
pyOpenSSL Documentation
Release 0.15.1

Jean-Paul Calderone

November 07, 2015

Contents

1 Introduction 3

2 OpenSSL — Python interface to OpenSSL 5
2.1 crypto — Generic cryptographic module . 5
2.2 rand — An interface to the OpenSSL pseudo random number generator 13
2.3 SSL — An interface to the SSL-specific parts of OpenSSL . 14

3 Internals 25
3.1 Exceptions . 25
3.2 Callbacks . 25
3.3 Accessing Socket Methods . 25

4 Indices and tables 27

Python Module Index 29

i

ii

pyOpenSSL Documentation, Release 0.15.1

Abstract

This module is a rather thin wrapper around (a subset of) the OpenSSL library. With thin wrapper I mean that a
lot of the object methods do nothing more than calling a corresponding function in the OpenSSL library.

Contents:

Contents 1

pyOpenSSL Documentation, Release 0.15.1

2 Contents

CHAPTER 1

Introduction

The reason pyOpenSSL was created is that the SSL support in the socket module in Python 2.1 (the contemporary
version of Python when the pyOpenSSL project was begun) was severely limited. Other OpenSSL wrappers for
Python at the time were also limited, though in different ways. Unfortunately, Python’s standard library SSL support
has remained weak, although other packages (such as M2Crypto) have made great advances and now equal or exceed
pyOpenSSL’s functionality.

The reason pyOpenSSL continues to be maintained is that there is a significant user community around it, as well as a
large amount of software which depends on it. It is a great benefit to many people for pyOpenSSL to continue to exist
and advance.

3

http://chandlerproject.org/Projects/MeTooCrypto

pyOpenSSL Documentation, Release 0.15.1

4 Chapter 1. Introduction

CHAPTER 2

OpenSSL — Python interface to OpenSSL

This package provides a high-level interface to the functions in the OpenSSL library. The following modules are
defined:

2.1 crypto — Generic cryptographic module

OpenSSL.crypto.X509Type
See X509.

class OpenSSL.crypto.X509
A class representing X.509 certificates.

OpenSSL.crypto.X509NameType
See X509Name.

class OpenSSL.crypto.X509Name(x509name)
A class representing X.509 Distinguished Names.

This constructor creates a copy of x509name which should be an instance of X509Name.

OpenSSL.crypto.X509ReqType
See X509Req .

class OpenSSL.crypto.X509Req
A class representing X.509 certificate requests.

OpenSSL.crypto.X509StoreType
See X509Store

OpenSSL.crypto.X509StoreContext
A class representing the X.509 store context.

OpenSSL.crypto.PKeyType
See PKey .

class OpenSSL.crypto.PKey
A class representing DSA or RSA keys.

OpenSSL.crypto.PKCS7Type
A Python type object representing the PKCS7 object type.

OpenSSL.crypto.PKCS12Type
A Python type object representing the PKCS12 object type.

5

pyOpenSSL Documentation, Release 0.15.1

OpenSSL.crypto.X509ExtensionType
See X509Extension.

class OpenSSL.crypto.X509Extension(typename, critical, value[, subject][, issuer])
A class representing an X.509 v3 certificate extensions. See http://openssl.org/docs/apps/x509v3_config.html#STANDARD_EXTENSIONS
for typename strings and their options. Optional parameters subject and issuer must be X509 objects.

OpenSSL.crypto.NetscapeSPKIType
See NetscapeSPKI.

class OpenSSL.crypto.NetscapeSPKI([enc])
A class representing Netscape SPKI objects.

If the enc argument is present, it should be a base64-encoded string representing a NetscapeSPKI object, as
returned by the b64_encode() method.

class OpenSSL.crypto.CRL
A class representing Certifcate Revocation List objects.

class OpenSSL.crypto.Revoked
A class representing Revocation objects of CRL.

OpenSSL.crypto.FILETYPE_PEM
OpenSSL.crypto.FILETYPE_ASN1

File type constants.

OpenSSL.crypto.TYPE_RSA
OpenSSL.crypto.TYPE_DSA

Key type constants.

exception OpenSSL.crypto.Error
Generic exception used in the crypto module.

OpenSSL.crypto.get_elliptic_curves()
Return a set of objects representing the elliptic curves supported in the OpenSSL build in use.

The curve objects have a unicode name attribute by which they identify themselves.

The curve objects are useful as values for the argument accepted by Context.set_tmp_ecdh() to specify
which elliptical curve should be used for ECDHE key exchange.

OpenSSL.crypto.get_elliptic_curve()
Return a single curve object selected by name.

See get_elliptic_curves() for information about curve objects.

If the named curve is not supported then ValueError is raised.

OpenSSL.crypto.dump_certificate(type, cert)
Dump the certificate cert into a buffer string encoded with the type type.

OpenSSL.crypto.dump_certificate_request(type, req)
Dump the certificate request req into a buffer string encoded with the type type.

OpenSSL.crypto.dump_privatekey(type, pkey[, cipher, passphrase])
Dump the private key pkey into a buffer string encoded with the type type, optionally (if type is
FILETYPE_PEM) encrypting it using cipher and passphrase.

passphrase must be either a string or a callback for providing the pass phrase.

OpenSSL.crypto.load_certificate(type, buffer)
Load a certificate (X509) from the string buffer encoded with the type type.

6 Chapter 2. OpenSSL — Python interface to OpenSSL

http://openssl.org/docs/apps/x509v3_config.html#STANDARD_EXTENSIONS

pyOpenSSL Documentation, Release 0.15.1

OpenSSL.crypto.load_certificate_request(type, buffer)
Load a certificate request (X509Req) from the string buffer encoded with the type type.

OpenSSL.crypto.load_privatekey(type, buffer[, passphrase])
Load a private key (PKey) from the string buffer encoded with the type type (must be one of FILETYPE_PEM
and FILETYPE_ASN1).

passphrase must be either a string or a callback for providing the pass phrase.

OpenSSL.crypto.load_crl(type, buffer)
Load Certificate Revocation List (CRL) data from a string buffer. buffer encoded with the type type. The type
type must either FILETYPE_PEM or FILETYPE_ASN1).

OpenSSL.crypto.load_pkcs7_data(type, buffer)
Load pkcs7 data from the string buffer encoded with the type type.

OpenSSL.crypto.load_pkcs12(buffer[, passphrase])
Load pkcs12 data from the string buffer. If the pkcs12 structure is encrypted, a passphrase must be included.
The MAC is always checked and thus required.

See also the man page for the C function PKCS12_parse().

OpenSSL.crypto.sign(key, data, digest)
Sign a data string using the given key and message digest.

key is a PKey instance. data is a str instance. digest is a str naming a supported message digest type, for
example sha1.

New in version 0.11.

OpenSSL.crypto.verify(certificate, signature, data, digest)
Verify the signature for a data string.

certificate is a X509 instance corresponding to the private key which generated the signature. signature is a str
instance giving the signature itself. data is a str instance giving the data to which the signature applies. digest is
a str instance naming the message digest type of the signature, for example sha1.

New in version 0.11.

2.1.1 X509 objects

X509 objects have the following methods:

X509.get_issuer()
Return an X509Name object representing the issuer of the certificate.

X509.get_pubkey()
Return a PKey object representing the public key of the certificate.

X509.get_serial_number()
Return the certificate serial number.

X509.get_signature_algorithm()
Return the signature algorithm used in the certificate. If the algorithm is undefined, raise ValueError.

New in version 0.13.

X509.get_subject()
Return an X509Name object representing the subject of the certificate.

X509.get_version()
Return the certificate version.

2.1. crypto — Generic cryptographic module 7

pyOpenSSL Documentation, Release 0.15.1

X509.get_notBefore()
Return a string giving the time before which the certificate is not valid. The string is formatted as an ASN1
GENERALIZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

If no value exists for this field, None is returned.

