS region you’re storing your secrets in




auth.secret_id

Argument: string

The unique ID of the secret




auth.aws_access_key_id, auth.aws_secret_access_key

Argument: string, optional

Your AWS access key id and secret access key. If they are not specified then
pypicloud will attempt to get the values from the environment variables
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY or any other credentials
source [http://boto3.readthedocs.io/en/latest/guide/configuration.html#configuring-credentials].




auth.aws_session_token

Argument: string, optional

The session key for your AWS account. This is only needed when you are using
temporary credentials. See more: http://boto3.readthedocs.io/en/latest/guide/configuration.html#configuration-file




auth.profile_name

Argument: string, optional

The credentials profile to use when reading credentials from the shared credentials file [http://boto3.readthedocs.io/en/latest/guide/configuration.html#shared-credentials-file]




auth.kms_key_id

Argument: string, optional

The ARN or alias of the AWS KMS customer master key (CMK) to be used to encrypt the secret. See more: https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html








Remote Server

This implementation allows you to delegate all access control to another
server. If you already have an application with a user database, this allows
you to use that data directly.

You will need to pip install requests before running the server.


Configuration

Set pypi.auth = remote OR pypi.auth =
pypicloud.access.RemoteAccessBackend


auth.backend_server

Argument: string

The base host url to connect to when fetching access data (e.g.
http://myserver.com)




auth.user

Argument: string, optional

If provided, the requests will use HTTP basic auth with this user




auth.password

Argument: string, optional

If auth.user is provided, this will be the HTTP basic auth password




auth.uri.verify

Argument: string, optional

The uri to hit when verifying a user’s password (default /verify).

params: username, password

returns: bool




auth.uri.groups

Argument: string, optional

The uri to hit to retrieve the groups a user is a member of (default
/groups).

params: username

returns: list




auth.uri.group_members

Argument: string, optional

The uri to hit to retrieve the list of users in a group (default
/group_members).

params: group

returns: list




auth.uri.admin

Argument: string, optional

The uri to hit to determine if a user is an admin (default /admin).

params: username

returns: bool




auth.uri.group_permissions

Argument: string, optional

The uri that returns a mapping of groups to lists of permissions (default
/group_permissions). The permission lists can contain zero or more of
(‘read’, ‘write’).

params: package

returns: dict




auth.uri.user_permissions

Argument: string, optional

The uri that returns a mapping of users to lists of permissions (default
/user_permissions). The permission lists can contain zero or more of
(‘read’, ‘write’).

params: package

returns: dict




auth.uri.user_package_permissions

Argument: string, optional

The uri that returns a list of all packages a user has permissions on (default
/user_package_permissions). Each element is a dict that contains ‘package’
(str) and ‘permissions’ (list).

params: username

returns: list




auth.uri.group_package_permissions

Argument: string, optional

The uri that returns a list of all packages a group has permissions on (default
/group_package_permissions). Each element is a dict that contains ‘package’
(str) and ‘permissions’ (list).

params: group

returns: list




auth.uri.user_data

Argument: string, optional

The uri that returns a list of users (default /user_data). Each user is a
dict that contains a username (str) and admin (bool). If a username is
passed to the endpoint, return just a single user dict that also contains
groups (list).

params: username

returns: list











          

      

      

    

  

    
      
          
            
  
Deploying to Production

This section is geared towards helping you deploy this server properly for
production use.

@powellc [https://github.com/powellc] has put together an Ansible
playbook for pypicloud, which can be found here:
https://github.com/powellc/ansible-pypicloud

There is a docker container [https://hub.docker.com/r/stevearc/pypicloud/]
that you can deploy or use as a base image. The following configuration
recommendations still apply.


Configuration

Remember when you generated a config file in getting started? Well we can do the same thing with a different flag to
generate a default production config file.

$ ppc-make-config -p prod.ini






Warning

You should make sure that session.secure is true



You probably want to set redirect_urls = true for a speed boost.

You may want to tweak auth.rounds for more speed (see #115 [https://github.com/stevearc/pypicloud/issues/115#issuecomment-346648180] for
discussion)




WSGI Server

You probably don’t want to use waitress for your production server, though it
will work fine for small deploys. I recommend using uWSGI [http://uwsgi-docs.readthedocs.org/en/latest/]. It’s fast and mature.

After creating your production config file, it will have a section for uWSGI.
You can run uWSGI with:

$ pip install uwsgi pastescript
$ uwsgi --ini-paste-logged prod.ini





Now uWSGI is running and listening on port 8080.


Warning

If you are using pypi.fallback = cache, make sure your uWSGI settings
includes enable-threads = true. The package downloader uses threads.






HTTPS and Reverse Proxies

uWSGI has native support for SSL termination [http://uwsgi-docs.readthedocs.io/en/latest/HTTPS.html], but you may wish to
use NGINX or an ELB to do the SSL termination plus load balancing. For this and
other reverse proxy behaviors, you will need uWSGI to generate URLs that match
what your proxy expects. You can do this with paste
middleware [http://pythonpaste.org/deploy/modules/config.html]. For example, to
enforce https:

[app:main]
filter-with = proxy-prefix

[filter:proxy-prefix]
use = egg:PasteDeploy#prefix
scheme = https











          

      

      

    

  

    
      
          
            
  
Upgrading

New versions of PyPICloud may require action in up to two locations:


	The cache database


	The access control backend





Cache Database

This storage system is designed to be ephemeral. After an upgrade, all you need
to do is rebuild the cache from the storage backend and that will apply any
schema changes needed. You can use the “rebuild” button in the admin interface,
or you can hit the REST endpoint (note that this will not
work if you have db.graceful_reload = true).




Access Control

If something has changed in the formatting of the access control between
versions, there should be a note inside the changelog. If so, you will need to
export your current data and import it to the new version.

$ ppc-export config.ini -o acl.json.gz
$ pip install --upgrade pypicloud
$ # Make any necessary changes to the config.ini file
$ ppc-import config.ini -i acl.json.gz





Note that this system also allows you to migrate your access rules from one
backend to another.

$ ppc-export old_config.ini | ppc-import new_config.ini








Changing Storage

If you would like to change your storage backend, you will need to migrate your
existing packages to the new location. Create a config file that uses the new
storage backend, and then run:

ppc-migrate old_config.ini new_config.ini





This will find all packages stored in the old storage backend and upload them
to the new storage backend.







          

      

      

    

  

    
      
          
            
  
Extending PyPICloud

Certain parts of PyPICloud were created to be pluggable. The
storage backend, cache database, and access control backend can all be replaced
very easily.

The steps for extending are:


	Create a new implementation that subclasses the base class (ICache, IStorage, IAccessBackend/IMutableAccessBackend)


	Put that implementation in a package and install that package in the same virtualenv as PyPICloud


	Pass in a dotted path to that implementation for the approprate config field (e.g. pypi.db)








          

      

      

    

  

    
      
          
            
  
HTTP API

For all endpoints you may provide HTTP Basic Auth credentials. Here is a quick
example that flushes and rebuilds the cache database:

curl https://myadmin:myadminpass@pypi.myserver.com/admin/rebuild






/simple/ (or /pypi/)

These endpoints are usually only used by pip


GET /simple/

Returns a webpage with links to all the pages for each unique package

Example:

curl myserver.com/simple/








POST /simple/

Upload a package

Parameters:


	:action - The only valid value is 'file_upload'


	name - The name of the package being uploaded


	version - The version of the package being uploaded


	content (file) - The file object that contains the package data




Example:

curl -F ':action=file_upload' -F 'name=flywheel' -F 'version=0.1.0' \
-F 'content=@path/to/flywheel-0.1.0.tar.gz' myserver.com/simple/








GET /simple/<package>/

Returns a webpage with all links to all versions of this package.

If fallback is configured and the server does not contain the
package, this will return either a 302 that points towards the fallback
server (redirect), or a package index pulled from the fallback server
(cache).

Example:

curl myserver.com/simple/flywheel/








GET /pypi/<package>/json

Returns information about all versions of the package in JSON format. This is
similar to what PyPI does (ex: https://pypi.python.org/pypi/requests/json) but the information is more
limited because pypicloud doesn’t store as much package metadata.

Example:

curl myserver.com/pypi/flywheel/json/










/api/

These endpoints are used by the web interface


GET /api/package/[?verbose=true/false]

If verbose is False, return a list of all unique package names. If
verbose is True, return a list of summarized data for each unique package
name.

Parameters:


	verbose (bool) - Determines the return format (default False)




Example:

curl myserver.com/api/package/
curl myserver.com/api/package/?verbose=true





Sample Response

for verbose=false:

{
    "packages": [
        "flywheel",
        "pypicloud",
        "pyramid"
    ]
}





for verbose=true:

{
    "packages": [
        {
            "name": "flywheel",
            "stable": "0.1.0",
            "unstable": "0.1.0-2-g185e630",
            "last_modified": 1389945600
        },
        {
            "name": "pypicloud",
            "stable": "0.1.0",
            "unstable": "0.1.0-21-g4a739b0",
            "last_modified": 1390207478
        }
    ]
}








GET /api/package/<package>/

Get all versions of a package. Also returns if the user has write permissions
for that package.

Example:

curl myserver.com/api/package/flywheel





Sample Response:

{
    "packages": [
        {
            "name": "flywheel",
            "last_modified": 1389945600
            "version": "0.1.0"
            "url": "https://pypi.s3.amazonaws.com/34c2/flywheel-0.1.0.tar.gz?Signature=%2FSJidAjDkXbDojzXy8P1rFwe1kw%3D&Expires=1390262542"
        },
        {
            "name": "flywheel",
            "last_modified": 1390207478
            "version": "0.1.0-21-g4a739b0",
            "url": "https://pypi.s3.amazonaws.com/81f2/flywheel-0.1.0-21-g4a739b0.tar.gz?Signature=%2FSJidAjDkXbDojzXy8P1rFwe1kw%3D&Expires=1390262542"
        },
    ],
    "write": true
}








POST /api/package/<package>/<filename>

Upload a package to the server. This is just a cleaner endpoint that does the
same thing as the POST /simple/ endpoint.

Parameters:


	content (file) - The file object that contains the package data




Example:

curl -F 'content=@path/to/flywheel-0.1.0.tar.gz' myserver.com/api/package/flywheel/flywheel-0.1.0.tar.gz








DELETE /api/package/<package>/<filename>

Delete a package version from the server

Example:

curl -X DELETE myserver.com/api/package/flywheel/flywheel-0.1.0.tar.gz








POST /api/fetch

Fetch packages from the fallback_base_url and cache them. This is only used if
pypi.fallback = cache.

Parameters:


	requirements (str) - Packages to update, in requirements.txt format (yes, with newlines)


	wheel (bool) - Fetch the wheel version of packages, if available (default True)


	prerelease (bool) - Fetch unstable versions if available (ex. ‘1.4a1’) (default False)




Example:

curl -d 'requirements=requests>=2.2.0&wheel=true&prerelease=false' myserver.com/api/fetch








PUT /api/user/<username>/

Register a new user account (if user registration is enabled). After
registration the user will have to be confirmed by an admin.

If the server doesn’t have any admins then the first user registered becomes
the admin.

Parameters:


	password - The password for the new user account




Example:

curl -X PUT -d 'password=foobar' myserver.com/api/user/LordFoobar








POST /api/user/password

Change your password

Parameters:


	old_password - Your current password


	new_password - The password you are changing to




Example:

curl -d 'old_password=foobar&new_password=F0084RR' myserver.com/api/user/password










/admin/

These endpoints are used by the admin web interface. Most of them require you
to be using a mutable access backend.


GET /admin/rebuild/

Flush the cache database and rebuild it by enumerating the storage backend

Example:

curl myserver.com/admin/rebuild/








GET /admin/acl.json.gz

Download the ACL as a gzipped-json file. This is equivalent to running
ppc-export.

Example:

curl -o acl.json.gz myserver.com/admin/acl.json.gz








POST /admin/register/

Set whether registration is enabled or not

Parameters:


	allow (bool) - If True, allow new users to register




Example:

curl -d 'allow=true' myserver.com/admin/register/








GET /admin/pending_users/

Get a list of all users that are registered and need confirmation from an admin

Example:

curl myserver.com/admin/pending_users/





Sample Response:

[
    "LordFoobar",
    "TotallyNotAHacker",
    "Wat"
]








GET /admin/token/<username>/

Get a registration token for a username

Example:

curl myserver.com/admin/token/LordFoobar/





Sample Response:

{
    "token": "LordFoobar:1522226377:2c3ad57edc6b73f3b9d16a48893ba4f7da7531a6abcf046c8d9c228ab50e4614",
    "token_url": "http://myserver.com/login#/?token=LordFoobar:1522226377:2c3ad57edc6b73f3b9d16a48893ba4f7da7531a6abcf046c8d9c228ab50e4614"
}








GET /admin/user/

Get a list of all users and their admin status

Example:

curl myserver.com/admin/user/





Sample Response:

[
    {
        "username": "LordFoobar",
        "admin": true
    },
    {
        "username": "stevearc",
        "admin": false
    }
]








GET /admin/user/<username>/

Get detailed data about a single user

Example:

curl myserver.com/admin/user/LordFoobar/





Sample Response:


{
    "username": "LordFoobar",
    "admin": true,
    "groups": [
        "cool_people",
        "group2"
    ]
}











GET /admin/user/<username>/permissions/

Get a list of packages that a user has explicit permissions on

Example:

curl myserver.com/admin/user/LordFoobar/permissions/





Sample Response:

[
    {
        "package": "flywheel",
        "permissions": ["read", "write"]
    },
    {
        "package": "pypicloud",
        "permissions": ["read"]
    }
]








DELETE /admin/user/<username>/

Delete a user

Example:

curl -X DELETE myserver.com/admin/user/chump/








PUT /admin/user/<username>/

Create a new user with a given password

Parameters:


	password (string) - The password for the new user




Example:

curl -X PUT -d 'password=abc123' myserver.com/admin/user/LordFoobar/








POST /admin/user/<username>/approve/

Mark a pending user as approved

Example:

curl -X POST myserver.com/admin/user/LordFoobar/approve/








POST /admin/user/<username>/admin/

Grant or revoke admin privileges for a user.

Parameters:


	admin (bool) - If True, promote to admin. If False, demote to regular user.




Example:

curl -d 'admin=true' myserver.com/admin/user/LordFoobar/admin/








PUT /admin/user/<username>/group/<group>/

Add a user to a group

Example:

curl -X PUT myserver.com/admin/user/LordFoobar/group/cool_people/








DELETE /admin/user/<username>/group/<group>/

Remove a user from a group

Example:

curl -X DELETE myserver.com/admin/user/LordFoobar/group/cool_people/








GET /admin/group/

Get a list of all groups

Example:

curl myserver.com/admin/group/





Sample Response:

[
    "cool_people",
    "uncool_people",
    "marginally_cool_people"
]








GET /admin/group/<group>/

Get detailed information about a group

Example:

curl myserver.com/admin/group/cool_people





Sample Response:

{
    "members": [
        "LordFoobar",
        "stevearc"
    ],
    "packages": [
        {
            "package": "flywheel",
            "permissions": ["read", "write"]
        },
        {
            "package": "pypicloud",
            "permissions": ["read"]
        }
    ]
}








PUT /admin/group/<group>/

Create a new group

Example:

curl -X PUT myserver.com/admin/group/cool_people/








DELETE /admin/group/<group>/

Delete a group

Example:

curl -X DELETE myserver.com/admin/group/uncool_people/








GET /admin/package/<package>/

Get the user and group permissions for a package

Example:

curl myserver.com/admin/package/flywheel/





Sample Response:

{
    "user": [
        {
            "username": "LordFoobar",
            "permissions": ["read", "write"]
        },
        {
            "username": "stevearc",
            "permissions": ["read"]
        }
    ],
    "group": [
        {
            "group": "marginally_cool_people",
            "permissions": ["read"]
        },
        {
            "group": "cool_people",
            "permissions": ["read", "write"]
        }
    ]
}








PUT /admin/package/<package>/(user|group)/<name>/(read|write)/

Grant a permission to a user or a group on a package

Example:

curl -X PUT myserver.com/admin/package/flywheel/user/LordFoobar/read
curl -X PUT myserver.com/admin/package/flywheel/group/cool_people/write








DELETE /admin/package/<package>/(user|group)/<name>/(read|write)/

Revoke a permission for a user or a group on a package

Example:

curl -X DELETE myserver.com/admin/package/flywheel/user/LordFoobar/read
curl -X DELETE myserver.com/admin/package/flywheel/group/cool_people/write













          

      

      

    

  

    
      
          
            
  
Developing

To get set up:

$ git clone git@github.com:stevearc/pypicloud
$ cd pypicloud
$ virtualenv pypicloud_env
$ . pypicloud_env/bin/activate
$ pip install -r requirements_dev.txt





Run ppc-make-config -d development.ini to create a developer config file.

