
pynsq Documentation
Release 0.7.0

Matt Reiferson and Jehiah Czebotar

December 07, 2016

Contents

1 Reader – high-level consumer 3

2 Writer – high-level producer 7

3 AsyncConn – a connection to nsqd 9

4 Message – an NSQ message 11

5 LegacyReader – backwards compatible Reader 13

6 Indices and tables 15

i

ii

pynsq Documentation, Release 0.7.0

The official Python client library for NSQ

It provides high-level nsq.Reader and nsq.Writer classes for building consumers and producers and two low-
level modules for both sync and async communication over the NSQ Protocol (if you wanted to write your own
high-level functionality).

The async module is built on top of the Tornado IOLoop and as such requires tornado to be installed.

Contents:

Contents 1

https://github.com/nsqio/nsq
https://github.com/nsqio/nsq/blob/master/docs/protocol.md
http://tornadoweb.org

pynsq Documentation, Release 0.7.0

2 Contents

CHAPTER 1

Reader – high-level consumer

class nsq.Reader(topic, channel, message_handler=None, name=None, nsqd_tcp_addresses=None,
lookupd_http_addresses=None, max_tries=5, max_in_flight=1,
lookupd_poll_interval=60, low_rdy_idle_timeout=10, max_backoff_duration=128,
lookupd_poll_jitter=0.3, lookupd_connect_timeout=1, lookupd_request_timeout=2,
**kwargs)

Reader provides high-level functionality for building robust NSQ consumers in Python on top of the async
module.

Reader receives messages over the specified topic/channel and calls message_handler for each mes-
sage (up to max_tries).

Multiple readers can be instantiated in a single process (to consume from multiple topics/channels at once).

Supports various hooks to modify behavior when heartbeats are received, to temporarily disable the reader, and
pre-process/validate messages.

When supplied a list of nsqlookupd addresses, it will periodically poll those addresses to discover new
producers of the specified topic.

It maintains a sufficient RDY count based on the # of producers and your configured max_in_flight.

Handlers should be defined as shown in the examples below. The handler receives a nsq.Message
object that has instance methods nsq.Message.finish(), nsq.Message.requeue(), and
nsq.Message.touch() to respond to nsqd.

When messages are not responded to explicitly, it is responsible for sending FIN or REQ commands based on re-
turn value of message_handler. When re-queueing, it will backoff from processing additional messages for
an increasing delay (calculated exponentially based on consecutive failures up to max_backoff_duration).

Synchronous example:

import nsq

def handler(message):
print message
return True

r = nsq.Reader(message_handler=handler,
lookupd_http_addresses=['http://127.0.0.1:4161'],
topic='nsq_reader', channel='asdf', lookupd_poll_interval=15)

nsq.run()

Asynchronous example:

3

pynsq Documentation, Release 0.7.0

import nsq

buf = []

def process_message(message):
global buf
message.enable_async()
cache the message for later processing
buf.append(message)
if len(buf) >= 3:

for msg in buf:
print msg
msg.finish()

buf = []
else:

print 'deferring processing'

r = nsq.Reader(message_handler=process_message,
lookupd_http_addresses=['http://127.0.0.1:4161'],
topic='nsq_reader', channel='async', max_in_flight=9)

nsq.run()

Parameters

• message_handler – the callable that will be executed for each message received

• topic – specifies the desired NSQ topic

• channel – specifies the desired NSQ channel

• name – a string that is used for logging messages (defaults to ‘topic:channel’)

• nsqd_tcp_addresses – a sequence of string addresses of the nsqd instances this reader
should connect to

• lookupd_http_addresses – a sequence of string addresses of the nsqlookupd in-
stances this reader should query for producers of the specified topic

• max_tries – the maximum number of attempts the reader will make to process a message
after which messages will be automatically discarded

• max_in_flight – the maximum number of messages this reader will pipeline for pro-
cessing. this value will be divided evenly amongst the configured/discovered nsqd producers

• lookupd_poll_interval – the amount of time in seconds between querying all of
the supplied nsqlookupd instances. a random amount of time based on thie value will be
initially introduced in order to add jitter when multiple readers are running

• lookupd_poll_jitter – The maximum fractional amount of jitter to add to the
lookupd pool loop. This helps evenly distribute requests even if multiple consumers restart
at the same time.