X509.get_notAfter()
Return a string giving the time after which the certificate is not valid. The string is formatted as an ASN1
GENERALIZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

If no value exists for this field, None is returned.

X509.set_notBefore(when)
Change the time before which the certificate is not valid. when is a string formatted as an ASN1 GENERAL-
IZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

X509.set_notAfter(when)
Change the time after which the certificate is not valid. when is a string formatted as an ASN1 GENERAL-
IZEDTIME:

YYYYMMDDhhmmssZ
YYYYMMDDhhmmss+hhmm
YYYYMMDDhhmmss-hhmm

X509.gmtime_adj_notBefore(time)
Adjust the timestamp (in GMT) when the certificate starts being valid.

X509.gmtime_adj_notAfter(time)
Adjust the timestamp (in GMT) when the certificate stops being valid.

X509.has_expired()
Checks the certificate’s time stamp against current time. Returns true if the certificate has expired and false
otherwise.

X509.set_issuer(issuer)
Set the issuer of the certificate to issuer.

X509.set_pubkey(pkey)
Set the public key of the certificate to pkey.

X509.set_serial_number(serialno)
Set the serial number of the certificate to serialno.

X509.set_subject(subject)
Set the subject of the certificate to subject.

X509.set_version(version)
Set the certificate version to version.

X509.sign(pkey, digest)
Sign the certificate, using the key pkey and the message digest algorithm identified by the string digest.

8 Chapter 2. OpenSSL — Python interface to OpenSSL

pyOpenSSL Documentation, Release 0.15.1

X509.subject_name_hash()
Return the hash of the certificate subject.

X509.digest(digest_name)
Return a digest of the certificate, using the digest_name method. digest_name must be a string describing a
digest algorithm supported by OpenSSL (by EVP_get_digestbyname, specifically). For example, "md5" or
"sha1".

X509.add_extensions(extensions)
Add the extensions in the sequence extensions to the certificate.

X509.get_extension_count()
Return the number of extensions on this certificate.

New in version 0.12.

X509.get_extension(index)
Retrieve the extension on this certificate at the given index.

Extensions on a certificate are kept in order. The index parameter selects which extension will be returned. The
returned object will be an X509Extension instance.

New in version 0.12.

2.1.2 X509Name objects

X509Name objects have the following methods:

X509Name.hash()
Return an integer giving the first four bytes of the MD5 digest of the DER representation of the name.

X509Name.der()
Return a string giving the DER representation of the name.

X509Name.get_components()
Return a list of two-tuples of strings giving the components of the name.

X509Name objects have the following members:

X509Name.countryName
The country of the entity. C may be used as an alias for countryName.

X509Name.stateOrProvinceName
The state or province of the entity. ST may be used as an alias for stateOrProvinceName.

X509Name.localityName
The locality of the entity. L may be used as an alias for localityName.

X509Name.organizationName
The organization name of the entity. O may be used as an alias for organizationName.

X509Name.organizationalUnitName
The organizational unit of the entity. OU may be used as an alias for organizationalUnitName.

X509Name.commonName
The common name of the entity. CN may be used as an alias for commonName.

X509Name.emailAddress
The e-mail address of the entity.

2.1. crypto — Generic cryptographic module 9

pyOpenSSL Documentation, Release 0.15.1

2.1.3 X509Req objects

X509Req objects have the following methods:

X509Req.get_pubkey()
Return a PKey object representing the public key of the certificate request.

X509Req.get_subject()
Return an X509Name object representing the subject of the certificate.

X509Req.set_pubkey(pkey)
Set the public key of the certificate request to pkey.

X509Req.sign(pkey, digest)
Sign the certificate request, using the key pkey and the message digest algorithm identified by the string digest.

X509Req.verify(pkey)
Verify a certificate request using the public key pkey.

X509Req.set_version(version)
Set the version (RFC 2459, 4.1.2.1) of the certificate request to version.

X509Req.get_version()
Get the version (RFC 2459, 4.1.2.1) of the certificate request.

X509Req.get_extensions()
Get extensions to the request.

New in version 0.15.

2.1.4 X509Store objects

The X509Store object has currently just one method:

X509Store.add_cert(cert)
Add the certificate cert to the certificate store.

2.1.5 X509StoreContextError objects

The X509StoreContextError is an exception raised from X509StoreContext.verify_certificate in circumstances where
a certificate cannot be verified in a provided context.

The certificate for which the verification error was detected is given by the certificate attribute of the exception
instance as a X509 instance.

Details about the verification error are given in the exception’s args attribute.

2.1.6 X509StoreContext objects

The X509StoreContext object is used for verifying a certificate against a set of trusted certificates.

X509StoreContext.verify_certificate()
Verify a certificate in the context of this initialized X509StoreContext. On error, raises X509StoreContextError,
otherwise does nothing.

New in version 0.15.

10 Chapter 2. OpenSSL — Python interface to OpenSSL

pyOpenSSL Documentation, Release 0.15.1

2.1.7 PKey objects

The PKey object has the following methods:

PKey.bits()
Return the number of bits of the key.

PKey.generate_key(type, bits)
Generate a public/private key pair of the type type (one of TYPE_RSA and TYPE_DSA) with the size bits.

PKey.type()
Return the type of the key.

PKey.check()
Check the consistency of this key, returning True if it is consistent and raising an exception otherwise. This is
only valid for RSA keys. See the OpenSSL RSA_check_key man page for further limitations.

2.1.8 PKCS7 objects

PKCS7 objects have the following methods:

PKCS7.type_is_signed()
FIXME

PKCS7.type_is_enveloped()
FIXME

PKCS7.type_is_signedAndEnveloped()
FIXME

PKCS7.type_is_data()
FIXME

PKCS7.get_type_name()
Get the type name of the PKCS7.

2.1.9 PKCS12 objects

PKCS12 objects have the following methods:

PKCS12.export([passphrase=None][, iter=2048][, maciter=1])
Returns a PKCS12 object as a string.

The optional passphrase must be a string not a callback.

See also the man page for the C function PKCS12_create().

PKCS12.get_ca_certificates()
Return CA certificates within the PKCS12 object as a tuple. Returns None if no CA certificates are present.

PKCS12.get_certificate()
Return certificate portion of the PKCS12 structure.

PKCS12.get_friendlyname()
Return friendlyName portion of the PKCS12 structure.

PKCS12.get_privatekey()
Return private key portion of the PKCS12 structure

2.1. crypto — Generic cryptographic module 11

pyOpenSSL Documentation, Release 0.15.1

PKCS12.set_ca_certificates(cacerts)
Replace or set the CA certificates within the PKCS12 object with the sequence cacerts.

Set cacerts to None to remove all CA certificates.

PKCS12.set_certificate(cert)
Replace or set the certificate portion of the PKCS12 structure.

PKCS12.set_friendlyname(name)
Replace or set the friendlyName portion of the PKCS12 structure.

PKCS12.set_privatekey(pkey)
Replace or set private key portion of the PKCS12 structure

2.1.10 X509Extension objects

X509Extension objects have several methods:

X509Extension.get_critical()
Return the critical field of the extension object.

X509Extension.get_short_name()
Retrieve the short descriptive name for this extension.

The result is a byte string like basicConstraints.

New in version 0.12.

X509Extension.get_data()
Retrieve the data for this extension.

The result is the ASN.1 encoded form of the extension data as a byte string.

New in version 0.12.

2.1.11 NetscapeSPKI objects

NetscapeSPKI objects have the following methods:

NetscapeSPKI.b64_encode()
Return a base64-encoded string representation of the object.

NetscapeSPKI.get_pubkey()
Return the public key of object.

NetscapeSPKI.set_pubkey(key)
Set the public key of the object to key.

