
pypgen Documentation
Release 0.2.2 beta

Nicholas Crawford

September 28, 2016





Contents

1 Features: 3

2 Prerequisites: 5

3 Quick Installation: 7

4 Reporting Problems: 9

5 Contents: 11
5.1 Detailed Installation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Tutorial: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Scripts: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 Indices and tables 19

i



ii



pypgen Documentation, Release 0.2.2 beta

Pypgen provides various utilities for estimating standard genetic diversity measures including Gst, G’st, G’‘st, and
Jost’s D from large genomic datasets (Hedrick, 2005; Jost, 2008; Masatoshi Nei, 1973; Nei & Chesser, 1983). Pypgen
operates both on individual SNPs as well as on user defined regions (e.g., five kilobase windows tiled across each
chromosome). For the windowed analyses pypgen estimates the multi-locus versions of each estimator.

Contents 1



pypgen Documentation, Release 0.2.2 beta

2 Contents



CHAPTER 1

Features:

• Handles multiallelic SNP calls

• Allows a single VCF file to contain multiple populations

• Operates on standard VCF (Variant Call Format) formatted SNP calls

• Uses bgziped input for fast random access

• Takes advantage of multiple processor cores

• Calculates additional metrics:

– snp count per window

– mean read depth (+/- STDEV) per window

– populations with fixed alleles per SNP

3

http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://samtools.sourceforge.net/tabix.shtml


pypgen Documentation, Release 0.2.2 beta

4 Chapter 1. Features:



CHAPTER 2

Prerequisites:

Pypgen is written in Python 2.7. It may run under Python 2.6, but I haven’t tested it. It doesn’t run under Python 3. In
order to interact with bgziped files it requires samtools and pysam to be installed.

5

http://samtools.sourceforge.net/
http://www.cgat.org/~andreas/documentation/pysam/contents.html


pypgen Documentation, Release 0.2.2 beta

6 Chapter 2. Prerequisites:



CHAPTER 3

Quick Installation:

If you already have a working install of pysam, pypgen can be installed from PyPi using pip or setuptools:

pip install pypgen

or,

easy_install -U pypgen

However, it’s recommended, at least in these early days of pypgen, to install it directly from the github repository:

pip install -e git+https://github.com/ngcrawford/pypgen.git#egg=Package

7

http://pypi.python.org/pypi/pypgen
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools


pypgen Documentation, Release 0.2.2 beta

8 Chapter 3. Quick Installation:



CHAPTER 4

Reporting Problems:

If you have a general questions about pypgen you should post them on biostar and tag it pypgen. Detailed questions
about If you think you’ve found a bug in pypgen you can open an issue in the pypgen github repo.

9

http://www.biostars.org/
https://github.com/ngcrawford/pypgen/issues


pypgen Documentation, Release 0.2.2 beta

10 Chapter 4. Reporting Problems:



CHAPTER 5

Contents:

5.1 Detailed Installation:

Installing pypgen is very straightforward especially if you are familiar with installing python
packages. Just follow the instructions below entering the appropriate commands in terminal.

5.1.1 Samtools and tabix

In OS X:

1. Install Xcode or Xcode Command Line Tools. The CLI tools take up less space, but are an optional
install under Xcode. Details on how to do this may be found in the homebrew documenation.

2. Once xcode is installed, install the homebrew package installer:

$ ruby -e "$(curl -fsSkL raw.github.com/mxcl/homebrew/go)"

3. Then install samtools using homebrew:

$ brew tap homebrew/science
$ brew install samtools
$ brew install tabix

While you’re at it you might want to use brew to install wget.