Now you can run the server with

$ pserve --reload development.ini





The unit tests require a redis server to be running on port 6379, MySQL on port
3306, and Postgres on port 5432. If you have docker installed you can use the
run-test-services.sh script to start all the necessary servers. Run unit
tests with:

$ python setup.py nosetests





or:

$ tox









          

      

      

    

  

    
      
          
            
  
Changelog

If you are upgrading an existing installation, read the instructions


1.0.11 - 2019/4/5


	Add ability to stream files through pypicloud (pull 202 [https://github.com/stevearc/pypicloud/pull/202])


	Support spaces in auth.ldap.admin_value values (pull 206 [https://github.com/stevearc/pypicloud/pull/206])







1.0.10 - 2018/11/26


	Strip non-ASCII characters from summary for S3 backend (pull 197 [https://github.com/stevearc/pypicloud/pull/197])


	Fix an issue with production log format (issue 198 [https://github.com/stevearc/pypicloud/issues/198])


	Add auth.ldap.fallback to use config file configure groups and permissions with LDAP access backend (issue 199 [https://github.com/stevearc/pypicloud/issues/199])







1.0.9 - 2018/9/6


	Fix: Exception during LDAP reconnect (pull 192 [https://github.com/stevearc/pypicloud/pull/192])


	Fix: LDAP on Python 3 could not detect admins (pull 193 [https://github.com/stevearc/pypicloud/pull/193])


	Feature: New pypi.auth.admin_group_dn setting for LDAP (for when memberOf is unavailable)







1.0.8 - 2018/8/27


	Feature: Google Cloud Storage support (pull 189 [https://github.com/stevearc/pypicloud/pull/189])







1.0.7 - 2018/8/14


	Feature: /health endpoint checks health of connection to DB backends (issue 181 [https://github.com/stevearc/pypicloud/issues/181])


	Feature: Options for LDAP access backend to ignore referrals and ignore multiple user results (pull 184 [https://github.com/stevearc/pypicloud/pull/184])


	Fix: Exception when storage.cloud_front_key_file was set (pull 185 [https://github.com/stevearc/pypicloud/pull/185])


	Fix: Bad redirect to the fallback url when searching the /json endpoint (pull 188 [https://github.com/stevearc/pypicloud/pull/188])


	Deprecation: pypi.fallback_url has been deprecated in favor of pypi.fallback_base_url (pull 188 [https://github.com/stevearc/pypicloud/pull/188])







1.0.6 - 2018/6/11


	Fix: Support auth.profile_name passing in a boto profile name (pull 172 [https://github.com/stevearc/pypicloud/pull/172])


	Fix: Uploading package with empty description using twine crashes DynamoDB backend (issue 174 [https://github.com/stevearc/pypicloud/issues/174])


	Fix: Config file generation for use with docker container (using %(here)s was not working)


	Use cryptography package instead of horrifyingly old and deprecated pycrypto (issue 179 [https://github.com/stevearc/pypicloud/issues/179])


	Add storage.public_url to S3 backend (issue 173 [https://github.com/stevearc/pypicloud/issues/173])







1.0.5 - 2018/4/24


	Fix: Download ACL button throws error in Python 3 (issue 166 [https://github.com/stevearc/pypicloud/issues/166])


	New access backend: AWS Secrets Manager (pull 164 [https://github.com/stevearc/pypicloud/pull/164])


	Add storage.storage_class option for S3 storage (pull 170 [https://github.com/stevearc/pypicloud/pull/170])


	Add db.tablenames option for DynamoDB cache (issue 167 [https://github.com/stevearc/pypicloud/issues/167])


	Reduce startup race conditions on empty caches when running multiple servers (issue 167 [https://github.com/stevearc/pypicloud/issues/167])







1.0.4 - 2018/4/1


	Fix: Fix SQL connection issues with uWSGI (issue 160 [https://github.com/stevearc/pypicloud/issues/160])


	Miscellaneous python 3 fixes







1.0.3 - 2018/3/26


	Fix: uWSGI hangs in python 3 (issue 153 [https://github.com/stevearc/pypicloud/issues/153])


	Fix: Crash when using ppc-migrate to migrate from S3 to S3


	Add warnings and documentation for edge case where S3 bucket has a dot in it (issue 145 [https://github.com/stevearc/pypicloud/issues/145])


	Admin can create signup tokens (issue 156 [https://github.com/stevearc/pypicloud/issues/156])







1.0.2 - 2018/1/26


	Fix: Hang when rebuilding Postgres cache (issue 147 [https://github.com/stevearc/pypicloud/issues/147])


	Fix: Some user deletes fail with Foreign Key errors (issue 150 [https://github.com/stevearc/pypicloud/issues/150])


	Fix: Incorrect parsing of version for wheels (issue 154 [https://github.com/stevearc/pypicloud/issues/154])


	Configuration option for number of rounds to use in password hash (issue 115 [https://github.com/stevearc/pypicloud/issues/115])


	Make request errors visible in the browser (issue 151 [https://github.com/stevearc/pypicloud/issues/151])


	Add a Create User button to admin page (issue 149 [https://github.com/stevearc/pypicloud/issues/149])


	SQL access backend defaults to disallowing anonymous users to register







1.0.1 - 2017/12/3


	Support for LDAP anonymous bind (pull 142 [https://github.com/stevearc/pypicloud/pull/142])


	Fix a crash in Python 3 (issue 141 [https://github.com/stevearc/pypicloud/issues/141])







1.0.0 - 2017/10/29


	Python3 support thanks to boto3


	Removing stable/unstable version from package summary


	Changing and removing many settings


	Performance tweaks


	graceful_reload option for caches, to refresh from the storage backend while remaining operational


	Complete rewrite of LDAP access backend


	Utilities for hooking into S3 create & delete notifications to keep multiple caches in sync




NOTE Because of the boto3 rewrite, many settings have changed. You will need
to review the settings for your storage, cache, and access backends to make sure
they are correct, as well as rebuilding your cache as per usual.




0.5.6 - 2017/10/29


	Add storage.object_acl for S3 (pull 139 [https://github.com/stevearc/pypicloud/pull/139])







0.5.5 - 2017/9/9


	Allow search endpoint to have a trailing slash (issue 133 [https://github.com/stevearc/pypicloud/issues/133])







0.5.4 - 2017/8/10


	Allow overriding the displayed download URL in the web interface (pull 125 [https://github.com/stevearc/pypicloud/pull/125])


	Bump up the DB size of the version field (SQL-only) (pull 128 [https://github.com/stevearc/pypicloud/pull/128])







0.5.3 - 2017/4/30


	Bug fix: S3 uploads failing from web interface and when fallback=cache (issue 120 [https://github.com/stevearc/pypicloud/issues/120])







0.5.2 - 2017/4/22


	Bug fix: The /pypi path was broken for viewing & uploading packages (issue 119 [https://github.com/stevearc/pypicloud/issues/119])


	Update docs to recommend /simple as the install/upload URL


	Beaker session sets invalidate_corrupt = true by default







0.5.1 - 2017/4/17


	Bug fix: Deleting packages while using the Dynamo cache would sometimes remove the wrong package from Dynamo (issue 118 [https://github.com/stevearc/pypicloud/issues/118])







0.5.0 - 2017/3/29

Upgrade breaks: SQL caching database. You will need to rebuild it.


	Feature: Pip search works now (pull 107 [https://github.com/stevearc/pypicloud/pull/107])







0.4.6 - 2017/4/17


	Bug fix: Deleting packages while using the Dynamo cache would sometimes remove the wrong package from Dynamo (issue 118 [https://github.com/stevearc/pypicloud/issues/118])







0.4.5 - 2017/3/25


	Bug fix: Access backend now works with MySQL family (pull 106 [https://github.com/stevearc/pypicloud/pull/106])


	Bug fix: Return http 409 for duplicate upload to work better with twine (issue 112 [https://github.com/stevearc/pypicloud/issues/112])


	Bug fix: Show upload button in interface if default_write = everyone


	Confirm prompt before deleting a user or group in the admin interface


	Do some basica sanity checking of username/password inputs







0.4.4 - 2016/10/5


	Feature: Add optional AWS S3 Server Side Encryption option (pull 99 [https://github.com/stevearc/pypicloud/pull/99])







0.4.3 - 2016/8/2


	Bug fix: Rebuilding cache always ends up with correct name/version (pull 93 [https://github.com/stevearc/pypicloud/pull/93])


	Feature: /health endpoint (nothing fancy, just returns 200) (issue 95 [https://github.com/stevearc/pypicloud/issues/95])







0.4.2 - 2016/6/16


	Bug fix: Show platform-specific versions of wheels (issue 91 [https://github.com/stevearc/pypicloud/issues/91])







0.4.1 - 2016/6/8


	Bug fix: LDAP auth disallows empty passwords for anonymous binding (pull 92 [https://github.com/stevearc/pypicloud/pull/92])


	Config generator sets pypi.default_read = authenticated for prod mode







0.4.0 - 2016/5/16

Backwards incompatibility: This version was released to handle a change in
the way pip 8.1.2 handles package names. If you are upgrading from a previous
version, there are detailed instructions for how to upgrade safely.




0.3.13 - 2016/6/8


	Bug fix: LDAP auth disallows empty passwords for anonymous binding (pull 92 [https://github.com/stevearc/pypicloud/pull/92])







0.3.12 - 2016/5/5


	Feature: Setting auth.ldap.service_account for LDAP auth (pull 84 [https://github.com/stevearc/pypicloud/pull/84])







0.3.11 - 2016/4/28


	Bug fix: Missing newline in config template (pull 77 [https://github.com/stevearc/pypicloud/pull/77])


	Feature: pypi.always_show_upstream for tweaking fallback behavior (issue 82 [https://github.com/stevearc/pypicloud/issues/82])







0.3.10 - 2016/3/21


	Feature: S3 backend setting storage.redirect_urls







0.3.9 - 2016/3/13


	Bug fix: SQL cache works with MySQL (issue 74 [https://github.com/stevearc/pypicloud/issues/74])


	Feature: S3 backend can use S3-compatible APIs (pull 72 [https://github.com/stevearc/pypicloud/pull/72])







0.3.8 - 2016/3/10


	Feature: Cloudfront storage (pull 71 [https://github.com/stevearc/pypicloud/pull/71])


	Bug fix: Rebuilding cache from storage won’t crash on odd file names (pull 70 [https://github.com/stevearc/pypicloud/pull/70])







0.3.7 - 2016/1/12


	Feature: /packages endpoint to list all files for all packages (pull 64 [https://github.com/stevearc/pypicloud/pull/64])







0.3.6 - 2015/12/3


	Bug fix: Settings parsed incorrectly for LDAP auth (issue 62 [https://github.com/stevearc/pypicloud/issues/62])







0.3.5 - 2015/11/15


	Bug fix: Mirror mode: only one package per version is displayed (issue 61 [https://github.com/stevearc/pypicloud/issues/61])







0.3.4 - 2015/8/30


	Add docker-specific option for config creation


	Move docker config files to a separate repository







0.3.3 - 2015/7/17


	Feature: LDAP Support (pull 55 [https://github.com/stevearc/pypicloud/pull/55])


	Bug fix: Incorrect package name/version when uploading from web (issue 56 [https://github.com/stevearc/pypicloud/issues/56])







0.3.2 - 2015/7/7


	Bug fix: Restore direct links to S3 to fix easy_install (issue 54 [https://github.com/stevearc/pypicloud/issues/54])







0.3.1 - 2015/6/18


	Bug fix: pypi.allow_overwrite causes crash in sql cache (issue 52 [https://github.com/stevearc/pypicloud/issues/52])







0.3.0 - 2015/6/16


	Fully defines the behavior of every possible type of pip request. See Fallbacks for more detail.


	Don’t bother caching generated S3 urls.







0.2.13 - 2015/5/27


	Bug fix: Crash when mirror mode serves private packages







0.2.12 - 2015/5/14


	Bug fix: Mirror mode works properly with S3 storage backend







0.2.11 - 2015/5/11


	Bug fix: Cache mode will correctly download packages with legacy versioning (pull 45 [https://github.com/stevearc/pypicloud/pull/45])


	Bug fix: Fix the fetch_requirements endpoint (commit 6b2e2db [https://github.com/stevearc/pypicloud/commit/6b2e2db])


	Bug fix: Incorrect expire time comparison with IAM roles (pull 47 [https://github.com/stevearc/pypicloud/pull/47])


	Feature: ‘mirror’ mode. Caches packages, but lists all available upstream versions.







0.2.10 - 2015/2/27


	Bug fix: S3 download links expire incorrectly with IAM roles (issue 38 [https://github.com/stevearc/pypicloud/issues/38])


	Bug fix: fallback = cache crashes with distlib 0.2.0 (issue 41 [https://github.com/stevearc/pypicloud/issues/41])







0.2.9 - 2014/12/14


	Bug fix: Connection problems with new S3 regions (issue 39 [https://github.com/stevearc/pypicloud/issues/39])


	Usability: Warn users trying to log in over http when session.secure = true (issue 40 [https://github.com/stevearc/pypicloud/issues/40])







0.2.8 - 2014/11/11


	Bug fix: Crash when migrating packages from file storage to S3 storage (pull 35 [https://github.com/stevearc/pypicloud/pull/35])







0.2.7 - 2014/10/2


	Bug fix: First download of package using S3 backend and pypi.fallback = cache returns 404 (issue 31 [https://github.com/stevearc/pypicloud/issues/31])







0.2.6 - 2014/8/3


	Bug fix: Rebuilding SQL cache sometimes crashes (issue 29 [https://github.com/stevearc/pypicloud/issues/29])







0.2.5 - 2014/6/9


	Bug fix: Rebuilding SQL cache sometimes deadlocks (pull 27 [https://github.com/stevearc/pypicloud/pull/27])







0.2.4 - 2014/4/29


	Bug fix: ppc-migrate between two S3 backends (pull 22 [https://github.com/stevearc/pypicloud/pull/22])







0.2.3 - 2014/3/13


	Bug fix: Caching works with S3 backend (commit 4dc593a [https://github.com/stevearc/pypicloud/commit/4dc593a])







0.2.2 - 2014/3/13


	Bug fix: Security bug in user auth (commit 001e8a5 [https://github.com/stevearc/pypicloud/commit/001e8a5])


	Bug fix: Package caching from pypi was slightly broken (commit 065f6c5 [https://github.com/stevearc/pypicloud/commit/065f6c5])


	Bug fix: ppc-migrate works when migrating to the same storage type (commit 45abcde [https://github.com/stevearc/pypicloud/commit/45abcde])







0.2.1 - 2014/3/12


	Bug fix: Pre-existing S3 download links were broken by 0.2.0 (commit 52e3e6a [https://github.com/stevearc/pypicloud/commit/52e3e6a])







0.2.0 - 2014/3/12

Upgrade breaks: caching database


	Bug fix: Timestamp display on web interface (pull 18 [https://github.com/stevearc/pypicloud/pull/18])


	Bug fix: User registration stores password as plaintext (commit 21ebe44 [https://github.com/stevearc/pypicloud/commit/21ebe44])


	Feature: ppc-migrate, command to move packages between storage backends (commit 399a990 [https://github.com/stevearc/pypicloud/commit/399a990])


	Feature: Adding support for more than one package with the same version. Now you can upload wheels! (commit 2f24877 [https://github.com/stevearc/pypicloud/commit/2f24877])


	Feature: Allow transparently downloading and caching packages from pypi (commit e4dabc7 [https://github.com/stevearc/pypicloud/commit/e4dabc7])


	Feature: Export/Import access-control data via ppc-export and ppc-import (commit dbd2a16 [https://github.com/stevearc/pypicloud/commit/dbd2a16])


	Feature: Can set default read/write permissions for packages (commit c9aa57b [https://github.com/stevearc/pypicloud/commit/c9aa57b])


	Feature: New cache backend: DynamoDB (commit d9d3092 [https://github.com/stevearc/pypicloud/commit/d9d3092])


	Hosting all js & css ourselves (no more CDN links) (commit 20e345c [https://github.com/stevearc/pypicloud/commit/20e345c])


	Obligatory miscellaneous refactoring







0.1.0 - 2014/1/20


	First public release










          

      

      

    

  

    
      