NetscapeSPKI.sign(key, digest_name)
Sign the NetscapeSPKI object using the given key and digest_name. digest_name must be a string describing
a digest algorithm supported by OpenSSL (by EVP_get_digestbyname, specifically). For example, "md5" or
"sha1".

NetscapeSPKI.verify(key)
Verify the NetscapeSPKI object using the given key.

12 Chapter 2. OpenSSL — Python interface to OpenSSL

pyOpenSSL Documentation, Release 0.15.1

2.1.12 CRL objects

CRL objects have the following methods:

CRL.add_revoked(revoked)
Add a Revoked object to the CRL, by value not reference.

CRL.export(cert, key[, type=FILETYPE_PEM][, days=100][, digest=b’md5’])
Use cert and key to sign the CRL and return the CRL as a string. days is the number of days before the next
CRL is due. digest is the algorithm that will be used to sign CRL.

CRL.get_revoked()
Return a tuple of Revoked objects, by value not reference.

2.1.13 Revoked objects

Revoked objects have the following methods:

Revoked.all_reasons()
Return a list of all supported reasons.

Revoked.get_reason()
Return the revocation reason as a str. Can be None, which differs from “Unspecified”.

Revoked.get_rev_date()
Return the revocation date as a str. The string is formatted as an ASN1 GENERALIZEDTIME.

Revoked.get_serial()
Return a str containing a hex number of the serial of the revoked certificate.

Revoked.set_reason(reason)
Set the revocation reason. reason must be None or a string, but the values are limited. Spaces and case are
ignored. See all_reasons().

Revoked.set_rev_date(date)
Set the revocation date. The string is formatted as an ASN1 GENERALIZEDTIME.

Revoked.set_serial(serial)
serial is a string containing a hex number of the serial of the revoked certificate.

2.2 rand — An interface to the OpenSSL pseudo random number
generator

This module handles the OpenSSL pseudo random number generator (PRNG) and declares the following:

OpenSSL.rand.add(string, entropy)
Mix bytes from string into the PRNG state. The entropy argument is (the lower bound of) an estimate of how
much randomness is contained in string, measured in bytes. For more information, see e.g. RFC 1750.

OpenSSL.rand.bytes(num_bytes)
Get some random bytes from the PRNG as a string.

This is a wrapper for the C function RAND_bytes().

OpenSSL.rand.cleanup()
Erase the memory used by the PRNG.

This is a wrapper for the C function RAND_cleanup().

2.2. rand — An interface to the OpenSSL pseudo random number generator 13

https://tools.ietf.org/html/rfc1750.html

pyOpenSSL Documentation, Release 0.15.1

OpenSSL.rand.egd(path[, bytes])
Query the Entropy Gathering Daemon on socket path for bytes bytes of random data and uses add() to seed
the PRNG. The default value of bytes is 255.

OpenSSL.rand.load_file(path[, bytes])
Read bytes bytes (or all of it, if bytes is negative) of data from the file path to seed the PRNG. The default value
of bytes is -1.

OpenSSL.rand.screen()
Add the current contents of the screen to the PRNG state.

Availability: Windows.

OpenSSL.rand.seed(string)
This is equivalent to calling add() with entropy as the length of the string.

OpenSSL.rand.status()
Returns true if the PRNG has been seeded with enough data, and false otherwise.

OpenSSL.rand.write_file(path)
Write a number of random bytes (currently 1024) to the file path. This file can then be used with load_file()
to seed the PRNG again.

exception OpenSSL.rand.Error
If the current RAND method supports any errors, this is raised when needed. The default method does not raise
this when the entropy pool is depleted.

Whenever this exception is raised directly, it has a list of error messages from the OpenSSL error queue, where
each item is a tuple (lib, function, reason). Here lib, function and reason are all strings, describing where and
what the problem is. See err(3) for more information.

2.3 SSL — An interface to the SSL-specific parts of OpenSSL

This module handles things specific to SSL. There are two objects defined: Context, Connection.

OpenSSL.SSL.SSLv2_METHOD
OpenSSL.SSL.SSLv3_METHOD
OpenSSL.SSL.SSLv23_METHOD
OpenSSL.SSL.TLSv1_METHOD
OpenSSL.SSL.TLSv1_1_METHOD
OpenSSL.SSL.TLSv1_2_METHOD

These constants represent the different SSL methods to use when creating a context object. If the underlying
OpenSSL build is missing support for any of these protocols, constructing a Context using the corresponding
*_METHOD will raise an exception.

OpenSSL.SSL.VERIFY_NONE
OpenSSL.SSL.VERIFY_PEER
OpenSSL.SSL.VERIFY_FAIL_IF_NO_PEER_CERT

These constants represent the verification mode used by the Context object’s set_verify() method.

OpenSSL.SSL.FILETYPE_PEM
OpenSSL.SSL.FILETYPE_ASN1

File type constants used with the use_certificate_file() and use_privatekey_file() methods
of Context objects.

OpenSSL.SSL.OP_SINGLE_DH_USE
Constant used with set_options() of Context objects.

When this option is used, a new key will always be created when using ephemeral Diffie-Hellman.

14 Chapter 2. OpenSSL — Python interface to OpenSSL

http://www.lothar.com/tech/crypto/

pyOpenSSL Documentation, Release 0.15.1

OpenSSL.SSL.OP_EPHEMERAL_RSA
Constant used with set_options() of Context objects.

When this option is used, ephemeral RSA keys will always be used when doing RSA operations.

OpenSSL.SSL.OP_NO_TICKET
Constant used with set_options() of Context objects.

When this option is used, the session ticket extension will not be used.

OpenSSL.SSL.OP_NO_COMPRESSION
Constant used with set_options() of Context objects.

When this option is used, compression will not be used.

OpenSSL.SSL.OP_NO_SSLv2
OpenSSL.SSL.OP_NO_SSLv3
OpenSSL.SSL.OP_NO_TLSv1
OpenSSL.SSL.OP_NO_TLSv1_1
OpenSSL.SSL.OP_NO_TLSv1_2

Constants used with set_options() of Context objects.

Each of these options disables one version of the SSL/TLS protocol. This is interesting if you’re using e.g.
SSLv23_METHOD to get an SSLv2-compatible handshake, but don’t want to use SSLv2. If the underlying
OpenSSL build is missing support for any of these protocols, the OP_NO_* constant may be undefined.

OpenSSL.SSL.SSLEAY_VERSION
OpenSSL.SSL.SSLEAY_CFLAGS
OpenSSL.SSL.SSLEAY_BUILT_ON
OpenSSL.SSL.SSLEAY_PLATFORM
OpenSSL.SSL.SSLEAY_DIR

Constants used with SSLeay_version() to specify what OpenSSL version information to retrieve. See the
man page for the SSLeay_version() C API for details.

OpenSSL.SSL.SESS_CACHE_OFF
OpenSSL.SSL.SESS_CACHE_CLIENT
OpenSSL.SSL.SESS_CACHE_SERVER
OpenSSL.SSL.SESS_CACHE_BOTH
OpenSSL.SSL.SESS_CACHE_NO_AUTO_CLEAR
OpenSSL.SSL.SESS_CACHE_NO_INTERNAL_LOOKUP
OpenSSL.SSL.SESS_CACHE_NO_INTERNAL_STORE
OpenSSL.SSL.SESS_CACHE_NO_INTERNAL

Constants used with Context.set_session_cache_mode() to specify the behavior of the session cache
and potential session reuse. See the man page for the SSL_CTX_set_session_cache_mode() C API for
details.

New in version 0.14.

OpenSSL.SSL.OPENSSL_VERSION_NUMBER
An integer giving the version number of the OpenSSL library used to build this version of pyOpenSSL. See the
man page for the SSLeay_version() C API for details.

OpenSSL.SSL.SSLeay_version(type)
Retrieve a string describing some aspect of the underlying OpenSSL version. The type passed in should be one
of the SSLEAY_* constants defined in this module.