$ brew install wget

From source code (e.g., on linux):

1. Download the latest version of samtools and tabix.

# replace the ###version### with the appropriate version number (e.g., 0.2.6)

$ wget http://sourceforge.net/projects/samtools/files/tabix/tabix-###version###.tar.bz2
$ wget http://sourceforge.net/projects/samtools/files/samtools/0.1.18/samtools-0.1.18.tar.bz2

2. Extract the tar.bz2 files

tar jxf *.tar.bz2

3. Then run make in each directory

11

http://itunes.apple.com/us/app/xcode/id497799835
https://developer.apple.com/downloads
https://github.com/mxcl/homebrew/wiki/Installation#wiki-fn3
http://mxcl.github.com/homebrew/


pypgen Documentation, Release 0.2.2 beta

4. You’ll need to add these directories to your system profile files (e.g., .bashrc or
.bash_profile)

# You can check that everything is working by opening a fresh shell. The commands samtools and
tabix should now be available from anywhere in the file system.

5.1.2 Pip and Setuptools

1. Unfortunately, pip doesn’t yet ‘play well’ with with setup.py, the script the automates the instal-
lation of python packages, as setup.py still relies on easy_install/setuptools to install
dependancies. This means you’ll need to install setup tools. You’ll need to download the appropriate
python .egg file. Then you can run it as an installation script.

$ [sudo] sh setuptools-0.6c9-py2.7.egg

2. Then you can use easy_install to install pip:

$ [sudo] easy_install install -U pip

5.1.3 Pypgen

Pypgen can be installed from PyPi using pip or setuptools:

$ [sudo] pip install pypgen

or,

$ [sudo] easy_install -U pypgen

However, it’s recommended, at least in these early days of pypgen when I’m actively fixing bugs, to install
it directly from the github repository:

$ [sudo] pip install -e git+https://github.com/ngcrawford/pypgen.git#egg=Package

This should complete your install.

5.1.4 UnitTests

UnitTests are in pygen/tests/tests.py

5.1.5 Pysam

NOTE: Pysam should automatically install when you install pypgen. These instructions are only
necessary if you have problems with it.

Pysam is a bit of a finicky installation. The newest versions, in particular seem to have a lot of problems
linking to their compiled cython libraries. With that in mind I recommend installing 0.6.

$ [sudo] pip install pysam==0.6

or,

$ [sudo] easy_install -U pysam==0.6

12 Chapter 5. Contents:

http://pypi.python.org/pypi/setuptools#files
http://pypi.python.org/pypi/pypgen
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools


pypgen Documentation, Release 0.2.2 beta

If that doesn’t work you’ll want to try installing it from source:

# replace the ###version### with the appropriate version number (e.g., 0.7.4)

$ wget http://pysam.googlecode.com/files/pysam-###version###.tar.gz
$ tar xzf pysam-###version###.tar.gz

then cd into the directory and run:

$ [sudo] python setup.py install

There is also a pysam google group that is a good source of information.

5.2 Tutorial:

Once pygen is installed two scripts, vcfWindowedFstats and vcfSNVfstats, should be available
at the command line.

Running [script name].py will print out a short list of commands and adding the --help or -h prints out
a more detailed list.

5.2.1 Basic analysis

1. Run your samples through GATK or samtools (or similar SNV caller) that emits calls in the standard
VCF format. By default pypgen’s VCF parser only looks at SNVs where the FILTER column is set
to PASS so you should filter or recalibrate your VCF appropriately before running pypgen.

2. Once you have a VCF file you’ll need to bgzip it. Tabix include bgzip so you make sure you have
tabix installed. Tabix and samtools installation is detailed in the Samtools and tabix section of this
guide. The basic command to run bgzip is:

bgzip -c path/to/vcf_file.vcf > path/to/vcf_file.vcf.bgz

This can exceed 30 minutes if your uncompressed VCF file is very large.

3. Next you need to index your bgzipped VCF file. The command to do this is:

tabix -p vcf path/to/vcf_file.vcf.bgz

This command will produce a path/to/vcf_file.vcf.tbi index file.

4. Now you can run pypgen. In a text editor I recommend composing a test command that looks
something like this.

vcfSNVfstats \
-i path/to/vcf_file.vcf.bgz \
-p pop1:sample1,sample2 \

pop2:sample3,sample4,sample5 \
pop3:sample6,sample7,sample8 \

-c 2 \
-r Chr:1-10001 | head

You’ll need to replace path/to/vcf_file.vcf.bgz as you did in the last command.