          
            
  
pypicloud package


Subpackages



	pypicloud.access package
	Submodules
	pypicloud.access.aws_secrets_manager module

	pypicloud.access.base module

	pypicloud.access.base_json module

	pypicloud.access.config module

	pypicloud.access.ldap_ module

	pypicloud.access.remote module

	pypicloud.access.sql module





	Module contents





	pypicloud.cache package
	Submodules
	pypicloud.cache.base module

	pypicloud.cache.dynamo module

	pypicloud.cache.redis_cache module

	pypicloud.cache.sql module





	Module contents





	pypicloud.storage package
	Submodules
	pypicloud.storage.base module

	pypicloud.storage.files module

	pypicloud.storage.gcs module

	pypicloud.storage.s3 module





	Module contents





	pypicloud.views package
	Submodules
	pypicloud.views.admin module

	pypicloud.views.api module

	pypicloud.views.login module

	pypicloud.views.packages module

	pypicloud.views.simple module





	Module contents












Submodules



	pypicloud.auth module

	pypicloud.lambda_scripts module

	pypicloud.models module

	pypicloud.route module

	pypicloud.scripts module

	pypicloud.util module








Module contents

S3-backed pypi server


	
pypicloud.includeme(config)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/__init__.py#L52]

	Set up and configure the pypicloud app






	
pypicloud.main(config, **settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/__init__.py#L178]

	This function returns a Pyramid WSGI application.






	
pypicloud.to_json(value)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/__init__.py#L19]

	A json filter for jinja2











          

      

      

    

  

    
      
          
            
  
pypicloud.access package


Submodules



	pypicloud.access.aws_secrets_manager module

	pypicloud.access.base module

	pypicloud.access.base_json module

	pypicloud.access.config module

	pypicloud.access.ldap_ module

	pypicloud.access.remote module

	pypicloud.access.sql module








Module contents

Classes that provide user and package permissions


	
pypicloud.access.includeme(config)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/__init__.py#L12]

	Configure the app











          

      

      

    

  

    
      
          
            
  
pypicloud.access.aws_secrets_manager module

Backend that defers to another server for access control


	
class pypicloud.access.aws_secrets_manager.AWSSecretsManagerAccessBackend(request=None, secret_id=None, kms_key_id=None, client=None, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/aws_secrets_manager.py#L16]

	Bases: pypicloud.access.base_json.IMutableJsonAccessBackend

This backend allows you to store all user and package permissions in
AWS Secret Manager


	
check_health(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/aws_secrets_manager.py#L90]

	




	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/aws_secrets_manager.py#L33]

	











          

      

      

    

  

    
      
          
            
  
pypicloud.access.base module

The access backend object base class


	
class pypicloud.access.base.IAccessBackend(request=None, default_read=None, default_write=None, cache_update=None, pwd_context=None, token_expiration=604800, signing_key=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L55]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for retrieving user and package permission data


	
ROOT_ACL = [('Allow', 'system.Authenticated', u'login'), ('Allow', u'admin', <pyramid.security.AllPermissionsList object>), ('Deny', 'system.Everyone', <pyramid.security.AllPermissionsList object>)][source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L55]

	




	
allow_register(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L243]

	Check if the backend allows registration

This should only be overridden by mutable backends


	Returns

	
	allowbool

	












	
allow_register_token(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L256]

	Check if the backend allows registration via tokens

This should only be overridden by mutable backends


	Returns

	
	allowbool

	












	
allowed_permissions(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L105]

	Get all allowed permissions for all principals on a package


	Returns

	
	permsdict

	Mapping of principal to tuple of permissions














	
can_update_cache(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L222]

	Return True if the user has permissions to update the pypi cache






	
check_health(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L435]

	Check the health of the access backend


	Returns

	
	(healthy, status)(bool, str)

	Tuple that describes the health status and provides an optional
status message














	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L84]

	Configure the access backend with app settings






	
dump(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L448]

	Dump all of the access control data to a universal format


	Returns

	
	datadict

	












	
get_acl(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L134]

	Construct an ACL for a package






	
group_members(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L316]

	Get a list of users that belong to a group


	Parameters

	
	groupstr

	





	Returns

	
	userslist

	List of user names














	
group_package_permissions(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L401]

	Get a list of all packages that a group has permissions on


	Parameters

	
	groupstr

	





	Returns

	
	packageslist

	List of dicts. Each dict contains ‘package’ (str) and ‘permissions’
(list)














	
group_permissions(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L347]

	Get a mapping of all groups to their permissions on a package


	Parameters

	
	packagestr

	The name of a python package







	Returns

	
	permissionsdict

	mapping of group name to a list of permissions
(which can contain ‘read’ and/or ‘write’)














	
groups(self, username=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L298]

	Get a list of all groups

If a username is specified, get all groups that the user belongs to


	Parameters

	
	usernamestr, optional

	





	Returns

	
	groupslist

	List of group names














	
has_permission(self, package, perm)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L143]

	Check if this user has a permission for a package






	
in_any_group(self, username, groups)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L203]

	Find out if a user is in any of a set of groups


	Parameters

	
	usernamestr

	Name of user. May be None for the anonymous user.



	groupslist

	list of group names. Supports ‘everyone’, ‘authenticated’, and
‘admin’.







	Returns

	
	memberbool

	












	
in_group(self, username, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L175]

	Find out if a user is in a group


	Parameters

	
	usernamestr

	Name of user. May be None for the anonymous user.



	groupstr

	Name of the group. Supports ‘everyone’, ‘authenticated’, and
‘admin’.







	Returns

	
	memberbool

	












	
is_admin(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L332]

	Check if the user is an admin


	Parameters

	
	usernamestr

	





	Returns

	
	is_adminbool

	












	
load(self, data)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L491]

	Idempotently load universal access control data.

By default, this does nothing on immutable backends. Backends may
override this method to provide an implementation.

This method works by default on mutable backends with no override
necessary.






	
mutable = False[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L55]

	




	
need_admin(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L228]

	Find out if there are any admin users

This should only be overridden by mutable backends


	Returns

	
	need_adminbool

	True if no admin user exists and the backend is mutable, False
otherwise














	
classmethod postfork(cls, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L101]

	This method will be called after uWSGI forks






	
user_data(self, username=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L418]

	Get a list of all users or data for a single user

For Mutable backends, this MUST exclude all pending users


	Returns

	
	userslist

	Each user is a dict with a ‘username’ str, and ‘admin’ bool



	userdict

	If a username is passed in, instead return one user with the fields
above plus a ‘groups’ list.














	
user_package_permissions(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L384]

	Get a list of all packages that a user has permissions on


	Parameters

	
	usernamestr

	





	Returns

	
	packageslist

	List of dicts. Each dict contains ‘package’ (str) and ‘permissions’
(list)














	
user_permissions(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L366]

	Get a mapping of all users to their permissions for a package


	Parameters

	
	packagestr

	The name of a python package







	Returns

	
	permissionsdict

	Mapping of username to a list of permissions (which can contain
‘read’ and/or ‘write’)














	
user_principals(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L155]

	Get a list of principals for a user


	Parameters

	
	usernamestr

	





	Returns

	
	principalslist

	












	
verify_user(self, username, password)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L269]

	Check the login credentials of a user

For Mutable backends, pending users should fail to verify


	Parameters

	
	usernamestr

	

	passwordstr

	





	Returns

	
	validbool

	True if user credentials are valid, false otherwise


















	
class pypicloud.access.base.IMutableAccessBackend(request=None, default_read=None, default_write=None, cache_update=None, pwd_context=None, token_expiration=604800, signing_key=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L508]

	Bases: pypicloud.access.base.IAccessBackend

Base class for access backends that can change user/group permissions


	
allow_register(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L587]

	




	
allow_register_token(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L590]

	




	
approve_user(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L646]

	Mark a user as approved by the admin


	Parameters

	
	usernamestr

	












	
create_group(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L720]

	Create a new group


	Parameters

	
	groupstr

	












	
delete_group(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L731]

	Delete a group


	Parameters

	
	groupstr

	












	
delete_user(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L682]

	Delete a user


	Parameters

	
	usernamestr

	












	
dump(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L772]

	




	
edit_group_permission(self, package, group, perm, add)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L757]

	Grant or revoke a permission for a group on a package


	Parameters

	
	packagestr

	

	groupstr

	

	perm{‘read’, ‘write’}

	

	addbool

	If True, grant permissions. If False, revoke.














	
edit_user_group(self, username, group, add)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L706]

	Add or remove a user to/from a group


	Parameters

	
	usernamestr

	

	groupstr

	

	addbool

	If True, add to group. If False, remove.














	
edit_user_password(self, username, password)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L657]

	Change a user’s password


	Parameters

	
	usernamestr

	

	passwordstr

	












	
edit_user_permission(self, package, username, perm, add)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L742]

	Grant or revoke a permission for a user on a package


	Parameters

	
	packagestr

	

	usernamestr

	

	perm{‘read’, ‘write’}

	

	addbool

	If True, grant permissions. If False, revoke.














	
get_signup_token(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L523]

	Create a signup token


	Parameters

	
	usernamestr

	The username to be created when this token is consumed







	Returns

	
	tokenstr

	












	
load(self, data)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L781]

	




	
mutable = True[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L508]

	




	
need_admin(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L517]

	




	
pending_users(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L634]

	Retrieve a list of all users pending admin approval


	Returns

	
	userslist

	List of usernames














	
register(self, username, password)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L604]

	Register a new user

The new user should be marked as pending admin approval


	Parameters

	
	usernamestr

	

	passwordstr

	This should be the plaintext password














	
set_allow_register(self, allow)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L593]

	Allow or disallow user registration


	Parameters

	
	allowbool

	












	
set_user_admin(self, username, admin)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L693]

	Grant or revoke admin permissions for a user


	Parameters

	
	usernamestr

	

	adminbool

	If True, grant permissions. If False, revoke.














	
validate_signup_token(self, token)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L552]

	Validate a signup token


	Parameters

	
	tokenstr

	





	Returns

	
	usernamestr or None

	This will be None if the validation fails


















	
pypicloud.access.base.get_pwd_context(rounds=535000)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L25]

	Create a passlib context for hashing passwords






	
pypicloud.access.base.group_to_principal(group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L35]

	Convert a group to its corresponding principal






	
pypicloud.access.base.groups_to_principals(groups)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base.py#L47]

	Convert a list of groups to a list of principals









          

      

      

    

  

    
      
          
            
  
pypicloud.access.base_json module

Abstract backends that are backed by simple JSON


	
class pypicloud.access.base_json.IJsonAccessBackend(request=None, default_read=None, default_write=None, cache_update=None, pwd_context=None, token_expiration=604800, signing_key=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L6]

	Bases: pypicloud.access.base.IAccessBackend

This backend reads the permissions from anything that can provide JSON data

Notes

JSON should look like this:

{
    "users": {
        "user1": "hashed_password1",
        "user2": "hashed_password2",
        "user3": "hashed_password3",
        "user4": "hashed_password4",
        "user5": "hashed_password5",
    },
    "groups": {
        "admins": [
        "user1",
        "user2"
        ],
        "group1": [
        "user3"
        ]
    },
    "admins": [
        "user1"
    ]
    "packages": {
        "mypackage": {
            "groups": {
                "group1": ["read', "write"],
                "group2": ["read"],
                "group3": [],
            },
            "users": {
                "user1": ["read", "write"],
                "user2": ["read"],
                "user3": [],
                "user5": ["read"],
            }
        }
    }
}






	
db[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L6]

	Fetch JSON and cache it for future calls






	
group_members(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L84]

	




	
group_package_permissions(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L117]

	




	
group_permissions(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L90]

	




	
groups(self, username=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L74]

	




	
is_admin(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L87]

	




	
user_data(self, username=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L131]

	




	
user_package_permissions(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L106]

	




	
user_permissions(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L98]

	








	
class pypicloud.access.base_json.IMutableJsonAccessBackend(request=None, default_read=None, default_write=None, cache_update=None, pwd_context=None, token_expiration=604800, signing_key=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L147]

	Bases: pypicloud.access.base_json.IJsonAccessBackend, pypicloud.access.base.IMutableAccessBackend

This backend allows you to store all user and package permissions in
a backend that is able to store a json file

Notes

The format is the same as
IJsonAccessBackend, but with the
additional fields:

{
    "pending_users": {
        "user1": "hashed_password1",
        "user2": "hashed_password2"
    },
    "allow_registration": true
}






	
allow_register(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L178]

	




	
approve_user(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L185]

	




	
create_group(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L208]

	




	
delete_group(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L212]

	




	
delete_user(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L191]

	




	
edit_group_permission(self, package_name, group, perm, add)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L232]

	




	
edit_user_group(self, username, group, add)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L216]

	




	
edit_user_permission(self, package_name, username, perm, add)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L250]

	




	
mutable = True[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L147]

	




	
pending_users(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L205]

	




	
set_allow_register(self, allow)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L279]

	




	
set_user_admin(self, username, admin)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/base_json.py#L272]

	











          

      

      

    

  

    
      
          
            
  
pypicloud.access.config module

Backend that reads access control rules from config file


	
class pypicloud.access.config.ConfigAccessBackend(request=None, data=None, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/config.py#L12]

	Bases: pypicloud.access.base_json.IJsonAccessBackend

Access Backend that uses values set in the config file


	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/config.py#L20]

	




	
load(self, data)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/config.py#L73]

	











          

      

      

    

  

    
      
          
            
  
pypicloud.access.ldap_ module





          

      

      

    

  

    
      
          
            
  
pypicloud.access.remote module

Backend that defers to another server for access control


	
class pypicloud.access.remote.RemoteAccessBackend(request=None, settings=None, server=None, auth=None, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/remote.py#L5]

	Bases: pypicloud.access.base.IAccessBackend

This backend allows you to defer all user auth and permissions to a remote
server. It requires the requests package.


	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/remote.py#L19]

	




	
group_members(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/remote.py#L61]

	




	
group_package_permissions(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/remote.py#L88]

	




	
group_permissions(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/remote.py#L71]

	




	
groups(self, username=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/remote.py#L54]

	




	
is_admin(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/remote.py#L66]

	




	
user_data(self, username=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/remote.py#L95]

	




	
user_package_permissions(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/remote.py#L81]

	




	
user_permissions(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/remote.py#L76]

	




	
verify_user(self, username, password)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/remote.py#L45]

	











          

      

      

    

  

    
      
          
            
  
pypicloud.access.sql module

Access backend for storing permissions in using SQLAlchemy


	
class pypicloud.access.sql.Group(name)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L81]

	Bases: sqlalchemy.ext.declarative.api.Base

Group record


	
name[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L81]

	








	
class pypicloud.access.sql.GroupPermission(package, groupname, read=False, write=False)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L138]

	Bases: pypicloud.access.sql.Permission

Permissions for a group on a package


	
group[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L138]

	




	
groupname[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L138]

	




	
package[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L138]

	




	
read[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L138]

	




	
write[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L138]

	








	
class pypicloud.access.sql.KeyVal(key, value)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L42]

	Bases: sqlalchemy.ext.declarative.api.Base

Simple model for storing key-value pairs


	
key[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L42]

	




	
value[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L42]

	








	
class pypicloud.access.sql.Permission(package, read, write)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L94]

	Bases: sqlalchemy.ext.declarative.api.Base

Base class for user and group permissions


	
package = Column(None, String(length=255), table=None, primary_key=True, nullable=False)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L94]

	




	
permissions[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L94]

	Construct permissions list






	
read = Column(None, Boolean(), table=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L94]

	




	
write = Column(None, Boolean(), table=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L94]

	








	
class pypicloud.access.sql.SQLAccessBackend(request=None, dbmaker=None, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L155]

	Bases: pypicloud.access.base.IMutableAccessBackend

This backend allows you to store all user and package permissions in a SQL
database


	
allow_register(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L192]

	




	
approve_user(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L285]

	




	
check_health(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L362]

	




	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L177]

	




	
create_group(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L314]

	




	
db[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L155]

	Lazy-create the DB session






	
delete_group(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L317]

	




	
delete_user(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L295]

	




	
edit_group_permission(self, package, group, perm, add)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L342]

	




	
edit_user_group(self, username, groupname, add)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L305]

	




	
edit_user_permission(self, package, username, perm, add)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L322]

	




	
group_members(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L218]

	




	
group_package_permissions(self, group)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L249]

	




	
group_permissions(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L228]

	




	
groups(self, username=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L208]

	




	
is_admin(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L224]

	




	
need_admin(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L274]

	




	
pending_users(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L281]

	




	
classmethod postfork(cls, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L186]

	




	
set_allow_register(self, allow)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L196]

	




	
set_user_admin(self, username, admin)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L300]

	




	
user_data(self, username=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L256]

	




	
user_package_permissions(self, username)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L242]

	




	
user_permissions(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L235]