OpenSSL.SSL.ContextType
See Context.

class OpenSSL.SSL.Context(method)
A class representing SSL contexts. Contexts define the parameters of one or more SSL connections.

2.3. SSL — An interface to the SSL-specific parts of OpenSSL 15

pyOpenSSL Documentation, Release 0.15.1

method should be SSLv2_METHOD, SSLv3_METHOD, SSLv23_METHOD, TLSv1_METHOD,
TLSv1_1_METHOD, or TLSv1_2_METHOD.

class OpenSSL.SSL.Session
A class representing an SSL session. A session defines certain connection parameters which may be re-used to
speed up the setup of subsequent connections.

New in version 0.14.

OpenSSL.SSL.ConnectionType
See Connection.

class OpenSSL.SSL.Connection(context, socket)
A class representing SSL connections.

context should be an instance of Context and socket should be a socket 1 object. socket may be None;
in this case, the Connection is created with a memory BIO: see the bio_read(), bio_write(), and
bio_shutdown() methods.

exception OpenSSL.SSL.Error
This exception is used as a base class for the other SSL-related exceptions, but may also be raised directly.

Whenever this exception is raised directly, it has a list of error messages from the OpenSSL error queue, where
each item is a tuple (lib, function, reason). Here lib, function and reason are all strings, describing where and
what the problem is. See err(3) for more information.

exception OpenSSL.SSL.ZeroReturnError
This exception matches the error return code SSL_ERROR_ZERO_RETURN, and is raised when the SSL Con-
nection has been closed. In SSL 3.0 and TLS 1.0, this only occurs if a closure alert has occurred in the protocol,
i.e. the connection has been closed cleanly. Note that this does not necessarily mean that the transport layer (e.g.
a socket) has been closed.

It may seem a little strange that this is an exception, but it does match an SSL_ERROR code, and is very
convenient.

exception OpenSSL.SSL.WantReadError
The operation did not complete; the same I/O method should be called again later, with the same arguments.
Any I/O method can lead to this since new handshakes can occur at any time.

The wanted read is for dirty data sent over the network, not the clean data inside the tunnel. For a
socket based SSL connection, read means data coming at us over the network. Until that read suc-
ceeds, the attempted OpenSSL.SSL.Connection.recv(), OpenSSL.SSL.Connection.send(),
or OpenSSL.SSL.Connection.do_handshake() is prevented or incomplete. You probably want to
select() on the socket before trying again.

exception OpenSSL.SSL.WantWriteError
See WantReadError. The socket send buffer may be too full to write more data.

exception OpenSSL.SSL.WantX509LookupError
The operation did not complete because an application callback has asked to be called again. The I/O method
should be called again later, with the same arguments.

Note: This won’t occur in this version, as there are no such callbacks in this version.

exception OpenSSL.SSL.SysCallError
The SysCallError occurs when there’s an I/O error and OpenSSL’s error queue does not contain any infor-
mation. This can mean two things: An error in the transport protocol, or an end of file that violates the protocol.
The parameter to the exception is always a pair (errnum, errstr).

1 Actually, all that is required is an object that behaves like a socket, you could even use files, even though it’d be tricky to get the handshakes
right!

16 Chapter 2. OpenSSL — Python interface to OpenSSL

pyOpenSSL Documentation, Release 0.15.1

2.3.1 Context objects

Context objects have the following methods:

Context.check_privatekey()
Check if the private key (loaded with use_privatekey()) matches the certificate (loaded with
use_certificate()). Returns None if they match, raises Error otherwise.

Context.get_app_data()
Retrieve application data as set by set_app_data().

Context.get_cert_store()
Retrieve the certificate store (a X509Store object) that the context uses. This can be used to add “trusted”
certificates without using the load_verify_locations() method.

Context.get_timeout()
Retrieve session timeout, as set by set_timeout(). The default is 300 seconds.

Context.get_verify_depth()
Retrieve the Context object’s verify depth, as set by set_verify_depth().

Context.get_verify_mode()
Retrieve the Context object’s verify mode, as set by set_verify().

Context.load_client_ca(pemfile)
Read a file with PEM-formatted certificates that will be sent to the client when requesting a client certificate.

Context.set_client_ca_list(certificate_authorities)
Replace the current list of preferred certificate signers that would be sent to the client when requesting a client
certificate with the certificate_authorities sequence of OpenSSL.crypto.X509Name‘s.

New in version 0.10.

Context.add_client_ca(certificate_authority)
Extract a OpenSSL.crypto.X509Name from the certificate_authority OpenSSL.crypto.X509 certifi-
cate and add it to the list of preferred certificate signers sent to the client when requesting a client certificate.

New in version 0.10.

Context.load_verify_locations(pemfile, capath)
Specify where CA certificates for verification purposes are located. These are trusted certificates. Note that the
certificates have to be in PEM format. If capath is passed, it must be a directory prepared using the c_rehash
tool included with OpenSSL. Either, but not both, of pemfile or capath may be None.

Context.set_default_verify_paths()
Specify that the platform provided CA certificates are to be used for verification purposes. This method may not
work properly on OS X.

Context.load_tmp_dh(dhfile)
Load parameters for Ephemeral Diffie-Hellman from dhfile.

Context.set_tmp_ecdh(curve)
Select a curve to use for ECDHE key exchange.

The valid values of curve are the objects returned by OpenSSL.crypto.get_elliptic_curves() or
OpenSSL.crypto.get_elliptic_curve().

Context.set_app_data(data)
Associate data with this Context object. data can be retrieved later using the get_app_data() method.

Context.set_cipher_list(ciphers)
Set the list of ciphers to be used in this context. See the OpenSSL manual for more information (e.g.
ciphers(1))

2.3. SSL — An interface to the SSL-specific parts of OpenSSL 17

pyOpenSSL Documentation, Release 0.15.1

Context.set_info_callback(callback)
Set the information callback to callback. This function will be called from time to time during SSL handshakes.

callback should take three arguments: a Connection object and two integers. The first integer specifies where
in the SSL handshake the function was called, and the other the return code from a (possibly failed) internal
function call.

Context.set_options(options)
Add SSL options. Options you have set before are not cleared! This method should be used with the OP_*
constants.

Context.set_mode(mode)
Add SSL mode. Modes you have set before are not cleared! This method should be used with the MODE_*
constants.

Context.set_passwd_cb(callback[, userdata])
Set the passphrase callback to callback. This function will be called when a private key with a passphrase
is loaded. callback must accept three positional arguments. First, an integer giving the maximum length of
the passphrase it may return. If the returned passphrase is longer than this, it will be truncated. Second, a
boolean value which will be true if the user should be prompted for the passphrase twice and the callback
should verify that the two values supplied are equal. Third, the value given as the userdata parameter to
set_passwd_cb(). If an error occurs, callback should return a false value (e.g. an empty string).

Context.set_session_cache_mode(mode)
Set the behavior of the session cache used by all connections using this Context. The previously set mode is
returned. See SESS_CACHE_* for details about particular modes.

New in version 0.14.

Context.get_session_cache_mode()
Get the current session cache mode.

New in version 0.14.

Context.set_session_id(name)
Set the context name within which a session can be reused for this Context object. This is needed when doing
session resumption, because there is no way for a stored session to know which Context object it is associated
with. name may be any binary data.

Context.set_timeout(timeout)
Set the timeout for newly created sessions for this Context object to timeout. timeout must be given in
(whole) seconds. The default value is 300 seconds. See the OpenSSL manual for more information (e.g.
SSL_CTX_set_timeout(3)).