5.2. Tutorial: 13

https://groups.google.com/forum/#!forum/pysam-user-group
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://samtools.sourceforge.net/tabix.shtml


pypgen Documentation, Release 0.2.2 beta

You’ll also need to associate the sample names with their populations. The sample names
should to exactly match the sample IDs in the VCF file. If you’ve forgotten what they are you
can run the following command to print them out.

gunzip -c pypgen/data/example.vcf.gz | grep "#CHROM"

You will also want to change the regions flag such that it selects a valid region in your VCF
file.

Piping the output into head prevents flooding your terminal with output.

If you have an enormous number of samples and get an error like Argument list too
long you can just save the text file as a shell script and run it like:

sh path/to/shell_script.sh

If everything worked you should see a header line followed by ~ 9 lines of data. The amount
of output varies depending on the region so it’s a good idea to pick a region that you know
contains SNVs.

Replacing vcfSNVfstats with vcfWindowedFstats and setting the --window flag is
all that is necessary to run a sliding window analysis

5.2.2 Followup analysis

5.3 Scripts:

5.3.1 vcfSNVfstats

This script calculates F-statistics for each pair of populations at each SNV in the supplied region.

Working Example:

Note that path/to/pypgen/data/example.vcf.gz needs to be updated to the direc-
tory in which the source code for pypgen is found.

vcfSNVfstats \
-i pypgen/data/example.vcf.gz \
-p outgroups:h665,i02-210 \

pop1:c511,c512,c513,c514,c515,c563,c614,c630,c639,c640 \
pop2:m523,m524,m525,m589,m675,m676,m682,m683,m687,m689 \

-c 2 \
-r Chr01:1-10001 | head

Command Line Flags

Input: [ -i, --input ]

Defines the path to the input VCF file.

Output: [ -o, --output ]

Defines the path to the output csv/txt file. If it’s not set it defaults to standard out (stout).

Cores: [ -c, --cores ]

The number of cores to use.

14 Chapter 5. Contents:



pypgen Documentation, Release 0.2.2 beta

Regions: [ -r, -R, --regions ]

This allows for selecting a subset of the VCF file for analysis. The command format should
familiar to if you use GATK or samtools. A region can be presented, for example, in the
following format: ‘chr2’ (the whole chr2), ‘chr2:1000000’ (region starting from 1,000,000bp)
or ‘chr2:1,000,000-2,000,000’ (region between 1,000,000 and 2,000,000bp including the end
points). The coordinate system is 1-based. Multiple regions can be submitted separated by
spaces. [Note: this is the same format as samtools/GATK and this example text is largely
borrowed from samtools]

Populations: [ -p, --populations ]

Names of populations and samples. The format is: “PopName:sample1,sample2,.. Pop-
Name2:sample3,sample4,...” with colons after each population name and samples delimited
by commas. Whitespace is used to delimit populations.

Minimum Number of Samples: [ -m, --min-samples ]

This allows one to set the minimum number of samples per population that a SNV needs to
have in order to be included in the analysis.

Column Separator: [ -s, --column-separator ]

This allows one to set the separator to be uses in the output. The default value is , which
makes the output comma separated (csv). If you’re planning on using tabix to index the output
you’ll need to set the sep to \t.

Zero Based: [ --zero-based ]

Setting this flag makes the output positions zero based (e.g., BED like).

Output

• The chrom and pos columns are fixed in positions 1 and 2, but the rest of the columns vary depending
on the number of populations being compared and their names.