	








	
class pypicloud.access.sql.User(username, password, pending=True)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L55]

	Bases: sqlalchemy.ext.declarative.api.Base

User record


	
admin[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L55]

	




	
groups[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L55]

	




	
password[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L55]

	




	
pending[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L55]

	




	
username[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L55]

	








	
class pypicloud.access.sql.UserPermission(package, username, read=False, write=False)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L119]

	Bases: pypicloud.access.sql.Permission

Permissions for a user on a package


	
package[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L119]

	




	
read[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L119]

	




	
user[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L119]

	




	
username[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L119]

	




	
write[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/access/sql.py#L119]

	











          

      

      

    

  

    
      
          
            
  
pypicloud.cache package


Submodules



	pypicloud.cache.base module

	pypicloud.cache.dynamo module

	pypicloud.cache.redis_cache module

	pypicloud.cache.sql module








Module contents

Caching database implementations


	
pypicloud.cache.get_cache_impl(settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/__init__.py#L10]

	Get the cache class from settings






	
pypicloud.cache.includeme(config)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/__init__.py#L23]

	Get and configure the cache db wrapper











          

      

      

    

  

    
      
          
            
  
pypicloud.cache.base module

Base class for all cache implementations


	
class pypicloud.cache.base.ICache(request=None, storage=None, allow_overwrite=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L15]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for a caching database that stores package metadata


	
all(self, name)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L147]

	Search for all versions of a package


	Parameters

	
	namestr

	The name of the package







	Returns

	
	packageslist

	List of all Package s with the given
name














	
check_health(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L277]

	Check the health of the cache backend


	Returns

	
	(healthy, status)(bool, str)

	Tuple that describes the health status and provides an optional
status message














	
clear(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L251]

	Remove this package from the caching database


	Parameters

	
	packagePackage

	












	
clear_all(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L262]

	Clear all cached packages from the database






	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L38]

	Configure the cache method with app settings






	
delete(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L119]

	Delete this package from the database and from storage


	Parameters

	
	packagePackage

	












	
distinct(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L165]

	Get all distinct package names


	Returns

	
	nameslist

	List of package names














	
download_response(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L65]

	Pass through to storage






	
fetch(self, filename)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L131]

	Get matching package if it exists


	Parameters

	
	filenamestr

	Name of the package file







	Returns

	
	packagePackage

	












	
get_url(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L50]

	Get the download url for a package


	Parameters

	
	packagePackage

	





	Returns

	
	urlstr

	












	
package_class[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L14]

	alias of pypicloud.models.Package






	
classmethod postfork(cls, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L46]

	This method will be called after uWSGI forks






	
reload_from_storage(self, clear=True)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L69]

	Make sure local database is populated with packages






	
reload_if_needed(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L26]

	Reload packages from storage backend if cache is empty

This will be called when the server first starts






	
save(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L266]

	Save this package to the database


	Parameters

	
	packagePackage

	












	
search(self, criteria, query_type)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L177]

	Perform a search from pip


	Parameters

	
	criteriadict

	Dictionary containing the search criteria. Pip sends search criteria
for “name” and “summary” (typically, both of these lists have the
same search values).

Example:

{
    "name": ["value1", "value2", ..., "valueN"],
    "summary": ["value1", "value2", ..., "valueN"]
}







	query_typestr

	Type of query to perform. By default, pip sends “or”.














	
summary(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L224]

	Summarize package metadata


	Returns

	
	packageslist

	List of package dicts, each of which contains ‘name’, ‘summary’,
and ‘last_modified’.














	
upload(self, filename, data, name=None, version=None, summary=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/base.py#L77]

	Save this package to the storage mechanism and to the cache


	Parameters

	
	filenamestr

	Name of the package file



	datafile

	File-like readable object



	namestr, optional

	The name of the package (if not provided, will be parsed from
filename)



	versionstr, optional

	The version number of the package (if not provided, will be parsed
from filename)



	summarystr, optional

	The summary of the package







	Returns

	
	packagePackage

	The Package object that was uploaded







	Raises

	
	eValueError

	If the package already exists and allow_overwrite = False





















          

      

      

    

  

    
      
          
            
  
pypicloud.cache.dynamo module

Store package data in DynamoDB


	
class pypicloud.cache.dynamo.DynamoCache(request=None, engine=None, graceful_reload=False, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L61]

	Bases: pypicloud.cache.base.ICache

Caching database that uses DynamoDB


	
all(self, name)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L118]

	Search for all versions of a package


	Parameters

	
	namestr

	The name of the package







	Returns

	
	packageslist

	List of all Package s with the given
name














	
check_health(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L246]

	Check the health of the cache backend


	Returns

	
	(healthy, status)(bool, str)

	Tuple that describes the health status and provides an optional
status message














	
clear(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L131]

	Remove this package from the caching database


	Parameters

	
	packagePackage

	












	
clear_all(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L147]

	Clear all cached packages from the database






	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L72]

	Configure the cache method with app settings






	
distinct(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L121]

	Get all distinct package names


	Returns

	
	nameslist

	List of package names














	
fetch(self, filename)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L115]

	Get matching package if it exists


	Parameters

	
	filenamestr

	Name of the package file







	Returns

	
	packagePackage

	












	
package_class[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L28]

	alias of DynamoPackage






	
reload_from_storage(self, clear=True)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L172]

	Make sure local database is populated with packages






	
save(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L168]

	Save this package to the database


	Parameters

	
	packagePackage

	












	
summary(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L127]

	Summarize package metadata


	Returns

	
	packageslist

	List of package dicts, each of which contains ‘name’, ‘summary’,
and ‘last_modified’.


















	
class pypicloud.cache.dynamo.DynamoPackage(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L28]

	Bases: pypicloud.models.Package, flywheel.models.Model

Python package stored in DynamoDB


	
data = <flywheel.fields.Field object>[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L28]

	




	
filename = <flywheel.fields.Field object>[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L28]

	




	
last_modified = <flywheel.fields.Field object>[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L28]

	




	
meta_ = <flywheel.model_meta.ModelMetadata object>[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L28]

	




	
name = <flywheel.fields.Field object>[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L28]

	




	
summary = <flywheel.fields.Field object>[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L28]

	




	
version = <flywheel.fields.Field object>[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L28]

	








	
class pypicloud.cache.dynamo.PackageSummary(package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L47]

	Bases: flywheel.models.Model

Aggregate data about packages


	
last_modified = <flywheel.fields.Field object>[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L47]

	




	
meta_ = <flywheel.model_meta.ModelMetadata object>[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L47]

	




	
name = <flywheel.fields.Field object>[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L47]

	




	
summary = <flywheel.fields.Field object>[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/dynamo.py#L47]

	











          

      

      

    

  

    
      
          
            
  
pypicloud.cache.redis_cache module

Store package data in redis


	
class pypicloud.cache.redis_cache.RedisCache(request=None, db=None, graceful_reload=False, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L32]

	Bases: pypicloud.cache.base.ICache

Caching database that uses redis


	
all(self, name)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L94]

	Search for all versions of a package


	Parameters

	
	namestr

	The name of the package







	Returns

	
	packageslist

	List of all Package s with the given
name














	
check_health(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L304]

	Check the health of the cache backend


	Returns

	
	(healthy, status)(bool, str)

	Tuple that describes the health status and provides an optional
status message














	
clear(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L123]

	Remove this package from the caching database


	Parameters

	
	packagePackage

	












	
clear_all(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L151]

	Clear all cached packages from the database






	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L43]

	Configure the cache method with app settings






	
distinct(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L103]

	Get all distinct package names


	Returns

	
	nameslist

	List of package names














	
fetch(self, filename)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L74]

	Get matching package if it exists


	Parameters

	
	filenamestr

	Name of the package file







	Returns

	
	packagePackage

	












	
redis_filename_set(self, name)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L66]

	Get the key to a redis set of filenames for a package






	
redis_key(self, key)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L57]

	Get the key to a redis hash that stores a package






	
redis_prefix = u'pypicloud:'[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L32]

	




	
redis_set[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L32]

	Get the key to the redis set of package names






	
redis_summary_key(self, name)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L70]

	Get the redis key to a summary for a package






	
reload_from_storage(self, clear=True)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L200]

	Make sure local database is populated with packages






	
save(self, package, pipe=None, save_summary=True)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L156]

	Save this package to the database


	Parameters

	
	packagePackage

	












	
summary(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L106]

	Summarize package metadata


	Returns

	
	packageslist

	List of package dicts, each of which contains ‘name’, ‘summary’,
and ‘last_modified’.


















	
pypicloud.cache.redis_cache.summary_from_package(package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/redis_cache.py#L23]

	Create a summary dict from a package









          

      

      

    

  

    
      
          
            
  
pypicloud.cache.sql module

Store package data in a SQL database


	
class pypicloud.cache.sql.JSONEncodedDict(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L24]

	Bases: sqlalchemy.sql.type_api.TypeDecorator

Represents an immutable structure as a json-encoded string.


	
impl[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L2657]

	alias of sqlalchemy.sql.sqltypes.TEXT






	
process_bind_param(self, value, dialect)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L30]

	Receive a bound parameter value to be converted.

Subclasses override this method to return the
value that should be passed along to the underlying
TypeEngine object, and from there to the
DBAPI execute() method.

The operation could be anything desired to perform custom
behavior, such as transforming or serializing data.
This could also be used as a hook for validating logic.

This operation should be designed with the reverse operation
in mind, which would be the process_result_value method of
this class.


	Parameters

	
	value – Data to operate upon, of any type expected by
this method in the subclass.  Can be None.


	dialect – the Dialect in use.













	
process_result_value(self, value, dialect)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L35]

	Receive a result-row column value to be converted.

Subclasses should implement this method to operate on data
fetched from the database.

Subclasses override this method to return the
value that should be passed back to the application,
given a value that is already processed by
the underlying TypeEngine object, originally
from the DBAPI cursor method fetchone() or similar.

The operation could be anything desired to perform custom
behavior, such as transforming or serializing data.
This could also be used as a hook for validating logic.


	Parameters

	
	value – Data to operate upon, of any type expected by
this method in the subclass.  Can be None.


	dialect – the Dialect in use.








This operation should be designed to be reversible by
the “process_bind_param” method of this class.










	
class pypicloud.cache.sql.MutableDict[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L41]

	Bases: sqlalchemy.ext.mutable.Mutable, dict [https://docs.python.org/3/library/stdtypes.html#dict]

SQLAlchemy dict field that tracks changes


	
classmethod coerce(cls, key, value)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L45]

	Convert plain dictionaries to MutableDict.










	
class pypicloud.cache.sql.SQLCache(request=None, dbmaker=None, graceful_reload=False, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L121]

	Bases: pypicloud.cache.base.ICache

Caching database that uses SQLAlchemy


	
all(self, name)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L162]

	Search for all versions of a package


	Parameters

	
	namestr

	The name of the package







	Returns

	
	packageslist

	List of all Package s with the given
name














	
check_health(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L315]

	Check the health of the cache backend


	Returns

	
	(healthy, status)(bool, str)

	Tuple that describes the health status and provides an optional
status message














	
clear(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L254]

	Remove this package from the caching database


	Parameters

	
	packagePackage

	












	
clear_all(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L257]

	Clear all cached packages from the database






	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L142]

	Configure the cache method with app settings






	
distinct(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L167]

	Get all distinct package names


	Returns

	
	nameslist

	List of package names














	
fetch(self, filename)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L159]

	Get matching package if it exists


	Parameters

	
	filenamestr

	Name of the package file







	Returns

	
	packagePackage

	












	
package_class[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L74]

	alias of SQLPackage






	
classmethod postfork(cls, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L153]

	This method will be called after uWSGI forks






	
reload_from_storage(self, clear=True)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L270]

	Make sure local database is populated with packages






	
reload_if_needed(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L136]

	Reload packages from storage backend if cache is empty

This will be called when the server first starts






	
save(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L267]

	Save this package to the database


	Parameters

	
	packagePackage

	












	
search(self, criteria, query_type)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L171]

	Perform a search.

Queries are performed as follows:


For the AND query_type, queries within a column will utilize the
AND operator, but will not conflict with queries in another column.


(column1 LIKE ‘%a%’ AND column1 LIKE ‘%b%’)
OR
(column2 LIKE ‘%c%’ AND column2 LIKE ‘%d%’)




For the OR query_type, all queries will utilize the OR operator:


(column1 LIKE ‘%a%’ OR column1 LIKE ‘%b%’)
OR
(column2 LIKE ‘%c%’ OR column2 LIKE ‘%d%’)












	
summary(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L226]

	Summarize package metadata


	Returns

	
	packageslist

	List of package dicts, each of which contains ‘name’, ‘summary’,
and ‘last_modified’.


















	
class pypicloud.cache.sql.SQLPackage(name, version, filename, last_modified=None, summary=None, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L74]

	Bases: pypicloud.models.Package, sqlalchemy.ext.declarative.api.Base

Python package stored in SQLAlchemy


	
data[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L74]

	




	
filename[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L74]

	




	
last_modified[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L74]

	




	
name[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L74]

	




	
summary[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L74]

	




	
version[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L74]

	








	
pypicloud.cache.sql.create_schema(engine)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L87]

	Create the database schema if needed


	Parameters

	
	enginesqlalchemy.Engine

	







Notes

The method should only be called after importing all modules containing
models which extend the Base object.






	
pypicloud.cache.sql.drop_schema(engine)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/cache/sql.py#L104]

	Drop the database schema


	Parameters

	
	enginesqlalchemy.Engine

	







Notes

The method should only be called after importing all modules containing
models which extend the Base object.









          

      

      

    

  

    
      
          
            
  
pypicloud.storage package


Submodules



	pypicloud.storage.base module

	pypicloud.storage.files module

	pypicloud.storage.gcs module

	pypicloud.storage.s3 module








Module contents

Storage backend implementations


	
pypicloud.storage.get_storage_impl(settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/__init__.py#L18]

	Get and configure the storage backend wrapper











          

      

      

    

  

    
      
          
            
  
pypicloud.storage.base module

Base class for storage backends


	
class pypicloud.storage.base.IStorage(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/base.py#L5]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for a backend that stores package files


	
check_health(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/base.py#L94]

	Check the health of the storage backend


	Returns

	
	(healthy, status)(bool, str)

	Tuple that describes the health status and provides an optional
status message














	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/base.py#L12]

	Configure the storage method with app settings






	
delete(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/base.py#L60]

	Delete a package file


	Parameters

	
	packagePackage

	The package metadata














	
download_response(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/base.py#L37]

	Return a HTTP Response that will download this package

This is called from the download endpoint






	
get_url(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/base.py#L21]

	Create or return an HTTP url for a package file

By default this will return a link to the download endpoint

/api/package/<package>/<filename>


	Returns

	
	linkstr

	Link to the location of this package file














	
list(self, factory=<class 'pypicloud.models.Package'>)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/base.py#L17]

	Return a list or generator of all packages






	
open(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/base.py#L72]

	Get a buffer object that can read the package data

This should be a context manager. It is used in migration scripts, not
directly by the web application.


	Parameters

	
	packagePackage

	







Examples

with storage.open(package) as pkg_data:
    with open('outfile.tar.gz', 'w') as ofile:
        ofile.write(pkg_data.read())










	
upload(self, package, datastream)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/base.py#L46]

	Upload a package file to the storage backend


	Parameters

	
	packagePackage

	The package metadata



	datastreamfile

	A file-like object that contains the package data





















          

      

      

    

  

    
      
          
            
  
pypicloud.storage.files module

Store packages as files on disk


	
class pypicloud.storage.files.FileStorage(request=None, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/files.py#L14]

	Bases: pypicloud.storage.base.IStorage

Stores package files on the filesystem


	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/files.py#L22]

	Configure the storage method with app settings






	
delete(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/files.py#L99]

	Delete a package file


	Parameters

	
	packagePackage

	The package metadata














	
download_response(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/files.py#L67]

	Return a HTTP Response that will download this package

This is called from the download endpoint






	
get_metadata_path(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/files.py#L41]

	Get the fully-qualified file path for a package metadata file






	
get_path(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/files.py#L31]

	Get the fully-qualified file path for a package






	
list(self, factory=<class 'pypicloud.models.Package'>)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/files.py#L45]

	Return a list or generator of all packages






	
open(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/files.py#L119]

	Get a buffer object that can read the package data

This should be a context manager. It is used in migration scripts, not
directly by the web application.