Context.set_verify(mode, callback)
Set the verification flags for this Context object to mode and specify that callback should be used for verification
callbacks. mode should be one of VERIFY_NONE and VERIFY_PEER. If VERIFY_PEER is used, mode can
be OR:ed with VERIFY_FAIL_IF_NO_PEER_CERT and VERIFY_CLIENT_ONCE to further control the
behaviour.

callback should take five arguments: A Connection object, an X509 object, and three integer variables, which
are in turn potential error number, error depth and return code. callback should return true if verification passes
and false otherwise.

Context.set_verify_depth(depth)
Set the maximum depth for the certificate chain verification that shall be allowed for this Context object.

Context.use_certificate(cert)
Use the certificate cert which has to be a X509 object.

18 Chapter 2. OpenSSL — Python interface to OpenSSL

pyOpenSSL Documentation, Release 0.15.1

Context.add_extra_chain_cert(cert)
Adds the certificate cert, which has to be a X509 object, to the certificate chain presented together with the
certificate.

Context.use_certificate_chain_file(file)
Load a certificate chain from file which must be PEM encoded.

Context.use_privatekey(pkey)
Use the private key pkey which has to be a PKey object.

Context.use_certificate_file(file[, format])
Load the first certificate found in file. The certificate must be in the format specified by format, which is either
FILETYPE_PEM or FILETYPE_ASN1. The default is FILETYPE_PEM .

Context.use_privatekey_file(file[, format])
Load the first private key found in file. The private key must be in the format specified by format, which is either
FILETYPE_PEM or FILETYPE_ASN1. The default is FILETYPE_PEM .

Context.set_tlsext_servername_callback(callback)
Specify a one-argument callable to use as the TLS extension server name callback. When a connection using the
server name extension is made using this context, the callback will be invoked with the Connection instance.

New in version 0.13.

Context.set_npn_advertise_callback(callback)
Specify a callback function that will be called when offering Next Protocol Negotiation as a server.

callback should be the callback function. It will be invoked with one argument, the Connection instance. It
should return a list of bytestrings representing the advertised protocols, like [b’http/1.1’, b’spdy/2’].

New in version 0.15.

Context.set_npn_select_callback(callback):
Specify a callback function that will be called when a server offers Next Protocol Negotiation options.

callback should be the callback function. It will be invoked with two arguments: the Connection, and a
list of offered protocols as bytestrings, e.g. [b’http/1.1’, b’spdy/2’]. It should return one of those
bytestrings, the chosen protocol.

New in version 0.15.

Context.set_alpn_protos(protos)
Specify the protocols that the client is prepared to speak after the TLS connection has been negotiated using
Application Layer Protocol Negotiation.

protos should be a list of protocols that the client is offering, each as a bytestring. For example,
[b’http/1.1’, b’spdy/2’].

Context.set_alpn_select_callback(callback)
Specify a callback function that will be called on the server when a client offers protocols using Application
Layer Protocol Negotiation.

callback should be the callback function. It will be invoked with two arguments: the Connection and a
list of offered protocols as bytestrings, e.g. [b’http/1.1’, b’spdy/2’]. It should return one of these
bytestrings, the chosen protocol.

2.3.2 Session objects

Session objects have no methods.

2.3. SSL — An interface to the SSL-specific parts of OpenSSL 19

https://technotes.googlecode.com/git/nextprotoneg.html

pyOpenSSL Documentation, Release 0.15.1

2.3.3 Connection objects

Connection objects have the following methods:

Connection.accept()
Call the accept() method of the underlying socket and set up SSL on the returned socket, using the Context
object supplied to this Connection object at creation. Returns a pair (conn, address). where conn is the new
Connection object created, and address is as returned by the socket’s accept().

Connection.bind(address)
Call the bind() method of the underlying socket.

Connection.close()
Call the close() method of the underlying socket. Note: If you want correct SSL closure, you need to call
the shutdown() method first.

Connection.connect(address)
Call the connect() method of the underlying socket and set up SSL on the socket, using the Context object
supplied to this Connection object at creation.

Connection.connect_ex(address)
Call the connect_ex() method of the underlying socket and set up SSL on the socket, using the Context
object supplied to this Connection object at creation. Note that if the connect_ex() method of the socket
doesn’t return 0, SSL won’t be initialized.

Connection.do_handshake()
Perform an SSL handshake (usually called after renegotiate() or one of set_accept_state() or
set_accept_state()). This can raise the same exceptions as send() and recv().

Connection.fileno()
Retrieve the file descriptor number for the underlying socket.

Connection.listen(backlog)
Call the listen() method of the underlying socket.

Connection.get_app_data()
Retrieve application data as set by set_app_data().

Connection.get_cipher_list()
Retrieve the list of ciphers used by the Connection object. WARNING: This API has changed. It used to take
an optional parameter and just return a string, but not it returns the entire list in one go.

Connection.get_client_ca_list()
Retrieve the list of preferred client certificate issuers sent by the server as OpenSSL.crypto.X509Name
objects.

If this is a client Connection, the list will be empty until the connection with the server is established.

If this is a server Connection, return the list of certificate authorities that will be sent or has been sent to the
client, as controlled by this Connection‘s Context.

New in version 0.10.

Connection.get_context()
Retrieve the Context object associated with this Connection.

Connection.set_context(context)
Specify a replacement Context object for this Connection.

Connection.get_peer_certificate()
Retrieve the other side’s certificate (if any)

20 Chapter 2. OpenSSL — Python interface to OpenSSL

pyOpenSSL Documentation, Release 0.15.1

Connection.get_peer_cert_chain()
Retrieve the tuple of the other side’s certificate chain (if any)

Connection.getpeername()
Call the getpeername() method of the underlying socket.

Connection.getsockname()
Call the getsockname() method of the underlying socket.

Connection.getsockopt(level, optname[, buflen])
Call the getsockopt() method of the underlying socket.

Connection.pending()
Retrieve the number of bytes that can be safely read from the SSL buffer (not the underlying transport buffer).

Connection.recv(bufsize)
Receive data from the Connection. The return value is a string representing the data received. The maximum
amount of data to be received at once, is specified by bufsize.

Connection.recv_into(buffer[, nbytes[, flags]])
Receive data from the Connection and copy it directly into the provided buffer. The return value is the number
of bytes read from the connection. The maximum amount of data to be received at once is specified by nbytes.
flags is accepted for compatibility with socket.recv_into but its value is ignored.

Connection.bio_write(bytes)
If the Connection was created with a memory BIO, this method can be used to add bytes to the read end of that
memory BIO. The Connection can then read the bytes (for example, in response to a call to recv()).

Connection.renegotiate()
Renegotiate the SSL session. Call this if you wish to change cipher suites or anything like that.

Connection.send(string)
Send the string data to the Connection.

Connection.bio_read(bufsize)
If the Connection was created with a memory BIO, this method can be used to read bytes from the write end of
that memory BIO. Many Connection methods will add bytes which must be read in this manner or the buffer
will eventually fill up and the Connection will be able to take no further actions.

Connection.sendall(string)
Send all of the string data to the Connection. This calls send() repeatedly until all data is sent. If an error
occurs, it’s impossible to tell how much data has been sent.

Connection.set_accept_state()
Set the connection to work in server mode. The handshake will be handled automatically by read/write.

Connection.set_app_data(data)
Associate data with this Connection object. data can be retrieved later using the get_app_data() method.

Connection.set_connect_state()
Set the connection to work in client mode. The handshake will be handled automatically by read/write.

Connection.setblocking(flag)
Call the setblocking() method of the underlying socket.

Connection.setsockopt(level, optname, value)
Call the setsockopt() method of the underlying socket.

Connection.shutdown()
Send the shutdown message to the Connection. Returns true if the shutdown message exchange is completed and
false otherwise (in which case you call recv() or send() when the connection becomes readable/writeable.

2.3. SSL — An interface to the SSL-specific parts of OpenSSL 21

pyOpenSSL Documentation, Release 0.15.1

Connection.get_shutdown()
Get the shutdown state of the Connection. Returns a bitvector of either or both of SENT_SHUTDOWN and
RECEIVED_SHUTDOWN.