• lookupd_connect_timeout – the amount of time in seconds to wait for a connection
to nsqlookupd to be established

• lookupd_request_timeout – the amount of time in seconds to wait for a request to
nsqlookupd to complete.

• low_rdy_idle_timeout – the amount of time in seconds to wait for a message from
a producer when in a state where RDY counts are re-distributed (ie. max_in_flight <
num_producers)

4 Chapter 1. Reader – high-level consumer

pynsq Documentation, Release 0.7.0

• max_backoff_duration – the maximum time we will allow a backoff state to last in
seconds

• **kwargs – passed to nsq.AsyncConn initialization

close()
Closes all connections stops all periodic callbacks

connect_to_nsqd(host, port)
Adds a connection to nsqd at the specified address.

Parameters

• host – the address to connect to

• port – the port to connect to

classmethod disabled()
Called as part of RDY handling to identify whether this Reader has been disabled

This is useful to subclass and override to examine a file on disk or a key in cache to identify if this reader
should pause execution (during a deploy, etc.).

Note: deprecated. Use set_max_in_flight(0)

giving_up(message)
Called when a message has been received where msg.attempts > max_tries

This is useful to subclass and override to perform a task (such as writing to disk, etc.)

Parameters message – the nsq.Message received

heartbeat(conn)
Called whenever a heartbeat has been received

This is useful to subclass and override to perform an action based on liveness (for monitoring, etc.)

Parameters conn – the nsq.AsyncConn over which the heartbeat was received

is_starved()
Used to identify when buffered messages should be processed and responded to.

When max_in_flight > 1 and you’re batching messages together to perform work is isn’t possible to
just compare the len of your list of buffered messages against your configured max_in_flight (because
max_in_flight may not be evenly divisible by the number of producers you’re connected to, ie. you might
never get that many messages... it’s a max).

Example:

def message_handler(self, nsq_msg, reader):
buffer messages
if reader.is_starved():

perform work

reader = nsq.Reader(...)
reader.set_message_handler(functools.partial(message_handler, reader=reader))
nsq.run()

process_message(message)
Called when a message is received in order to execute the configured message_handler

This is useful to subclass and override if you want to change how your message handlers are called.

Parameters message – the nsq.Message received

5

pynsq Documentation, Release 0.7.0

query_lookupd()
Trigger a query of the configured nsq_lookupd_http_addresses.

set_max_in_flight(max_in_flight)
dynamically adjust the reader max_in_flight count. Set to 0 to immediately disable a Reader

set_message_handler(message_handler)
Assigns the callback method to be executed for each message received

Parameters message_handler – a callable that takes a single argument

nsq.run()
Starts any instantiated nsq.Reader or nsq.Writer

6 Chapter 1. Reader – high-level consumer

CHAPTER 2

Writer – high-level producer

class nsq.Writer(nsqd_tcp_addresses, reconnect_interval=15.0, name=None, **kwargs)
A high-level producer class built on top of the Tornado IOLoop supporting async publishing (PUB & MPUB &
DPUB) of messages to nsqd over the TCP protocol.