	Parameters

	
	packagePackage

	







Examples

with storage.open(package) as pkg_data:
    with open('outfile.tar.gz', 'w') as ofile:
        ofile.write(pkg_data.read())










	
path_to_meta_path(self, path)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/files.py#L37]

	Construct the filename for a metadata file






	
upload(self, package, datastream)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/files.py#L74]

	Upload a package file to the storage backend


	Parameters

	
	packagePackage

	The package metadata



	datastreamfile

	A file-like object that contains the package data





















          

      

      

    

  

    
      
          
            
  
pypicloud.storage.gcs module

Store packages in GCS


	
class pypicloud.storage.gcs.GoogleCloudStorage(request=None, service_account_json_filename=None, project_id=None, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/gcs.py#L16]

	Bases: pypicloud.storage.object_store.ObjectStoreStorage

Storage backend that uses GCS


	
delete(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/gcs.py#L167]

	Delete the package






	
classmethod get_bucket(cls, bucket_name, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/gcs.py#L111]

	Subclasses must implement a method for generating a Bucket class
instance in the backend’s SDK






	
list(self, factory=<class 'pypicloud.models.Package'>)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/gcs.py#L136]

	Return a list or generator of all packages






	
classmethod package_from_object(cls, blob, factory)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/gcs.py#L126]

	Create a package from a GCS object






	
test = False[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/gcs.py#L16]

	




	
upload(self, package, datastream)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/gcs.py#L152]

	Upload the package to GCS













          

      

      

    

  

    
      
          
            
  
pypicloud.storage.s3 module

Store packages in S3


	
class pypicloud.storage.s3.CloudFrontS3Storage(request=None, domain=None, crypto_pk=None, key_id=None, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/s3.py#L218]

	Bases: pypicloud.storage.s3.S3Storage

Storage backend that uses S3 and CloudFront


	
classmethod configure(cls, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/s3.py#L236]

	Configure the storage method with app settings










	
class pypicloud.storage.s3.S3Storage(request=None, bucket=None, expire_after=None, bucket_prefix=None, prepend_hash=None, redirect_urls=None, sse=None, object_acl=None, storage_class=None, region_name=None, public_url=False, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/s3.py#L31]

	Bases: pypicloud.storage.object_store.ObjectStoreStorage

Storage backend that uses S3


	
check_health(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/s3.py#L209]

	Check the health of the storage backend


	Returns

	
	(healthy, status)(bool, str)

	Tuple that describes the health status and provides an optional
status message














	
delete(self, package)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/s3.py#L204]

	Delete a package file


	Parameters

	
	packagePackage

	The package metadata














	
classmethod get_bucket(cls, bucket_name, settings)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/s3.py#L50]

	Subclasses must implement a method for generating a Bucket class
instance in the backend’s SDK






	
list(self, factory=<class 'pypicloud.models.Package'>)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/s3.py#L137]

	Return a list or generator of all packages






	
classmethod package_from_object(cls, obj, factory)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/s3.py#L117]

	Create a package from a S3 object






	
test = False[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/s3.py#L31]

	




	
upload(self, package, datastream)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/storage/s3.py#L184]

	Upload a package file to the storage backend


	Parameters

	
	packagePackage

	The package metadata



	datastreamfile

	A file-like object that contains the package data





















          

      

      

    

  

    
      
          
            
  
pypicloud.views package


Submodules



	pypicloud.views.admin module

	pypicloud.views.api module

	pypicloud.views.login module

	pypicloud.views.packages module

	pypicloud.views.simple module








Module contents

Views


	
pypicloud.views.format_exception(context, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/__init__.py#L40]

	Catch all app exceptions and render them nicely

This will keep the status code, but will always return parseable json


	Returns

	
	errorstr

	Identifying error key



	messagestr

	Human-readable error message



	stacktracestr, optional

	If pyramid.debug = true, also return the stacktrace to the client














	
pypicloud.views.get_index(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/__init__.py#L167]

	Render a home screen






	
pypicloud.views.health_endpoint(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/__init__.py#L23]

	Simple health endpoint











          

      

      

    

  

    
      
          
            
  
pypicloud.views.admin module

API endpoints for admin controls


	
class pypicloud.views.admin.AdminEndpoints(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L15]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Collection of admin endpoints


	
approve_user(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L60]

	Approve a pending user






	
create_group(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L95]

	Create a group






	
create_user(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L236]

	Create a new user






	
delete_group(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L104]

	Delete a group






	
delete_user(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L53]

	Delete a user






	
download_access_control(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L183]

	Download the ACL data as a gzipped-json file






	
edit_permission(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L142]

	Edit user permission on a package






	
generate_token(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L175]

	Create a signup token for a user






	
get_group(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L117]

	Get the members and package permissions for a group






	
get_groups(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L90]

	Get the list of groups






	
get_package_permissions(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L126]

	Get the user and group permissions set on a package






	
get_pending_users(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L28]

	Get the list of pending users






	
get_user(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L38]

	Get a single user






	
get_user_permissions(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L111]

	Get the package permissions for a user






	
get_users(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L33]

	Get the list of users






	
mutate_group_member(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L75]

	Add a user to a group






	
rebuild_package_list(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L22]

	Rebuild the package cache in the database






	
set_admin_status(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L236]

	Set a user to be or not to be an admin






	
toggle_allow_register(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/admin.py#L236]

	Allow or disallow user registration













          

      

      

    

  

    
      
          
            
  
pypicloud.views.api module

Views for simple api calls that return json data


	
pypicloud.views.api.all_packages(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/api.py#L167]

	List all packages






	
pypicloud.views.api.change_password(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/api.py#L236]

	Change a user’s password






	
pypicloud.views.api.delete_package(context, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/api.py#L147]

	Delete a package






	
pypicloud.views.api.download_package(context, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/api.py#L81]

	Download package, or redirect to the download link






	
pypicloud.views.api.fetch_dist(request, package_name, package_url)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/api.py#L71]

	Fetch a Distribution and upload it to the storage backend






	
pypicloud.views.api.fetch_requirements(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/api.py#L236]

	Fetch packages from the fallback_base_url


	Parameters

	
	requirementsstr

	Requirements in the requirements.txt format (with newlines)



	wheelbool, optional

	If True, will prefer wheels (default True)



	prereleasebool, optional

	If True, will allow prerelease versions (default False)







	Returns

	
	pkgslist

	List of Package objects














	
pypicloud.views.api.package_versions(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/api.py#L167]

	List all unique package versions






	
pypicloud.views.api.register(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/api.py#L236]

	Register a user






	
pypicloud.views.api.upload_package(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/api.py#L236]

	Upload a package









          

      

      

    

  

    
      
          
            
  
pypicloud.views.login module

Render views for logging in and out of the web interface


	
pypicloud.views.login.do_forbidden(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/login.py#L26]

	Intercept 403’s and return 401’s when necessary






	
pypicloud.views.login.do_login(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/login.py#L236]

	Check credentials and log in






	
pypicloud.views.login.do_token_register(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/login.py#L236]

	Consume a signed token and create a new user






	
pypicloud.views.login.get_login_page(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/login.py#L10]

	Catch login and redirect to login wall






	
pypicloud.views.login.handle_register_request(request, username, password)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/login.py#L66]

	Process a request to register a new user






	
pypicloud.views.login.logout(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/login.py#L120]

	Delete the user session






	
pypicloud.views.login.register(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/login.py#L236]

	Check credentials and log in






	
pypicloud.views.login.register_new_user(access, username, password)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/login.py#L52]

	Register a new user & handle duplicate detection









          

      

      

    

  

    
      
          
            
  
pypicloud.views.packages module

View for cleaner buildout calls


	
pypicloud.views.packages.list_packages(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/packages.py#L167]

	Render the list for all versions of all packages









          

      

      

    

  

    
      
          
            
  
pypicloud.views.simple module

Views for simple pip interaction


	
pypicloud.views.simple.get_fallback_packages(request, package_name, redirect=True)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/simple.py#L136]

	Get all package versions for a package from the fallback_base_url






	
pypicloud.views.simple.package_versions(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/simple.py#L167]

	Render the links for all versions of a package






	
pypicloud.views.simple.package_versions_json(context, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/simple.py#L108]

	Render the package versions in JSON format






	
pypicloud.views.simple.packages_to_dict(request, packages)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/simple.py#L150]

	Convert a list of packages to a dict used by the template






	
pypicloud.views.simple.search(request, criteria, query_type)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/simple.py#L47]

	Perform searches from pip. This handles XML RPC requests to the “pypi”
endpoint (configured as /pypi/) that specify the method “search”.






	
pypicloud.views.simple.simple(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/simple.py#L167]

	Render the list of all unique package names






	
pypicloud.views.simple.upload(*args, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/views/simple.py#L236]

	Handle update commands









          

      

      

    

  

    
      
          
            
  
pypicloud.auth module

Utilities for authentication and authorization


	
class pypicloud.auth.BasicAuthenticationPolicy[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L37]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A :app:`Pyramid` authentication policy which
obtains data from basic authentication headers.

Constructor Arguments

check


A callback passed the credentials and the request,
expected to return None if the userid doesn’t exist or a sequence
of group identifiers (possibly empty) if the user does exist.
Required.





	
authenticated_userid(self, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L53]

	Verify login and return the authed userid






	
effective_principals(self, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L67]

	Get the authed groups for the active user






	
forget(self, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L77]

	HTTP headers to forget credentials






	
remember(self, request, principal, **kw)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L73]

	HTTP Headers to remember credentials






	
unauthenticated_userid(self, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L63]

	Return userid without performing auth










	
class pypicloud.auth.SessionAuthPolicy[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L82]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple auth policy using beaker sessions


	
authenticated_userid(self, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L86]

	Return the authenticated userid or None if no
authenticated userid can be found. This method of the policy
should ensure that a record exists in whatever persistent store is
used related to the user (the user should not have been deleted);
if a record associated with the current id does not exist in a
persistent store, it should return None.






	
effective_principals(self, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L103]

	Return a sequence representing the effective principals
including the userid and any groups belonged to by the current
user, including ‘system’ groups such as
pyramid.security.Everyone and
pyramid.security.Authenticated.






	
forget(self, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L123]

	Return a set of headers suitable for ‘forgetting’ the
current user on subsequent requests.






	
remember(self, request, principal, **_)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L113]

	This implementation is slightly different than expected. The
application should call remember(userid) rather than
remember(principal)






	
unauthenticated_userid(self, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L95]

	Return the unauthenticated userid.  This method performs the
same duty as authenticated_userid but is permitted to return the
userid based only on data present in the request; it needn’t (and
shouldn’t) check any persistent store to ensure that the user record
related to the request userid exists.










	
pypicloud.auth.get_basicauth_credentials(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L16]

	Get the user/password from HTTP basic auth






	
pypicloud.auth.includeme(config)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/auth.py#L156]

	Configure the app









          

      

      

    

  

    
      
          
            
  
pypicloud.lambda_scripts module

Helpers for syncing packages into the cache in AWS Lambda


	
pypicloud.lambda_scripts.build_lambda_bundle(argv=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/lambda_scripts.py#L189]

	Build the zip bundle that will be deployed to AWS Lambda






	
pypicloud.lambda_scripts.create_sync_scripts(argv=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/lambda_scripts.py#L251]

	Set bucket notifications and create AWS Lambda functions that will sync
changes in the S3 bucket to the cache






	
pypicloud.lambda_scripts.make_virtualenv(env)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/lambda_scripts.py#L171]

	Create a virtualenv









          

      

      

    

  

    
      
          
            
  
pypicloud.models module

Model objects


	
class pypicloud.models.Package(name, version, filename, last_modified=None, summary=None, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/models.py#L14]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Representation of a versioned package


	Parameters

	
	namestr

	The name of the package (will be normalized)



	versionstr

	The version number of the package



	filenamestr

	The name of the package file



	last_modifieddatetime, optional

	The datetime when this package was uploaded (default now)



	summarystr, optional

	The summary of the package



	**kwargsdict

	Metadata about the package










	
get_url(self, request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/models.py#L50]

	Create path to the download link






	
is_prerelease[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/models.py#L14]

	Returns True if the version is a prerelease version






	
parsed_version[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/models.py#L14]

	Parse and cache the version using pkg_resources






	
search_summary(self)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/models.py#L92]

	Data to return from a pip search













          

      

      

    

  

    
      
          
            
  
pypicloud.route module

Tools and resources for traversal routing


	
class pypicloud.route.APIPackageFileResource(request, name, filename)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L92]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Resource for api endpoints dealing with a single package version






	
class pypicloud.route.APIPackageResource(request, name)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L79]

	Bases: pypicloud.route.IResourceFactory

Resource for requesting package versions






	
class pypicloud.route.APIPackagingResource(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L70]

	Bases: pypicloud.route.IResourceFactory

Resource for api package queries






	
class pypicloud.route.APIResource(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L105]

	Bases: pypicloud.route.IStaticResource

Resource for api calls


	
subobjects = {'package': <class 'pypicloud.route.APIPackagingResource'>}[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L105]

	








	
class pypicloud.route.AdminResource(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L112]

	Bases: pypicloud.route.IStaticResource

Resource for admin calls






	
class pypicloud.route.IResourceFactory(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L23]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Resource that generates child resources from a factory






	
class pypicloud.route.IStaticResource(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L5]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple resource base class for static-mapping of paths


	
subobjects = {}[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L5]

	








	
class pypicloud.route.PackagesResource(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L117]

	Bases: pypicloud.route.IStaticResource

Resource for cleaner buildout config






	
class pypicloud.route.Root(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L122]

	Bases: pypicloud.route.IStaticResource

Root context for PyPI Cloud


	
subobjects = {'admin': <class 'pypicloud.route.AdminResource'>, 'api': <class 'pypicloud.route.APIResource'>, 'packages': <class 'pypicloud.route.PackagesResource'>, 'pypi': <class 'pypicloud.route.SimpleResource'>, 'simple': <class 'pypicloud.route.SimpleResource'>}[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L122]

	








	
class pypicloud.route.SimplePackageResource(request, name)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L57]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Resource for requesting simple endpoint package versions






	
class pypicloud.route.SimpleResource(request)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/route.py#L43]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Resource for simple pip calls









          

      

      

    

  

    
      
          
            
  
pypicloud.scripts module

Commandline scripts


	
pypicloud.scripts.bucket_validate(name)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/scripts.py#L97]

	Check for valid bucket name






	
pypicloud.scripts.export_access(argv=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/scripts.py#L252]

	Dump the access control data to a universal format






	
pypicloud.scripts.gen_password(argv=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/scripts.py#L20]

	Generate a salted password






	
pypicloud.scripts.import_access(argv=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/scripts.py#L273]

	Load the access control data from a dump file or stdin

This operation is idempotent and graceful. It will not clobber your
existing ACL.






	
pypicloud.scripts.make_config(argv=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/scripts.py#L111]

	Create a server config file






	
pypicloud.scripts.migrate_packages(argv=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/scripts.py#L213]

	Migrate packages from one storage backend to another

Create two config.ini files that are configured to use different storage
backends. All packages will be migrated from the storage backend in the
first to the storage backend in the second.

ex: pypicloud-migrate-packages file_config.ini s3_config.ini






	
pypicloud.scripts.prompt(msg, default=<object object at 0x7fb15d7a9b80>, validate=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/scripts.py#L55]

	Prompt user for input






	
pypicloud.scripts.prompt_option(text, choices, default=<object object at 0x7fb15d7a9b80>)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/scripts.py#L67]

	Prompt the user to choose one of a list of options






	
pypicloud.scripts.promptyn(msg, default=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/scripts.py#L80]

	Display a blocking prompt until the user confirms






	
pypicloud.scripts.wrapped_input(msg)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/scripts.py#L50]

	Wraps input for tests









          

      

      

    

  

    
      
          
            
  
pypicloud.util module

Utilities


	
class pypicloud.util.BetterScrapingLocator(*args, **kw)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L49]

	Bases: distlib.locators.SimpleScrapingLocator

Layer on top of SimpleScrapingLocator that allows preferring wheels


	
locate(self, requirement, prereleases=False, wheel=True)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L59]

	Find the most recent distribution which matches the given
requirement.


	Parameters

	
	requirement – A requirement of the form ‘foo (1.0)’ or perhaps
‘foo (>= 1.0, < 2.0, != 1.3)’


	prereleases – If True, allow pre-release versions
to be located. Otherwise, pre-release versions
are not returned.