Connection.set_shutdown(state)
Set the shutdown state of the Connection. state is a bitvector of either or both of SENT_SHUTDOWN and
RECEIVED_SHUTDOWN.

Connection.sock_shutdown(how)
Call the shutdown() method of the underlying socket.

Connection.bio_shutdown()
If the Connection was created with a memory BIO, this method can be used to indicate that end of file has been
reached on the read end of that memory BIO.

Connection.state_string()
Retrieve a verbose string detailing the state of the Connection.

Connection.client_random()
Retrieve the random value used with the client hello message.

Connection.server_random()
Retrieve the random value used with the server hello message.

Connection.master_key()
Retrieve the value of the master key for this session.

Connection.want_read()
Checks if more data has to be read from the transport layer to complete an operation.

Connection.want_write()
Checks if there is data to write to the transport layer to complete an operation.

Connection.set_tlsext_host_name(name)
Specify the byte string to send as the server name in the client hello message.

New in version 0.13.

Connection.get_servername()
Get the value of the server name received in the client hello message.

New in version 0.13.

Connection.get_session()
Get a Session instance representing the SSL session in use by the connection, or None if there is no session.

New in version 0.14.

Connection.set_session(session)
Set a new SSL session (using a Session instance) to be used by the connection.

New in version 0.14.

Connection.get_finished()
Obtain latest TLS Finished message that we sent, or None if handshake is not completed.

New in version 0.15.

Connection.get_peer_finished()
Obtain latest TLS Finished message that we expected from peer, or None if handshake is not completed.

New in version 0.15.

Connection.get_cipher_name()
Obtain the name of the currently used cipher.

22 Chapter 2. OpenSSL — Python interface to OpenSSL

pyOpenSSL Documentation, Release 0.15.1

New in version 0.15.

Connection.get_cipher_bits()
Obtain the number of secret bits of the currently used cipher.

New in version 0.15.

Connection.get_cipher_version()
Obtain the protocol name of the currently used cipher.

New in version 0.15.

Connection.get_next_proto_negotiated():
Get the protocol that was negotiated by Next Protocol Negotiation. Returns a bytestring of the protocol name.
If no protocol has been negotiated yet, returns an empty string.

New in version 0.15.

Connection.set_alpn_protos(protos)
Specify the protocols that the client is prepared to speak after the TLS connection has been negotiated using
Application Layer Protocol Negotiation.

protos should be a list of protocols that the client is offering, each as a bytestring. For example,
[b’http/1.1’, b’spdy/2’].

Connection.get_alpn_proto_negotiated()
Get the protocol that was negotiated by Application Layer Protocol Negotiation. Returns a bytestring of the
protocol name. If no protocol has been negotiated yet, returns an empty string.

2.3. SSL — An interface to the SSL-specific parts of OpenSSL 23

pyOpenSSL Documentation, Release 0.15.1

24 Chapter 2. OpenSSL — Python interface to OpenSSL

CHAPTER 3

Internals

We ran into three main problems developing this: Exceptions, callbacks and accessing socket methods. This is what
this chapter is about.

3.1 Exceptions

We realized early that most of the exceptions would be raised by the I/O functions of OpenSSL, so it
felt natural to mimic OpenSSL’s error code system, translating them into Python exceptions. This natu-
rally gives us the exceptions SSL.ZeroReturnError, SSL.WantReadError, SSL.WantWriteError,
SSL.WantX509LookupError and SSL.SysCallError.

For more information about this, see section SSL — An interface to the SSL-specific parts of OpenSSL.

3.2 Callbacks

Callbacks were more of a problem when pyOpenSSL was written in C. Having switched to being written in Python
using cffi, callbacks are now straightforward. The problems that originally existed no longer do (if you are interested
in the details you can find descriptions of those problems in the version control history for this document).

3.3 Accessing Socket Methods

We quickly saw the benefit of wrapping socket methods in the SSL.Connection class, for an easy transition
into using SSL. The problem here is that the socket module lacks a C API, and all the methods are declared
static. One approach would be to have OpenSSL as a submodule to the socket module, placing all the code in
socketmodule.c, but this is obviously not a good solution, since you might not want to import tonnes of extra
stuff you’re not going to use when importing the socket module. The other approach is to somehow get a pointer
to the method to be called, either the C function, or a callable Python object. This is not really a good solution either,
since there’s a lot of lookups involved.

The way it works is that you have to supply a socket- like transport object to the SSL.Connection. The only
requirement of this object is that it has a fileno() method that returns a file descriptor that’s valid at the C level
(i.e. you can use the system calls read and write). If you want to use the connect() or accept() methods of
the SSL.Connection object, the transport object has to supply such methods too. Apart from them, any method
lookups in the SSL.Connection object that fail are passed on to the underlying transport object.

Future changes might be to allow Python-level transport objects, that instead of having fileno() methods, have
read() and write() methods, so more advanced features of Python can be used. This would probably entail some

25

pyOpenSSL Documentation, Release 0.15.1

sort of OpenSSL BIOs, but converting Python strings back and forth is expensive, so this shouldn’t be used unless
necessary. Other nice things would be to be able to pass in different transport objects for reading and writing, but
then the fileno() method of SSL.Connection becomes virtually useless. Also, should the method resolution
be used on the read-transport or the write-transport?

26 Chapter 3. Internals

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

27

pyOpenSSL Documentation, Release 0.15.1

28 Chapter 4. Indices and tables

Python Module Index

o
OpenSSL, 5
OpenSSL.crypto, 5
OpenSSL.rand, 13
OpenSSL.SSL, 14

29

pyOpenSSL Documentation, Release 0.15.1

30 Python Module Index

Index

A
accept() (OpenSSL.SSL.Connection method), 20
add() (in module OpenSSL.rand), 13
add_cert() (OpenSSL.crypto.X509Store method), 10
add_client_ca() (OpenSSL.SSL.Context method), 17
add_extensions() (OpenSSL.crypto.X509 method), 9
add_extra_chain_cert() (OpenSSL.SSL.Context method),

18
add_revoked() (OpenSSL.crypto.CRL method), 13
all_reasons() (OpenSSL.crypto.Revoked method), 13

B
b64_encode() (OpenSSL.crypto.NetscapeSPKI method),

12
bind() (OpenSSL.SSL.Connection method), 20
bio_read() (OpenSSL.SSL.Connection method), 21
bio_shutdown() (OpenSSL.SSL.Connection method), 22
bio_write() (OpenSSL.SSL.Connection method), 21
bits() (OpenSSL.crypto.PKey method), 11
bytes() (in module OpenSSL.rand), 13

C
check() (OpenSSL.crypto.PKey method), 11
check_privatekey() (OpenSSL.SSL.Context method), 17
cleanup() (in module OpenSSL.rand), 13
client_random() (OpenSSL.SSL.Connection method), 22
close() (OpenSSL.SSL.Connection method), 20
commonName (OpenSSL.crypto.X509Name attribute), 9
connect() (OpenSSL.SSL.Connection method), 20
connect_ex() (OpenSSL.SSL.Connection method), 20
Connection (class in OpenSSL.SSL), 16
ConnectionType (in module OpenSSL.SSL), 16
Context (class in OpenSSL.SSL), 15
ContextType (in module OpenSSL.SSL), 15
countryName (OpenSSL.crypto.X509Name attribute), 9
CRL (class in OpenSSL.crypto), 6

D
der() (OpenSSL.crypto.X509Name method), 9
digest() (OpenSSL.crypto.X509 method), 9

do_handshake() (OpenSSL.SSL.Connection method), 20
dump_certificate() (in module OpenSSL.crypto), 6
dump_certificate_request() (in module OpenSSL.crypto),