Label: Definition:
chrom ID of chromosome/scaffold/contig/etc.
pos Position of SNP
pop1.sample_count Number of samples represented
cont. Additional population sample counts
Pop1.Pop2.D_est D corrected for sample size (Jost 2008)
Pop1.Pop2.G_double_prime_st_estCorrected Hedrick’s G’st (Meirmans & Hedrick 2011)
Pop1.Pop2.G_prime_st_est Standardized Gst (Hedrick 2005)
Pop1.Pop2.Gst_est Fst corrected for sample size and allowing for multiallelic

loci (Nei & Chesser 1983)
Pop1.Pop2.Hs_est Within-population gene/locus diversity (e.g., expected

heterozygosity)
Pop1.Pop2.Ht_est Total gene/locus diversity
cont... Pairwise comparisons of F-statistics cont...
Pop1_fixed If a sample is fixed at a particular allele this flag is set to 1

(= “True” in binary)
cont... Additional fixed SNPs cont...

5.3. Scripts: 15



pypgen Documentation, Release 0.2.2 beta

5.3.2 vcfWindowedFstats

This script calculates F-statistics for each pair of populations at each window in the supplied region. This
script requires that the input VCF file be bgzipped because it uses tabix to extract the windows.

Working Example:

Note that path/to/pypgen/data/example.vcf.gz needs to be updated to the direc-
tory in which the source code for pypgen is found.

vcfWindowedFstats \
-i path/to/pypgen/data/example.vcf.gz \
-p outgroups:h665,i02-210 \

pop1:c511,c512,c513,c514,c515,c563,c614,c630,c639,c640 \
pop2:m523,m524,m525,m589,m675,m676,m682,m683,m687,m689 \

-c 2 \
-w 5000 \
-r Chr01:1-10001 | head

Command Line Flags

vcfWindowedFstats shares the same commands as vcfSNVfstats with the single addition of a
window size flag.

Window Size: [ -w, --window-size ]

Windows are non overlapping and start at the first bp in the particular chromosome.

Output

vcf_sliding_window.py:

• The format is loosely based on the BED specification. Although the first three column IDs will
remain static for the foreseeable future, I expect to add more fields as I add additional functionality
to pypgen. Also, the default output is one based, but it is possible to make the positions zero based
by including the --zero-based flag when you run the script.

• The population IDs and the total number of populations come from those defined by the user. This
means the number of pairwise population comparisons and hence the total number of columns is
conditional on the number of defined populations.

16 Chapter 5. Contents:

http://genome.ucsc.edu/FAQ/FAQformat.html#format1


pypgen Documentation, Release 0.2.2 beta

Label: Definition:
chrom ID of chromosome/scaffold/contig/etc.
chromStart Starting position of window
chromEnd Ending position of window
snp_count Total Number of SNPs in window
total_depth_mean Mean read depth across window
total_depth_stdev Standard deviation of read depth across window
Pop1.sample_count.mean Mean number of samples per snp for ‘Pop1’
Pop1.sample_count.stdev Standard deviation of samples per snp for ‘Pop1’
Pop2.sample_count.mean Mean number of samples per snp for ‘Pop2’
Pop2.sample_count.stdev Standard deviation of samples per snp for ‘Pop2’
Pop2.Pop1.D_est Multilocus D_est (Jost 2008)
Pop2.Pop1.D_est.stdev Standard Deviation of SNVwise D_est across the window
Pop2.Pop1.G_double_prime_st_estCorrected Hedrick’s G’st (Meirmans & Hedrick 2011)
Pop2.Pop1.G_double_prime_st_est.stdevStandard Deviation of Corrected Hedrick’s G’st across the

window
Pop2.Pop1.G_prime_st_estStandardized Gst (Hedrick 2005)
Pop2.Pop1.G_prime_st_est.stdevStandard Deviation of Standardized Gst across the window
Pop2.Pop1.Gst_est Fst corrected for sample size and allowing for multiallelic

loci (Nei & Chesser 1983)
Pop2.Pop1.Gst_est.stdev Standard Deviation of Fst corrected for sample size and

allowing for multiallelic loci (Nei & Chesser 1983)
cont... The rest of the pairwise comparisons follow...

5.3. Scripts: 17



pypgen Documentation, Release 0.2.2 beta

18 Chapter 5. Contents:



CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19


	Features:
	Prerequisites:
	Quick Installation:
	Reporting Problems:
	Contents:
	Detailed Installation:
	Tutorial:
	Scripts:

	Indices and tables