	Returns

	A Distribution instance, or None if no such
distribution could be located.










	
prefer_wheel = True[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L49]

	




	
score_url(self, url)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L63]

	Give an url a score which can be used to choose preferred URLs
for a given project release.










	
class pypicloud.util.TimedCache(cache_time, factory=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L136]

	Bases: dict [https://docs.python.org/3/library/stdtypes.html#dict]

Dict that will store entries for a given time, then evict them


	Parameters

	
	cache_timeint or None

	The amount of time to cache entries for, in seconds. 0 will not cache.
None will cache forever.



	factorycallable, optional

	If provided, when the TimedCache is accessed and has no value, it will
attempt to populate itself by calling this function with the key it was
accessed with. This function should return a value to cache, or None if
no value is found.










	
get(self, key, default=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L200]

	




	
set_expire(self, key, value, expiration)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L216]

	Set a value in the cache with a specific expiration


	Parameters

	
	keystr

	

	valuevalue

	

	expirationint or None

	Sets the value to expire this many seconds from now. If None, will
never expire.


















	
pypicloud.util.create_matcher(queries, query_type)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L86]

	Create a matcher for a list of queries


	Parameters

	
	querieslist

	List of queries



	query_type: str

	Type of query to run: [“or”|”and”]







	Returns

	
	Matcher function

	












	
pypicloud.util.get_settings(settings, prefix, **kwargs)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L110]

	Convenience method for fetching settings

Returns a dict; any settings that were missing from the config file will
not be present in the returned dict (as opposed to being present with a
None value)


	Parameters

	
	settingsdict

	The settings dict



	prefixstr

	String to prefix all keys with when fetching value from settings



	**kwargsdict

	Mapping of setting name to conversion function (e.g. str or asbool)














	
pypicloud.util.is_compatible(wheel, tags=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L78]

	Hacked function to monkey patch into distlib






	
pypicloud.util.normalize_name(name)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L42]

	Normalize a python package name






	
pypicloud.util.parse_filename(filename, name=None)[source] [https://github.com/stevearc/pypicloud/blob/1.0.11/pypicloud/util.py#L20]

	Parse a name and version out of a filename









          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pypicloud	
       

     
       	
       	   
       pypicloud.access	
       

     
       	
       	   
       pypicloud.access.aws_secrets_manager	
       

     
       	
       	   
       pypicloud.access.base	
       

     
       	
       	   
       pypicloud.access.base_json	
       

     
       	
       	   
       pypicloud.access.config	
       

     
       	
       	   
       pypicloud.access.remote	
       

     
       	
       	   
       pypicloud.access.sql	
       

     
       	
       	   
       pypicloud.auth	
       

     
       	
       	   
       pypicloud.cache	
       

     
       	
       	   
       pypicloud.cache.base	
       

     
       	
       	   
       pypicloud.cache.dynamo	
       

     
       	
       	   
       pypicloud.cache.redis_cache	
       

     
       	
       	   
       pypicloud.cache.sql	
       

     
       	
       	   
       pypicloud.lambda_scripts	
       

     
       	
       	   
       pypicloud.models	
       

     
       	
       	   
       pypicloud.route	
       

     
       	
       	   
       pypicloud.scripts	
       

     
       	
       	   
       pypicloud.storage	
       

     
       	
       	   
       pypicloud.storage.base	
       

     
       	
       	   
       pypicloud.storage.files	
       

     
       	
       	   
       pypicloud.storage.gcs	
       

     
       	
       	   
       pypicloud.storage.s3	
       

     
       	
       	   
       pypicloud.util	
       

     
       	
       	   
       pypicloud.views	
       

     
       	
       	   
       pypicloud.views.admin	
       

     
       	
       	   
       pypicloud.views.api	
       

     
       	
       	   
       pypicloud.views.login	
       

     
       	
       	   
       pypicloud.views.packages	
       

     
       	
       	   
       pypicloud.views.simple	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 


A


  	
      	admin (pypicloud.access.sql.User attribute)


      	AdminEndpoints (class in pypicloud.views.admin)


      	AdminResource (class in pypicloud.route)


      	all() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.cache.dynamo.DynamoCache method)


        	(pypicloud.cache.redis_cache.RedisCache method)


        	(pypicloud.cache.sql.SQLCache method)


      


      	all_packages() (in module pypicloud.views.api)


      	allow_register() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base.IMutableAccessBackend method)


        	(pypicloud.access.base_json.IMutableJsonAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	allow_register_token() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base.IMutableAccessBackend method)


      


  

  	
      	allowed_permissions() (pypicloud.access.base.IAccessBackend method)


      	APIPackageFileResource (class in pypicloud.route)


      	APIPackageResource (class in pypicloud.route)


      	APIPackagingResource (class in pypicloud.route)


      	APIResource (class in pypicloud.route)


      	approve_user() (pypicloud.access.base.IMutableAccessBackend method)

      
        	(pypicloud.access.base_json.IMutableJsonAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


        	(pypicloud.views.admin.AdminEndpoints method)


      


      	authenticated_userid() (pypicloud.auth.BasicAuthenticationPolicy method)

      
        	(pypicloud.auth.SessionAuthPolicy method)


      


      	AWSSecretsManagerAccessBackend (class in pypicloud.access.aws_secrets_manager)


  





B


  	
      	BasicAuthenticationPolicy (class in pypicloud.auth)


      	BetterScrapingLocator (class in pypicloud.util)


  

  	
      	bucket_validate() (in module pypicloud.scripts)


      	build_lambda_bundle() (in module pypicloud.lambda_scripts)


  





C


  	
      	can_update_cache() (pypicloud.access.base.IAccessBackend method)


      	change_password() (in module pypicloud.views.api)


      	check_health() (pypicloud.access.aws_secrets_manager.AWSSecretsManagerAccessBackend method)

      
        	(pypicloud.access.base.IAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


        	(pypicloud.cache.base.ICache method)


        	(pypicloud.cache.dynamo.DynamoCache method)


        	(pypicloud.cache.redis_cache.RedisCache method)


        	(pypicloud.cache.sql.SQLCache method)


        	(pypicloud.storage.base.IStorage method)


        	(pypicloud.storage.s3.S3Storage method)


      


      	clear() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.cache.dynamo.DynamoCache method)


        	(pypicloud.cache.redis_cache.RedisCache method)


        	(pypicloud.cache.sql.SQLCache method)


      


      	clear_all() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.cache.dynamo.DynamoCache method)


        	(pypicloud.cache.redis_cache.RedisCache method)


        	(pypicloud.cache.sql.SQLCache method)


      


      	CloudFrontS3Storage (class in pypicloud.storage.s3)


      	coerce() (pypicloud.cache.sql.MutableDict class method)


  

  	
      	ConfigAccessBackend (class in pypicloud.access.config)


      	configure() (pypicloud.access.aws_secrets_manager.AWSSecretsManagerAccessBackend class method)

      
        	(pypicloud.access.base.IAccessBackend class method)


        	(pypicloud.access.config.ConfigAccessBackend class method)


        	(pypicloud.access.remote.RemoteAccessBackend class method)


        	(pypicloud.access.sql.SQLAccessBackend class method)


        	(pypicloud.cache.base.ICache class method)


        	(pypicloud.cache.dynamo.DynamoCache class method)


        	(pypicloud.cache.redis_cache.RedisCache class method)


        	(pypicloud.cache.sql.SQLCache class method)


        	(pypicloud.storage.base.IStorage class method)


        	(pypicloud.storage.files.FileStorage class method)


        	(pypicloud.storage.s3.CloudFrontS3Storage class method)


      


      	create_group() (pypicloud.access.base.IMutableAccessBackend method)

      
        	(pypicloud.access.base_json.IMutableJsonAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


        	(pypicloud.views.admin.AdminEndpoints method)


      


      	create_matcher() (in module pypicloud.util)


      	create_schema() (in module pypicloud.cache.sql)


      	create_sync_scripts() (in module pypicloud.lambda_scripts)


      	create_user() (pypicloud.views.admin.AdminEndpoints method)


  





D


  	
      	data (pypicloud.cache.dynamo.DynamoPackage attribute)

      
        	(pypicloud.cache.sql.SQLPackage attribute)


      


      	db (pypicloud.access.base_json.IJsonAccessBackend attribute)

      
        	(pypicloud.access.sql.SQLAccessBackend attribute)


      


      	delete() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.storage.base.IStorage method)


        	(pypicloud.storage.files.FileStorage method)


        	(pypicloud.storage.gcs.GoogleCloudStorage method)


        	(pypicloud.storage.s3.S3Storage method)


      


      	delete_group() (pypicloud.access.base.IMutableAccessBackend method)

      
        	(pypicloud.access.base_json.IMutableJsonAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


        	(pypicloud.views.admin.AdminEndpoints method)


      


      	delete_package() (in module pypicloud.views.api)


      	delete_user() (pypicloud.access.base.IMutableAccessBackend method)

      
        	(pypicloud.access.base_json.IMutableJsonAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


        	(pypicloud.views.admin.AdminEndpoints method)


      


  

  	
      	distinct() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.cache.dynamo.DynamoCache method)


        	(pypicloud.cache.redis_cache.RedisCache method)


        	(pypicloud.cache.sql.SQLCache method)


      


      	do_forbidden() (in module pypicloud.views.login)


      	do_login() (in module pypicloud.views.login)


      	do_token_register() (in module pypicloud.views.login)


      	download_access_control() (pypicloud.views.admin.AdminEndpoints method)


      	download_package() (in module pypicloud.views.api)


      	download_response() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.storage.base.IStorage method)


        	(pypicloud.storage.files.FileStorage method)


      


      	drop_schema() (in module pypicloud.cache.sql)


      	dump() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base.IMutableAccessBackend method)


      


      	DynamoCache (class in pypicloud.cache.dynamo)


      	DynamoPackage (class in pypicloud.cache.dynamo)


  





E


  	
      	edit_group_permission() (pypicloud.access.base.IMutableAccessBackend method)

      
        	(pypicloud.access.base_json.IMutableJsonAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	edit_permission() (pypicloud.views.admin.AdminEndpoints method)


      	edit_user_group() (pypicloud.access.base.IMutableAccessBackend method)

      
        	(pypicloud.access.base_json.IMutableJsonAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


  

  	
      	edit_user_password() (pypicloud.access.base.IMutableAccessBackend method)


      	edit_user_permission() (pypicloud.access.base.IMutableAccessBackend method)

      
        	(pypicloud.access.base_json.IMutableJsonAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	effective_principals() (pypicloud.auth.BasicAuthenticationPolicy method)

      
        	(pypicloud.auth.SessionAuthPolicy method)


      


      	export_access() (in module pypicloud.scripts)


  





F


  	
      	fetch() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.cache.dynamo.DynamoCache method)


        	(pypicloud.cache.redis_cache.RedisCache method)


        	(pypicloud.cache.sql.SQLCache method)


      


      	fetch_dist() (in module pypicloud.views.api)


      	fetch_requirements() (in module pypicloud.views.api)


  

  	
      	filename (pypicloud.cache.dynamo.DynamoPackage attribute)

      
        	(pypicloud.cache.sql.SQLPackage attribute)


      


      	FileStorage (class in pypicloud.storage.files)


      	forget() (pypicloud.auth.BasicAuthenticationPolicy method)

      
        	(pypicloud.auth.SessionAuthPolicy method)


      


      	format_exception() (in module pypicloud.views)


  





G


  	
      	gen_password() (in module pypicloud.scripts)


      	generate_token() (pypicloud.views.admin.AdminEndpoints method)


      	get() (pypicloud.util.TimedCache method)


      	get_acl() (pypicloud.access.base.IAccessBackend method)


      	get_basicauth_credentials() (in module pypicloud.auth)


      	get_bucket() (pypicloud.storage.gcs.GoogleCloudStorage class method)

      
        	(pypicloud.storage.s3.S3Storage class method)


      


      	get_cache_impl() (in module pypicloud.cache)


      	get_fallback_packages() (in module pypicloud.views.simple)


      	get_group() (pypicloud.views.admin.AdminEndpoints method)


      	get_groups() (pypicloud.views.admin.AdminEndpoints method)


      	get_index() (in module pypicloud.views)


      	get_login_page() (in module pypicloud.views.login)


      	get_metadata_path() (pypicloud.storage.files.FileStorage method)


      	get_package_permissions() (pypicloud.views.admin.AdminEndpoints method)


      	get_path() (pypicloud.storage.files.FileStorage method)


      	get_pending_users() (pypicloud.views.admin.AdminEndpoints method)


      	get_pwd_context() (in module pypicloud.access.base)


      	get_settings() (in module pypicloud.util)


      	get_signup_token() (pypicloud.access.base.IMutableAccessBackend method)


      	get_storage_impl() (in module pypicloud.storage)


      	get_url() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.models.Package method)


        	(pypicloud.storage.base.IStorage method)


      


      	get_user() (pypicloud.views.admin.AdminEndpoints method)


  

  	
      	get_user_permissions() (pypicloud.views.admin.AdminEndpoints method)


      	get_users() (pypicloud.views.admin.AdminEndpoints method)


      	GoogleCloudStorage (class in pypicloud.storage.gcs)


      	Group (class in pypicloud.access.sql)


      	group (pypicloud.access.sql.GroupPermission attribute)


      	group_members() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base_json.IJsonAccessBackend method)


        	(pypicloud.access.remote.RemoteAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	group_package_permissions() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base_json.IJsonAccessBackend method)


        	(pypicloud.access.remote.RemoteAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	group_permissions() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base_json.IJsonAccessBackend method)


        	(pypicloud.access.remote.RemoteAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	group_to_principal() (in module pypicloud.access.base)


      	groupname (pypicloud.access.sql.GroupPermission attribute)


      	GroupPermission (class in pypicloud.access.sql)


      	groups (pypicloud.access.sql.User attribute)


      	groups() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base_json.IJsonAccessBackend method)


        	(pypicloud.access.remote.RemoteAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	groups_to_principals() (in module pypicloud.access.base)


  





H


  	
      	handle_register_request() (in module pypicloud.views.login)


  

  	
      	has_permission() (pypicloud.access.base.IAccessBackend method)


      	health_endpoint() (in module pypicloud.views)


  





I


  	
      	IAccessBackend (class in pypicloud.access.base)


      	ICache (class in pypicloud.cache.base)


      	IJsonAccessBackend (class in pypicloud.access.base_json)


      	impl (pypicloud.cache.sql.JSONEncodedDict attribute)


      	import_access() (in module pypicloud.scripts)


      	IMutableAccessBackend (class in pypicloud.access.base)


      	IMutableJsonAccessBackend (class in pypicloud.access.base_json)


      	in_any_group() (pypicloud.access.base.IAccessBackend method)


      	in_group() (pypicloud.access.base.IAccessBackend method)


      	includeme() (in module pypicloud)

      
        	(in module pypicloud.access)


        	(in module pypicloud.auth)


        	(in module pypicloud.cache)


      


  

  	
      	IResourceFactory (class in pypicloud.route)


      	is_admin() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base_json.IJsonAccessBackend method)


        	(pypicloud.access.remote.RemoteAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	is_compatible() (in module pypicloud.util)


      	is_prerelease (pypicloud.models.Package attribute)


      	IStaticResource (class in pypicloud.route)


      	IStorage (class in pypicloud.storage.base)


  





J


  	
      	JSONEncodedDict (class in pypicloud.cache.sql)


  





K


  	
      	key (pypicloud.access.sql.KeyVal attribute)


  

  	
      	KeyVal (class in pypicloud.access.sql)


  





L


  	
      	last_modified (pypicloud.cache.dynamo.DynamoPackage attribute)

      
        	(pypicloud.cache.dynamo.PackageSummary attribute)


        	(pypicloud.cache.sql.SQLPackage attribute)


      


      	list() (pypicloud.storage.base.IStorage method)

      
        	(pypicloud.storage.files.FileStorage method)


        	(pypicloud.storage.gcs.GoogleCloudStorage method)


        	(pypicloud.storage.s3.S3Storage method)


      


  

  	
      	list_packages() (in module pypicloud.views.packages)


      	load() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base.IMutableAccessBackend method)


        	(pypicloud.access.config.ConfigAccessBackend method)


      


      	locate() (pypicloud.util.BetterScrapingLocator method)


      	logout() (in module pypicloud.views.login)


  





M


  	
      	main() (in module pypicloud)


      	make_config() (in module pypicloud.scripts)


      	make_virtualenv() (in module pypicloud.lambda_scripts)


      	meta_ (pypicloud.cache.dynamo.DynamoPackage attribute)

      
        	(pypicloud.cache.dynamo.PackageSummary attribute)


      


  

  	
      	migrate_packages() (in module pypicloud.scripts)


      	mutable (pypicloud.access.base.IAccessBackend attribute)

      
        	(pypicloud.access.base.IMutableAccessBackend attribute)


        	(pypicloud.access.base_json.IMutableJsonAccessBackend attribute)


      


      	MutableDict (class in pypicloud.cache.sql)


      	mutate_group_member() (pypicloud.views.admin.AdminEndpoints method)


  