6
dump_privatekey() (in module OpenSSL.crypto), 6

E
egd() (in module OpenSSL.rand), 13
emailAddress (OpenSSL.crypto.X509Name attribute), 9
Error, 6, 14, 16
export() (OpenSSL.crypto.CRL method), 13
export() (OpenSSL.crypto.PKCS12 method), 11

F
fileno() (OpenSSL.SSL.Connection method), 20
FILETYPE_ASN1 (in module OpenSSL.crypto), 6
FILETYPE_ASN1 (in module OpenSSL.SSL), 14
FILETYPE_PEM (in module OpenSSL.crypto), 6
FILETYPE_PEM (in module OpenSSL.SSL), 14

G
generate_key() (OpenSSL.crypto.PKey method), 11
get_alpn_proto_negotiated() (OpenSSL.SSL.Connection

method), 23
get_app_data() (OpenSSL.SSL.Connection method), 20
get_app_data() (OpenSSL.SSL.Context method), 17
get_ca_certificates() (OpenSSL.crypto.PKCS12 method),

11
get_cert_store() (OpenSSL.SSL.Context method), 17
get_certificate() (OpenSSL.crypto.PKCS12 method), 11
get_cipher_bits() (OpenSSL.SSL.Connection method),

23
get_cipher_list() (OpenSSL.SSL.Connection method), 20
get_cipher_name() (OpenSSL.SSL.Connection method),

22
get_cipher_version() (OpenSSL.SSL.Connection

method), 23
get_client_ca_list() (OpenSSL.SSL.Connection method),

20
get_components() (OpenSSL.crypto.X509Name

method), 9

31

pyOpenSSL Documentation, Release 0.15.1

get_context() (OpenSSL.SSL.Connection method), 20
get_critical() (OpenSSL.crypto.X509Extension method),

12
get_data() (OpenSSL.crypto.X509Extension method), 12
get_elliptic_curve() (in module OpenSSL.crypto), 6
get_elliptic_curves() (in module OpenSSL.crypto), 6
get_extension() (OpenSSL.crypto.X509 method), 9
get_extension_count() (OpenSSL.crypto.X509 method),

9
get_extensions() (OpenSSL.crypto.X509Req method), 10
get_finished() (OpenSSL.SSL.Connection method), 22
get_friendlyname() (OpenSSL.crypto.PKCS12 method),

11
get_issuer() (OpenSSL.crypto.X509 method), 7
get_notAfter() (OpenSSL.crypto.X509 method), 8
get_notBefore() (OpenSSL.crypto.X509 method), 7
get_peer_cert_chain() (OpenSSL.SSL.Connection

method), 20
get_peer_certificate() (OpenSSL.SSL.Connection

method), 20
get_peer_finished() (OpenSSL.SSL.Connection method),

22
get_privatekey() (OpenSSL.crypto.PKCS12 method), 11
get_pubkey() (OpenSSL.crypto.NetscapeSPKI method),

12
get_pubkey() (OpenSSL.crypto.X509 method), 7
get_pubkey() (OpenSSL.crypto.X509Req method), 10
get_reason() (OpenSSL.crypto.Revoked method), 13
get_rev_date() (OpenSSL.crypto.Revoked method), 13
get_revoked() (OpenSSL.crypto.CRL method), 13
get_serial() (OpenSSL.crypto.Revoked method), 13
get_serial_number() (OpenSSL.crypto.X509 method), 7
get_servername() (OpenSSL.SSL.Connection method),

22
get_session() (OpenSSL.SSL.Connection method), 22
get_session_cache_mode() (OpenSSL.SSL.Context

method), 18
get_short_name() (OpenSSL.crypto.X509Extension

method), 12
get_shutdown() (OpenSSL.SSL.Connection method), 21
get_signature_algorithm() (OpenSSL.crypto.X509

method), 7
get_subject() (OpenSSL.crypto.X509 method), 7
get_subject() (OpenSSL.crypto.X509Req method), 10
get_timeout() (OpenSSL.SSL.Context method), 17
get_type_name() (OpenSSL.crypto.PKCS7 method), 11
get_verify_depth() (OpenSSL.SSL.Context method), 17
get_verify_mode() (OpenSSL.SSL.Context method), 17
get_version() (OpenSSL.crypto.X509 method), 7
get_version() (OpenSSL.crypto.X509Req method), 10
getpeername() (OpenSSL.SSL.Connection method), 21
getsockname() (OpenSSL.SSL.Connection method), 21
getsockopt() (OpenSSL.SSL.Connection method), 21

gmtime_adj_notAfter() (OpenSSL.crypto.X509 method),
8

gmtime_adj_notBefore() (OpenSSL.crypto.X509
method), 8

H
has_expired() (OpenSSL.crypto.X509 method), 8
hash() (OpenSSL.crypto.X509Name method), 9

L
listen() (OpenSSL.SSL.Connection method), 20
load_certificate() (in module OpenSSL.crypto), 6
load_certificate_request() (in module OpenSSL.crypto), 6
load_client_ca() (OpenSSL.SSL.Context method), 17
load_crl() (in module OpenSSL.crypto), 7
load_file() (in module OpenSSL.rand), 14
load_pkcs12() (in module OpenSSL.crypto), 7
load_pkcs7_data() (in module OpenSSL.crypto), 7
load_privatekey() (in module OpenSSL.crypto), 7
load_tmp_dh() (OpenSSL.SSL.Context method), 17
load_verify_locations() (OpenSSL.SSL.Context method),

17
localityName (OpenSSL.crypto.X509Name attribute), 9

M
master_key() (OpenSSL.SSL.Connection method), 22

N
NetscapeSPKI (class in OpenSSL.crypto), 6
NetscapeSPKIType (in module OpenSSL.crypto), 6

O
OP_EPHEMERAL_RSA (in module OpenSSL.SSL), 14
OP_NO_COMPRESSION (in module OpenSSL.SSL),

15
OP_NO_SSLv2 (in module OpenSSL.SSL), 15
OP_NO_SSLv3 (in module OpenSSL.SSL), 15
OP_NO_TICKET (in module OpenSSL.SSL), 15
OP_NO_TLSv1 (in module OpenSSL.SSL), 15
OP_NO_TLSv1_1 (in module OpenSSL.SSL), 15
OP_NO_TLSv1_2 (in module OpenSSL.SSL), 15
OP_SINGLE_DH_USE (in module OpenSSL.SSL), 14
OpenSSL (module), 5
OpenSSL.crypto (module), 5
OpenSSL.rand (module), 13
OpenSSL.SSL (module), 14
OPENSSL_VERSION_NUMBER (in module

OpenSSL.SSL), 15
organizationalUnitName (OpenSSL.crypto.X509Name

attribute), 9
organizationName (OpenSSL.crypto.X509Name at-

tribute), 9

32 Index

pyOpenSSL Documentation, Release 0.15.1

P
pending() (OpenSSL.SSL.Connection method), 21
PKCS12Type (in module OpenSSL.crypto), 5
PKCS7Type (in module OpenSSL.crypto), 5
PKey (class in OpenSSL.crypto), 5
PKeyType (in module OpenSSL.crypto), 5

R
recv() (OpenSSL.SSL.Connection method), 21
recv_into() (OpenSSL.SSL.Connection method), 21
renegotiate() (OpenSSL.SSL.Connection method), 21
Revoked (class in OpenSSL.crypto), 6
RFC

RFC 1750, 13

S
screen() (in module OpenSSL.rand), 14
seed() (in module OpenSSL.rand), 14
send() (OpenSSL.SSL.Connection method), 21
sendall() (OpenSSL.SSL.Connection method), 21
server_random() (OpenSSL.SSL.Connection method), 22
SESS_CACHE_BOTH (in module OpenSSL.SSL), 15
SESS_CACHE_CLIENT (in module OpenSSL.SSL), 15
SESS_CACHE_NO_AUTO_CLEAR (in module