N


  	
      	name (pypicloud.access.sql.Group attribute)

      
        	(pypicloud.cache.dynamo.DynamoPackage attribute)


        	(pypicloud.cache.dynamo.PackageSummary attribute)


        	(pypicloud.cache.sql.SQLPackage attribute)


      


  

  	
      	need_admin() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base.IMutableAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	normalize_name() (in module pypicloud.util)


  





O


  	
      	open() (pypicloud.storage.base.IStorage method)

      
        	(pypicloud.storage.files.FileStorage method)


      


  





P


  	
      	Package (class in pypicloud.models)


      	package (pypicloud.access.sql.GroupPermission attribute)

      
        	(pypicloud.access.sql.Permission attribute)


        	(pypicloud.access.sql.UserPermission attribute)


      


      	package_class (pypicloud.cache.base.ICache attribute)

      
        	(pypicloud.cache.dynamo.DynamoCache attribute)


        	(pypicloud.cache.sql.SQLCache attribute)


      


      	package_from_object() (pypicloud.storage.gcs.GoogleCloudStorage class method)

      
        	(pypicloud.storage.s3.S3Storage class method)


      


      	package_versions() (in module pypicloud.views.api)

      
        	(in module pypicloud.views.simple)


      


      	package_versions_json() (in module pypicloud.views.simple)


      	packages_to_dict() (in module pypicloud.views.simple)


      	PackagesResource (class in pypicloud.route)


      	PackageSummary (class in pypicloud.cache.dynamo)


      	parse_filename() (in module pypicloud.util)


      	parsed_version (pypicloud.models.Package attribute)


      	password (pypicloud.access.sql.User attribute)


      	path_to_meta_path() (pypicloud.storage.files.FileStorage method)


      	pending (pypicloud.access.sql.User attribute)


      	pending_users() (pypicloud.access.base.IMutableAccessBackend method)

      
        	(pypicloud.access.base_json.IMutableJsonAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	Permission (class in pypicloud.access.sql)


      	permissions (pypicloud.access.sql.Permission attribute)


      	postfork() (pypicloud.access.base.IAccessBackend class method)

      
        	(pypicloud.access.sql.SQLAccessBackend class method)


        	(pypicloud.cache.base.ICache class method)


        	(pypicloud.cache.sql.SQLCache class method)


      


      	prefer_wheel (pypicloud.util.BetterScrapingLocator attribute)


      	process_bind_param() (pypicloud.cache.sql.JSONEncodedDict method)


      	process_result_value() (pypicloud.cache.sql.JSONEncodedDict method)


  

  	
      	prompt() (in module pypicloud.scripts)


      	prompt_option() (in module pypicloud.scripts)


      	promptyn() (in module pypicloud.scripts)


      	pypicloud (module)


      	pypicloud.access (module)


      	pypicloud.access.aws_secrets_manager (module)


      	pypicloud.access.base (module)


      	pypicloud.access.base_json (module)


      	pypicloud.access.config (module)


      	pypicloud.access.remote (module)


      	pypicloud.access.sql (module)


      	pypicloud.auth (module)


      	pypicloud.cache (module)


      	pypicloud.cache.base (module)


      	pypicloud.cache.dynamo (module)


      	pypicloud.cache.redis_cache (module)


      	pypicloud.cache.sql (module)


      	pypicloud.lambda_scripts (module)


      	pypicloud.models (module)


      	pypicloud.route (module)


      	pypicloud.scripts (module)


      	pypicloud.storage (module)


      	pypicloud.storage.base (module)


      	pypicloud.storage.files (module)


      	pypicloud.storage.gcs (module)


      	pypicloud.storage.s3 (module)


      	pypicloud.util (module)


      	pypicloud.views (module)


      	pypicloud.views.admin (module)


      	pypicloud.views.api (module)


      	pypicloud.views.login (module)


      	pypicloud.views.packages (module)


      	pypicloud.views.simple (module)


  





R


  	
      	read (pypicloud.access.sql.GroupPermission attribute)

      
        	(pypicloud.access.sql.Permission attribute)


        	(pypicloud.access.sql.UserPermission attribute)


      


      	rebuild_package_list() (pypicloud.views.admin.AdminEndpoints method)


      	redis_filename_set() (pypicloud.cache.redis_cache.RedisCache method)


      	redis_key() (pypicloud.cache.redis_cache.RedisCache method)


      	redis_prefix (pypicloud.cache.redis_cache.RedisCache attribute)


      	redis_set (pypicloud.cache.redis_cache.RedisCache attribute)


      	redis_summary_key() (pypicloud.cache.redis_cache.RedisCache method)


      	RedisCache (class in pypicloud.cache.redis_cache)


      	register() (in module pypicloud.views.api)

      
        	(in module pypicloud.views.login)


        	(pypicloud.access.base.IMutableAccessBackend method)


      


  

  	
      	register_new_user() (in module pypicloud.views.login)


      	reload_from_storage() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.cache.dynamo.DynamoCache method)


        	(pypicloud.cache.redis_cache.RedisCache method)


        	(pypicloud.cache.sql.SQLCache method)


      


      	reload_if_needed() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.cache.sql.SQLCache method)


      


      	remember() (pypicloud.auth.BasicAuthenticationPolicy method)

      
        	(pypicloud.auth.SessionAuthPolicy method)


      


      	RemoteAccessBackend (class in pypicloud.access.remote)


      	Root (class in pypicloud.route)


      	ROOT_ACL (pypicloud.access.base.IAccessBackend attribute)


  





S


  	
      	S3Storage (class in pypicloud.storage.s3)


      	save() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.cache.dynamo.DynamoCache method)


        	(pypicloud.cache.redis_cache.RedisCache method)


        	(pypicloud.cache.sql.SQLCache method)


      


      	score_url() (pypicloud.util.BetterScrapingLocator method)


      	search() (in module pypicloud.views.simple)

      
        	(pypicloud.cache.base.ICache method)


        	(pypicloud.cache.sql.SQLCache method)


      


      	search_summary() (pypicloud.models.Package method)


      	SessionAuthPolicy (class in pypicloud.auth)


      	set_admin_status() (pypicloud.views.admin.AdminEndpoints method)


      	set_allow_register() (pypicloud.access.base.IMutableAccessBackend method)

      
        	(pypicloud.access.base_json.IMutableJsonAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	set_expire() (pypicloud.util.TimedCache method)


      	set_user_admin() (pypicloud.access.base.IMutableAccessBackend method)

      
        	(pypicloud.access.base_json.IMutableJsonAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


  

  	
      	simple() (in module pypicloud.views.simple)


      	SimplePackageResource (class in pypicloud.route)


      	SimpleResource (class in pypicloud.route)


      	SQLAccessBackend (class in pypicloud.access.sql)


      	SQLCache (class in pypicloud.cache.sql)


      	SQLPackage (class in pypicloud.cache.sql)


      	subobjects (pypicloud.route.APIResource attribute)

      
        	(pypicloud.route.IStaticResource attribute)


        	(pypicloud.route.Root attribute)


      


      	summary (pypicloud.cache.dynamo.DynamoPackage attribute)

      
        	(pypicloud.cache.dynamo.PackageSummary attribute)


        	(pypicloud.cache.sql.SQLPackage attribute)


      


      	summary() (pypicloud.cache.base.ICache method)

      
        	(pypicloud.cache.dynamo.DynamoCache method)


        	(pypicloud.cache.redis_cache.RedisCache method)


        	(pypicloud.cache.sql.SQLCache method)


      


      	summary_from_package() (in module pypicloud.cache.redis_cache)


  





T


  	
      	test (pypicloud.storage.gcs.GoogleCloudStorage attribute)

      
        	(pypicloud.storage.s3.S3Storage attribute)


      


  

  	
      	TimedCache (class in pypicloud.util)


      	to_json() (in module pypicloud)


      	toggle_allow_register() (pypicloud.views.admin.AdminEndpoints method)


  





U


  	
      	unauthenticated_userid() (pypicloud.auth.BasicAuthenticationPolicy method)

      
        	(pypicloud.auth.SessionAuthPolicy method)


      


      	upload() (in module pypicloud.views.simple)

      
        	(pypicloud.cache.base.ICache method)


        	(pypicloud.storage.base.IStorage method)


        	(pypicloud.storage.files.FileStorage method)


        	(pypicloud.storage.gcs.GoogleCloudStorage method)


        	(pypicloud.storage.s3.S3Storage method)


      


      	upload_package() (in module pypicloud.views.api)


      	User (class in pypicloud.access.sql)


      	user (pypicloud.access.sql.UserPermission attribute)


      	user_data() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base_json.IJsonAccessBackend method)


        	(pypicloud.access.remote.RemoteAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


  

  	
      	user_package_permissions() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base_json.IJsonAccessBackend method)


        	(pypicloud.access.remote.RemoteAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	user_permissions() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.base_json.IJsonAccessBackend method)


        	(pypicloud.access.remote.RemoteAccessBackend method)


        	(pypicloud.access.sql.SQLAccessBackend method)


      


      	user_principals() (pypicloud.access.base.IAccessBackend method)


      	username (pypicloud.access.sql.User attribute)

      
        	(pypicloud.access.sql.UserPermission attribute)


      


      	UserPermission (class in pypicloud.access.sql)


  





V


  	
      	validate_signup_token() (pypicloud.access.base.IMutableAccessBackend method)


      	value (pypicloud.access.sql.KeyVal attribute)


      	verify_user() (pypicloud.access.base.IAccessBackend method)

      
        	(pypicloud.access.remote.RemoteAccessBackend method)


      


  

  	
      	version (pypicloud.cache.dynamo.DynamoPackage attribute)

      
        	(pypicloud.cache.sql.SQLPackage attribute)


      


  





W


  	
      	wrapped_input() (in module pypicloud.scripts)


      	write (pypicloud.access.sql.GroupPermission attribute)

      
        	(pypicloud.access.sql.Permission attribute)


        	(pypicloud.access.sql.UserPermission attribute)


      


  







          

      

      

    

  

    
      
          
            
  
pypicloud



	pypicloud package
	Subpackages
	pypicloud.access package
	Submodules

	Module contents





	pypicloud.cache package
	Submodules

	Module contents





	pypicloud.storage package
	Submodules

	Module contents





	pypicloud.views package
	Submodules

	Module contents









	Submodules
	pypicloud.auth module

	pypicloud.lambda_scripts module

	pypicloud.models module

	pypicloud.route module

	pypicloud.scripts module

	pypicloud.util module





	Module contents













          

      

      

    

  

    
      
          
            
  
DynamoDB Policy

In order for pypicloud to be able to access your DynamoDB tables, you may need to set
some policy options. The permissions required are:


	dynamodb:CreateTable


	dynamodb:BatchWriteItem


	dynamodb:BatchGetItem


	dynamodb:PutItem


	dynamodb:DescribeTable


	dynamodb:ListTables


	dynamodb:Scan


	dynamodb:Query


	dynamodb:UpdateItem


	dynamodb:DeleteTable




The following policy should work:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "dynamodb:CreateTable",
                "dynamodb:BatchWriteItem",
                "dynamodb:BatchGetItem",
                "dynamodb:PutItem",
                "dynamodb:DescribeTable",
                "dynamodb:ListTables",
                "dynamodb:Scan",
                "dynamodb:Query",
                "dynamodb:UpdateItem",
                "dynamodb:DeleteTable"
            ],
            "Resource": "*"
        }
    ]
}









          

      

      

    

  

    
      
          
            
  
Fallbacks

Below is a detailed table for each possible fallback setting. The columns
indicate whether or not any package of that name is stored in pypicloud, whether
the user has read permissions, whether the user has can_update_cache
permissions, and whether the user is logged in.


Fallback = none










	Package

	Read

	Can update cache

	Logged in

	Response





	☐

	☐

	☐

	☐

	401 (to force upload of basic auth)



	☐

	☐

	☐

	☑

	404



	☐

	☑

	☐

	☐

	404



	☐

	☑

	☐

	☑

	404



	☐

	☑

	☑

	☐

	404



	☐

	☑

	☑

	☑

	404



	☑

	☐

	☐

	☐

	401 (to force upload of basic auth)



	☑

	☐

	☐

	☑

	404



	☑

	☑

	☐

	☐

	Serve package list



	☑

	☑

	☐

	☑

	Serve package list



	☑

	☑

	☑

	☐

	Serve package list



	☑

	☑

	☑

	☑

	Serve package list









Fallback = redirect, always_show_upstream = False










	Package

	Read

	Can update cache

	Logged in

	Response





	☐

	☐

	☐

	☐

	302 to fallback



	☐

	☐

	☐

	☑

	302 to fallback



	☐

	☑

	☐

	☐

	302 to fallback



	☐

	☑

	☐

	☑

	302 to fallback



	☐

	☑

	☑

	☐

	302 to fallback



	☐

	☑

	☑

	☑

	302 to fallback



	☑

	☐

	☐

	☐

	401 (to force upload of basic auth)



	☑

	☐

	☐

	☑

	302 to fallback



	☑

	☑

	☐

	☐

	Serve package list



	☑

	☑

	☐

	☑

	Serve package list



	☑

	☑

	☑

	☐

	Serve package list



	☑

	☑

	☑

	☑

	Serve package list









Fallback = redirect, always_show_upstream = True










	Package

	Read

	Can update cache

	Logged in

	Response





	☐

	☐

	☐

	☐

	302 to fallback



	☐

	☐

	☐

	☑

	302 to fallback



	☐

	☑

	☐

	☐

	302 to fallback



	☐

	☑

	☐

	☑

	302 to fallback



	☐

	☑

	☑

	☐

	302 to fallback



	☐

	☑

	☑

	☑

	302 to fallback



	☑

	☐

	☐

	☐

	401 (to force upload of basic auth)



	☑

	☐

	☐

	☑

	302 to fallback



	☑

	☑

	☐

	☐

	Serve packages + redirect links 1



	☑

	☑

	☐

	☑

	Serve packages + redirect links 1



	☑

	☑

	☑

	☐

	Serve packages + redirect links 1



	☑

	☑

	☑

	☑

	Serve packages + redirect links 1









Fallback = cache, always_show_upstream = False










	Package

	Read

	Can update cache

	Logged in

	Response





	☐

	☐

	☐

	☐

	401 (to force upload of basic auth)



	☐

	☐

	☐

	☑

	404



	☐

	☑

	☐

	☐

	401 (to force upload of basic auth)



	☐

	☑

	☐

	☑

	404



	☐

	☑

	☑

	☐

	Upstream links that will download & cache



	☐

	☑

	☑

	☑

	Upstream links that will download & cache



	☑

	☐

	☐

	☐

	401 (to force upload of basic auth)



	☑

	☐

	☐

	☑

	404



	☑

	☑

	☐

	☐

	Serve package list



	☑

	☑

	☐

	☑

	Serve package list



	☑

	☑

	☑

	☐

	Serve package list



	☑

	☑

	☑

	☑

	Serve package list









Fallback = cache, always_show_upstream = True










	Package

	Read

	Can update cache

	Logged in

	Response





	☐

	☐

	☐

	☐

	401 (to force upload of basic auth)



	☐

	☐

	☐

	☑

	302 to fallback



	☐

	☑

	☐

	☐

	401 (to force upload of basic auth)



	☐

	☑

	☐

	☑

	302 to fallback



	☐

	☑

	☑

	☐

	Upstream links that will download & cache



	☐

	☑

	☑

	☑

	Upstream links that will download & cache



	☑

	☐

	☐

	☐

	401 (to force upload of basic auth)



	☑

	☐

	☐

	☑

	302 to fallback



	☑

	☑

	☐

	☐

	401 (to force upload of basic auth)



	☑

	☑

	☐

	☑

	Serve packages + redirect links 1



	☑

	☑

	☑

	☐

	Serve package list + cache links 2



	☑

	☑

	☑

	☑

	Serve package list + cache links 2







	1(1,2,3,4,5)

	Serves any package versions in the DB, plus redirect links for all
versions that are not in the DB.



	2(1,2)

	Serves any package versions in the DB, plus links that will download &
cache for all versions that are not in the DB.











          

      

      

    

  

    
      
          
            
  
Why you should set redirect_urls = True

pypicloud using S3/Cloudfront will generate signed urls for your clients to
download. When you run pip install <package> it will hit the
/simple/<package> endpoint and attempt to render urls for all versions of
that package. That will look like this:

<a href="https://bucket.s3.amazonaws.com/package-0.1.tar.gz?Signature=SIGNATURE">package-0.1.tar.gz</a><br>
<a href="https://bucket.s3.amazonaws.com/package-0.2.tar.gz?Signature=SIGNATURE">package-0.2.tar.gz</a><br>
<a href="https://bucket.s3.amazonaws.com/package-0.3.tar.gz?Signature=SIGNATURE">package-0.3.tar.gz</a><br>





If you have a lot of versions of that package, that’s a lot of cryptographic
signatures that have to be run just for one pip install. It used to be that
boto used M2Crypto [https://pypi.python.org/pypi/M2Crypto] for these
signatures, but then this pull request [https://github.com/boto/boto/pull/1214] landed which changed it to use rsa [https://stuvel.eu/rsa], a pure-python library that’s easier to install.