OpenSSL.SSL), 15
SESS_CACHE_NO_INTERNAL (in module

OpenSSL.SSL), 15
SESS_CACHE_NO_INTERNAL_LOOKUP (in module

OpenSSL.SSL), 15
SESS_CACHE_NO_INTERNAL_STORE (in module

OpenSSL.SSL), 15
SESS_CACHE_OFF (in module OpenSSL.SSL), 15
SESS_CACHE_SERVER (in module OpenSSL.SSL), 15
Session (class in OpenSSL.SSL), 16
set_accept_state() (OpenSSL.SSL.Connection method),

21
set_alpn_protos() (OpenSSL.SSL.Connection method),

23
set_alpn_protos() (OpenSSL.SSL.Context method), 19
set_alpn_select_callback() (OpenSSL.SSL.Context

method), 19
set_app_data() (OpenSSL.SSL.Connection method), 21
set_app_data() (OpenSSL.SSL.Context method), 17
set_ca_certificates() (OpenSSL.crypto.PKCS12 method),

11
set_certificate() (OpenSSL.crypto.PKCS12 method), 12
set_cipher_list() (OpenSSL.SSL.Context method), 17
set_client_ca_list() (OpenSSL.SSL.Context method), 17
set_connect_state() (OpenSSL.SSL.Connection method),

21
set_context() (OpenSSL.SSL.Connection method), 20
set_default_verify_paths() (OpenSSL.SSL.Context

method), 17

set_friendlyname() (OpenSSL.crypto.PKCS12 method),
12

set_info_callback() (OpenSSL.SSL.Context method), 17
set_issuer() (OpenSSL.crypto.X509 method), 8
set_mode() (OpenSSL.SSL.Context method), 18
set_notAfter() (OpenSSL.crypto.X509 method), 8
set_notBefore() (OpenSSL.crypto.X509 method), 8
set_npn_advertise_callback() (OpenSSL.SSL.Context

method), 19
set_options() (OpenSSL.SSL.Context method), 18
set_passwd_cb() (OpenSSL.SSL.Context method), 18
set_privatekey() (OpenSSL.crypto.PKCS12 method), 12
set_pubkey() (OpenSSL.crypto.NetscapeSPKI method),

12
set_pubkey() (OpenSSL.crypto.X509 method), 8
set_pubkey() (OpenSSL.crypto.X509Req method), 10
set_reason() (OpenSSL.crypto.Revoked method), 13
set_rev_date() (OpenSSL.crypto.Revoked method), 13
set_serial() (OpenSSL.crypto.Revoked method), 13
set_serial_number() (OpenSSL.crypto.X509 method), 8
set_session() (OpenSSL.SSL.Connection method), 22
set_session_cache_mode() (OpenSSL.SSL.Context

method), 18
set_session_id() (OpenSSL.SSL.Context method), 18
set_shutdown() (OpenSSL.SSL.Connection method), 22
set_subject() (OpenSSL.crypto.X509 method), 8
set_timeout() (OpenSSL.SSL.Context method), 18
set_tlsext_host_name() (OpenSSL.SSL.Connection

method), 22
set_tlsext_servername_callback()

(OpenSSL.SSL.Context method), 19
set_tmp_ecdh() (OpenSSL.SSL.Context method), 17
set_verify() (OpenSSL.SSL.Context method), 18
set_verify_depth() (OpenSSL.SSL.Context method), 18
set_version() (OpenSSL.crypto.X509 method), 8
set_version() (OpenSSL.crypto.X509Req method), 10
setblocking() (OpenSSL.SSL.Connection method), 21
setsockopt() (OpenSSL.SSL.Connection method), 21
shutdown() (OpenSSL.SSL.Connection method), 21
sign() (in module OpenSSL.crypto), 7
sign() (OpenSSL.crypto.NetscapeSPKI method), 12
sign() (OpenSSL.crypto.X509 method), 8
sign() (OpenSSL.crypto.X509Req method), 10
sock_shutdown() (OpenSSL.SSL.Connection method),

22
SSLEAY_BUILT_ON (in module OpenSSL.SSL), 15
SSLEAY_CFLAGS (in module OpenSSL.SSL), 15
SSLEAY_DIR (in module OpenSSL.SSL), 15
SSLEAY_PLATFORM (in module OpenSSL.SSL), 15
SSLEAY_VERSION (in module OpenSSL.SSL), 15
SSLeay_version() (in module OpenSSL.SSL), 15
SSLv23_METHOD (in module OpenSSL.SSL), 14
SSLv2_METHOD (in module OpenSSL.SSL), 14
SSLv3_METHOD (in module OpenSSL.SSL), 14

Index 33

pyOpenSSL Documentation, Release 0.15.1

state_string() (OpenSSL.SSL.Connection method), 22
stateOrProvinceName (OpenSSL.crypto.X509Name at-

tribute), 9
status() (in module OpenSSL.rand), 14
subject_name_hash() (OpenSSL.crypto.X509 method), 9
SysCallError, 16

T
TLSv1_1_METHOD (in module OpenSSL.SSL), 14
TLSv1_2_METHOD (in module OpenSSL.SSL), 14
TLSv1_METHOD (in module OpenSSL.SSL), 14
type() (OpenSSL.crypto.PKey method), 11
TYPE_DSA (in module OpenSSL.crypto), 6
type_is_data() (OpenSSL.crypto.PKCS7 method), 11
type_is_enveloped() (OpenSSL.crypto.PKCS7 method),

11
type_is_signed() (OpenSSL.crypto.PKCS7 method), 11
type_is_signedAndEnveloped()

(OpenSSL.crypto.PKCS7 method), 11
TYPE_RSA (in module OpenSSL.crypto), 6

U
use_certificate() (OpenSSL.SSL.Context method), 18
use_certificate_chain_file() (OpenSSL.SSL.Context

method), 19
use_certificate_file() (OpenSSL.SSL.Context method), 19
use_privatekey() (OpenSSL.SSL.Context method), 19
use_privatekey_file() (OpenSSL.SSL.Context method),

19

V
verify() (in module OpenSSL.crypto), 7
verify() (OpenSSL.crypto.NetscapeSPKI method), 12
verify() (OpenSSL.crypto.X509Req method), 10
verify_certificate() (OpenSSL.crypto.X509StoreContext

method), 10
VERIFY_FAIL_IF_NO_PEER_CERT (in module

OpenSSL.SSL), 14
VERIFY_NONE (in module OpenSSL.SSL), 14
VERIFY_PEER (in module OpenSSL.SSL), 14

W
want_read() (OpenSSL.SSL.Connection method), 22
want_write() (OpenSSL.SSL.Connection method), 22
WantReadError, 16
WantWriteError, 16
WantX509LookupError, 16
write_file() (in module OpenSSL.rand), 14

X
X509 (class in OpenSSL.crypto), 5
X509Extension (class in OpenSSL.crypto), 6
X509ExtensionType (in module OpenSSL.crypto), 5

X509Name (class in OpenSSL.crypto), 5
X509NameType (in module OpenSSL.crypto), 5
X509Req (class in OpenSSL.crypto), 5
X509ReqType (in module OpenSSL.crypto), 5
X509StoreContext (in module OpenSSL.crypto), 5
X509StoreType (in module OpenSSL.crypto), 5
X509Type (in module OpenSSL.crypto), 5

Z
ZeroReturnError, 16

34 Index

	Introduction
	OpenSSL — Python interface to OpenSSL
	crypto — Generic cryptographic module
	rand — An interface to the OpenSSL pseudo random number generator
	SSL — An interface to the SSL-specific parts of OpenSSL

	Internals
	Exceptions
	Callbacks
	Accessing Socket Methods

	Indices and tables
	Python Module Index