It has some advantages, but speed is not one of them. Signing all of these urls
can now take an obscenely long time.

Solution: Why don’t we just render dummy urls in the /simple/<package>
endpoint that will then return a HTTP redirect to the signed S3 url? Then we
only have to sign one url per pip install.

Problem: Because legacy code is the worst thing in the world [https://github.com/stevearc/pypicloud/issues/54]. For reasons that I am
unable/unwilling to fully debug, easy_install cannot handle that. It just
can’t.

So to compromise I added the storage.redirect_urls option. When set to true,
it will generate redirect urls instead of signed S3 urls at the /simple
endpoint. This is much much faster, but breaks for easy_install.

Please, please stop using easy_install. Just stop.





          

      

      

    

  

    
      
          
            
  
S3 Policy

In order for pypicloud to be able to access your S3 bucket, you may need to set
some policy options. The permissions required are:


	s3:GetObject


	s3:PutObject


	s3:DeleteObject


	s3:ListBucket




Note that s3:ListBucket is a bucket permission (applies to arn:aws:s3:::bucket), whereas the others all
apply to objects (applies to arn:aws:s3:::bucket/*).

You should use the AWS Policy Generator [http://awspolicygen.s3.amazonaws.com/policygen.html] to create the json
policy for your bucket. The following may also work:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "s3:ListBucket",
            "Resource": "arn:aws:s3:::<package-bucket-name>"
        },
        {
            "Effect": "Allow",
            "Action": [
                "s3:PutObject",
                "s3:GetObject",
                "s3:DeleteObject"
            ],
            "Resource": "arn:aws:s3:::<package-bucket-name>/*"
        }
    ]
}









          

      

      

    

  

    
      
          
            
  
Using S3 Notifications to sync caches

What is this for?

Let’s say you have servers in multiple regions. You may want to have pypicloud
set up in each region. So in each region you set up an S3 bucket, a cache
backend (let’s say DynamoDB), and a server running pypicloud. The first problem
is that there is no communication; if you upload a package to one region, the
other region doesn’t see it.

So you set up Cross-Region Replication [http://docs.aws.amazon.com/AmazonS3/latest/dev/crr.html] for your S3
buckets, and now every time you upload a package in one region, it gets copied
to the S3 bucket in the other. Unfortunately, pypicloud isn’t picking up on
those changes so you still can’t install packages that were uploaded from a
different region. That’s where this tool comes in.

Tell me more

Pypicloud provides some utilities for setting up an AWS Lambda function that
will receive create and delete operations from a S3 bucket and sync those
changes to your pypicloud cache. After it’s set up, you should be able to run a
pypicloud stack in as many regions as you want and keep them all perfectly in
sync.


Get Started

Create a config.ini file that contains the configuration for S3 storage and
whichever cache you want to sync to. Make sure you have AWS credentials in a
format that can be read by boto [http://boto3.readthedocs.io/en/latest/guide/configuration.html#configuring-credentials].
Then run:

ppc-create-s3-sync config.ini





That’s all! You should now have an AWS Lambda function running whenever an
object is created or deleted from your bucket.




Moving Parts

Chances are good that you will have to make some edits to this setup, so it’s
important to know what it’s doing. There are three main components.


IAM Role

The Lambda function must have a Role that defines the permissions it has.
ppc-create-s3-sync attempts to create one (named “pypicloud_lambda…”) that
has permissions to write logs and read from S3. If your cache is DynamoDB, it
also includes read/write permissions on the pypicloud tables.




Lambda Function

It builds a bundle and uploads it to a new Lambda function, then it gives the S3
bucket Invoke permissions on the function.




Bucket Notifications

The last step is to go to the S3 bucket and add a Notification Configuration
that calls our lambda function on all ObjectCreate and ObjectDelete events.






More Details

I have only thoroughly tested this with a DynamoDB cache. You may have to make
changes to make it work with other caches.

Many of the steps are customizable. Look at the args you can pass in by running
ppc-create-s3-sync -h. For example, if you want to create the Role yourself
you can pass the ARN in with -a <arn> and the command will use your existing
Role.

If you’re building the Lambda function by hand, you can use
ppc-build-lambda-bundle to build the zip bundle that is uploaded to Lambda.
You will need to add an environment variable PYPICLOUD_SETTINGS that is a
json string of all the relevant config options for the db, including pypi.db
and all the db.<option>: <value> entries.




Feedback

This is all very new and largely untested. Please email me or file issues with
feedback and/or bug reports. Did you get this working? Was it easy? Was it hard? Was it confusing? Did you
have to change the policies? Did you have to change anything else?







          

      

      

    

  

    
      
          
            
  
User Management

There are many ways to set up the Access Control for pypicloud. This
section is dedicated to the methods available for dynamically adding and
removing users from your server.


Config File

If you use the config file backend, you can simply make
edits and deploy the new file whenever you want to add or remove users.

Pros: Easy to understand

Cons: Requires deploying new files for every change




LDAP

Another straightforward option is to use the LDAP backend.
LDAP is explicitly designed for managing users and permissions.

Pros: Once set up, all user management is centralized

Cons: If you don’t already use LDAP, it’s a lot of overhead




SQL

A SQL database is the final option for managing users, and it can be configured
to behave in different ways. The admin panel on the website is the gateway for
all user management actions.


User Registration

In the admin panel, there is a toggle button that allows you to enable user
registration. This allows anyone to register a username. You, as admin, can view
the pending user accounts and approve them.  Once approved, the user can log in
with the password they provided during registration.

Pros: It works I guess

Cons: Any random person can throw garbage into your pending user list




Manual User Creation

In the admin panel, there is also a button labeled “Create user”. This will
create a new user directly with a given username/password.

Pros: Fast and easy

Cons: Admin knows initial passwords, which is not a great security model.




Registration via Tokens

There is a final button in the admin panel labeled “Get registration token”.
This generates a token that can be used on the login page to create a new user.
The token is valid for a duration (set by auth.token_expire).

Pros: Fast and easy, pretty good security model

Cons: Edge case: If you delete a user in the window when the token is still
valid, the token can be used to re-create that user.









          

      

      

    

  

    
      
          
            
  
Uprading to 0.4.0

This version was released to respond to pip 8.1.2 normalizing package names
differently. Read the discussion on this pull request [https://github.com/stevearc/pypicloud/pull/87] for more information.

This will only affect packages with a _ or ., or multiple -
characters in their name. If you don’t have any, you may ignore these
instructions.


	Rebuild your cache from storage, as per the instructions on the upgrade
page


	If you are using the file storage backend, you will need to rename any
package name folder with those characters. You can cd into the package
directory and run for name in *; do mv -T $name `echo $name | tr -s '_.-'
'-'`; done




Alternatively, if you have relatively few of these packages, you can just
re-upload them manually after the upgrade.





          

      

      

    

  _static/file.png





_static/minus.png





_static/down.png





_static/up-pressed.png





_static/up.png





_static/plus.png





_static/comment-close.png





_static/comment.png





_static/comment-bright.png





_static/down-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          PyPICloud - PyPI backed by S3 or GCS
        


        		
          Getting Started
          
            		
              Installation
            


            		
              Configuration
            


            		
              Running
            


            		
              Installing Packages
            


            		
              Uploading Packages
            


            		
              Searching Packages
            


          


        


        		
          Advanced Configurations
          
            		
              AWS
            


            		
              Configuration
            


            		
              Running
            


          


        


        		
          Configuration Options
          
            		
              PyPICloud
              
                		
                  pypi.fallback
                


                		
                  pypi.always_show_upstream
                


                		
                  pypi.fallback_url
                


                		
                  pypi.fallback_base_url
                


                		
                  pypi.default_read
                


                		
                  pypi.default_write
                


                		
                  pypi.cache_update
                


                		
                  pypi.allow_overwrite
                


                		
                  pypi.realm
                


                		
                  pypi.download_url
                


                		
                  pypi.stream_files
                


                		
                  pypi.package_max_age
                


              


            


            		
              Storage
              
                		
                  pypi.storage
                


              


            


            		
              Cache
              
                		
                  pypi.db
                


              


            


            		
              Access Control
              
                		
                  pypi.auth
                


              


            


            		
              Beaker
              
                		
                  session.encrypt_key
                


                		
                  session.validate_key
                


                		
                  session.secure
                


              


            


          


        


        		
          Storage Backends
          
            		
              Files
              
                		
                  storage.dir
                


              


            


            		
              S3
              
                		
                  storage.bucket
                


                		
                  storage.region_name
                


                		
                  storage.aws_access_key_id, storage.aws_secret_access_key
                


                		
                  storage.prefix
                


                		
                  storage.prepend_hash
                


                		
                  storage.expire_after
                


                		
                  storage.redirect_urls
                


                		
                  storage.server_side_encryption
                


                		
                  storage.object_acl
                


                		
                  storage.public_url
                


              


            


            		
              CloudFront
              
                		
                  storage.cloud_front_domain
                


                		
                  storage.cloud_front_key_id
                


                		
                  storage.cloud_front_key_file
                


                		
                  storage.cloud_front_key_string
                


              


            


            		
              Google Cloud Storage
              
                		
                  storage.bucket
                


                		
                  storage.region_name
                


                		
                  storage.gcp_service_account_json_filename
                


                		
                  storage.gcp_project_id
                


                		
                  storage.prefix
                


                		
                  storage.prepend_hash
                


                		
                  storage.expire_after
                


                		
                  storage.redirect_urls
                


                		
                  storage.object_acl
                


                		
                  storage.storage_class
                


              


            


          


        


        		
          Caching Backends
          
            		
              SQLAlchemy
              
                		
                  db.url
                


                		
                  db.graceful_reload
                


              


            


            		
              Redis
              
                		
                  db.url
                


                		
                  db.graceful_reload
                


              


            


            		
              DynamoDB
              
                		
                  db.region_name
                


                		
                  db.aws_access_key_id, db.aws_secret_access_key
                


                		
                  db.namespace
                


                		
                  db.tablenames
                


                		
                  db.host
                


                		
                  db.port
                


                		
                  db.secure
                


                		
                  db.graceful_reload
                


              


            


          


        


        		
          Access Control
          
            		
              Users and Groups
            


            		
              Config File
              
                		
                  Configuration
                


              


            


            		
              SQL Database
              
                		
                  Configuration
                


              


            


            		
              LDAP Authentication
              
                		
                  Configuration
                


              


            


            		
              AWS Secrets Manager
              
                		
                  Configuration
                


              


            


            		
              Remote Server
              
                		
                  Configuration
                


              


            


          


        


        		
          Deploying to Production
          
            		
              Configuration
            


            		
              WSGI Server
            


            		
              HTTPS and Reverse Proxies
            


          


        


        		
          Upgrading
          
            		
              Cache Database
            


            		
              Access Control
            


            		
              Changing Storage
            


          


        


        		
          Extending PyPICloud
        


        		
          HTTP API
          
            		
              /simple/ (or /pypi/)
              
                		
                  GET /simple/
                


                		
                  POST /simple/
                


                		
                  GET /simple/<package>/
                


                		
                  GET /pypi/<package>/json
                


              


            


            		
              /api/
              
                		
                  GET /api/package/[?verbose=true/false]
                


                		
                  GET /api/package/<package>/
                


                		
                  POST /api/package/<package>/<filename>
                


                		
                  DELETE /api/package/<package>/<filename>
                


                		
                  POST /api/fetch
                


                		
                  PUT /api/user/<username>/
                


                		
                  POST /api/user/password
                


              


            


            		
              /admin/
              
                		
                  GET /admin/rebuild/
                


                		
                  GET /admin/acl.json.gz
                


                		
                  POST /admin/register/
                


                		
                  GET /admin/pending_users/
                


                		
                  GET /admin/token/<username>/
                


                		
                  GET /admin/user/
                


                		
                  GET /admin/user/<username>/
                


                		
                  GET /admin/user/<username>/permissions/
                


                		
                  DELETE /admin/user/<username>/
                


                		
                  PUT /admin/user/<username>/
                


                		
                  POST /admin/user/<username>/approve/
                


                		
                  POST /admin/user/<username>/admin/
                


                		
                  PUT /admin/user/<username>/group/<group>/
                


                		
                  DELETE /admin/user/<username>/group/<group>/
                


                		
                  GET /admin/group/
                


                		
                  GET /admin/group/<group>/
                


                		
                  PUT /admin/group/<group>/
                


                		
                  DELETE /admin/group/<group>/
                


                		
                  GET /admin/package/<package>/
                


                		
                  PUT /admin/package/<package>/(user|group)/<name>/(read|write)/
                


                		
                  DELETE /admin/package/<package>/(user|group)/<name>/(read|write)/
                


              


            


          


        


        		
          Developing
        


        		
          Changelog
          
            		
              1.0.11 - 2019/4/5
            


            		
              1.0.10 - 2018/11/26
            


            		
              1.0.9 - 2018/9/6
            


            		
              1.0.8 - 2018/8/27
            


            		
              1.0.7 - 2018/8/14
            


            		
              1.0.6 - 2018/6/11
            


            		
              1.0.5 - 2018/4/24
            


            		
              1.0.4 - 2018/4/1
            


            		
              1.0.3 - 2018/3/26
            


            		
              1.0.2 - 2018/1/26
            


            		
              1.0.1 - 2017/12/3
            


            		
              1.0.0 - 2017/10/29
            


            		
              0.5.6 - 2017/10/29
            


            		
              0.5.5 - 2017/9/9
            


            		
              0.5.4 - 2017/8/10
            


            		
              0.5.3 - 2017/4/30
            


            		
              0.5.2 - 2017/4/22
            


            		
              0.5.1 - 2017/4/17
            


            		
              0.5.0 - 2017/3/29
            


            		
              0.4.6 - 2017/4/17
            


            		
              0.4.5 - 2017/3/25
            


            		
              0.4.4 - 2016/10/5
            


            		
              0.4.3 - 2016/8/2
            


            		
              0.4.2 - 2016/6/16
            


            		
              0.4.1 - 2016/6/8
            


            		
              0.4.0 - 2016/5/16
            


            		
              0.3.13 - 2016/6/8
            


            		
              0.3.12 - 2016/5/5
            


            		
              0.3.11 - 2016/4/28
            


            		
              0.3.10 - 2016/3/21
            


            		
              0.3.9 - 2016/3/13
            


            		
              0.3.8 - 2016/3/10
            


            		
              0.3.7 - 2016/1/12
            


            		
              0.3.6 - 2015/12/3
            


            		
              0.3.5 - 2015/11/15
            


            		
              0.3.4 - 2015/8/30
            


            		
              0.3.3 - 2015/7/17
            


            		
              0.3.2 - 2015/7/7
            


            		
              0.3.1 - 2015/6/18
            


            		
              0.3.0 - 2015/6/16
            


            		
              0.2.13 - 2015/5/27
            


            		
              0.2.12 - 2015/5/14
            


            		
              0.2.11 - 2015/5/11
            


            		
              0.2.10 - 2015/2/27
            


            		
              0.2.9 - 2014/12/14
            


            		
              0.2.8 - 2014/11/11
            


            		
              0.2.7 - 2014/10/2
            


            		
              0.2.6 - 2014/8/3
            


            		
              0.2.5 - 2014/6/9
            


            		
              0.2.4 - 2014/4/29
            


            		
              0.2.3 - 2014/3/13
            


            		
              0.2.2 - 2014/3/13
            


            		
              0.2.1 - 2014/3/12
            


            		
              0.2.0 - 2014/3/12
            


            		
              0.1.0 - 2014/1/20
            


          


        


        		
          pypicloud package
          
            		
              Subpackages
              
                		
                  pypicloud.access package
                


                		
                  pypicloud.cache package
                


                		
                  pypicloud.storage package
                


                		
                  pypicloud.views package
                


              


            


            		
              Submodules
              
                		
                  pypicloud.auth module
                


                		
                  pypicloud.lambda_scripts module
                


                		
                  pypicloud.models module
                


                		
                  pypicloud.route module
                


                		
                  pypicloud.scripts module
                


                		
                  pypicloud.util module
                


              


            


            		
              Module contents
            


          


        


      


    
  

_static/ajax-loader.gif