Example publishing a message repeatedly using a Tornado IOLoop periodic callback:

import nsq
import tornado.ioloop
import time

def pub_message():
writer.pub('test', time.strftime('%H:%M:%S'), finish_pub)

def finish_pub(conn, data):
print(data)

writer = nsq.Writer(['127.0.0.1:4150'])
tornado.ioloop.PeriodicCallback(pub_message, 1000).start()
nsq.run()

Example publshing a message from a Tornado HTTP request handler:

import functools
import tornado.httpserver
import tornado.ioloop
import tornado.options
import tornado.web
from nsq import Writer, Error
from tornado.options import define, options

class MainHandler(tornado.web.RequestHandler):
@property
def nsq(self):

return self.application.nsq

def get(self):
topic = 'log'
msg = 'Hello world'
msg_cn = 'Hello '

self.nsq.pub(topic, msg) # pub
self.nsq.mpub(topic, [msg, msg_cn]) # mpub
self.nsq.dpub(topic, 60, msg) # dpub

7

http://tornadoweb.org

pynsq Documentation, Release 0.7.0

customize callback
callback = functools.partial(self.finish_pub, topic=topic, msg=msg)
self.nsq.pub(topic, msg, callback=callback)

self.write(msg)

def finish_pub(self, conn, data, topic, msg):
if isinstance(data, Error):

try to re-pub message again if pub failed
self.nsq.pub(topic, msg)

class Application(tornado.web.Application):
def __init__(self, handlers, **settings):

self.nsq = Writer(['127.0.0.1:4150'])
super(Application, self).__init__(handlers, **settings)

Parameters

• nsqd_tcp_addresses – a sequence with elements of the form ‘address:port’ corre-
sponding to the nsqd instances this writer should publish to

• name – a string that is used for logging messages (defaults to first nsqd address)

• **kwargs – passed to nsq.AsyncConn initialization

heartbeat(conn)
Called whenever a heartbeat has been received

This is useful to subclass and override to perform an action based on liveness (for monitoring, etc.)

Parameters conn – the nsq.AsyncConn over which the heartbeat was received

nsq.run()
Starts any instantiated nsq.Reader or nsq.Writer

8 Chapter 2. Writer – high-level producer

CHAPTER 3

AsyncConn – a connection to nsqd

class nsq.AsyncConn(host, port, timeout=1.0, heartbeat_interval=30, requeue_delay=90,
tls_v1=False, tls_options=None, snappy=False, deflate=False, deflate_level=6,
user_agent=u’pynsq/0.7.0’, output_buffer_size=16384, output_buffer_timeout=250,
sample_rate=0, io_loop=None, auth_secret=None, msg_timeout=None)

Low level object representing a TCP connection to nsqd.

When a message on this connection is requeued and the requeue delay has not been specified, it calculates the
delay automatically by an increasing multiple of requeue_delay.

Generates the following events that can be listened to with nsq.AsyncConn.on():

•connect

•close

•error

•identify

•identify_response

•auth

•auth_response

•heartbeat

•ready

•message

•response

•backoff

•resume

Parameters

• host – the host to connect to

• port – the post to connect to

• timeout – the timeout for read/write operations (in seconds)

• heartbeat_interval – the amount of time (in seconds) to negotiate with the con-
nected producers to send heartbeats (requires nsqd 0.2.19+)

9

pynsq Documentation, Release 0.7.0

• requeue_delay – the base multiple used when calculating requeue delay (multiplied by
of attempts)

• tls_v1 – enable TLS v1 encryption (requires nsqd 0.2.22+)

• tls_options – dictionary of options to pass to ssl.wrap_socket() as **kwargs

• snappy – enable Snappy stream compression (requires nsqd 0.2.23+)

• deflate – enable deflate stream compression (requires nsqd 0.2.23+)

• deflate_level – configure the deflate compression level for this connection (requires
nsqd 0.2.23+)

• output_buffer_size – size of the buffer (in bytes) used by nsqd for buffering writes
to this connection

• output_buffer_timeout – timeout (in ms) used by nsqd before flushing buffered
writes (set to 0 to disable). Warning: configuring clients with an extremely low (< 25ms)
output_buffer_timeout has a significant effect on nsqd CPU usage (particularly
with > 50 clients connected).

• sample_rate – take only a sample of the messages being sent to the client. Not setting
this or setting it to 0 will ensure you get all the messages destined for the client. Sample
rate can be greater than 0 or less than 100 and the client will receive that percentage of the
message traffic. (requires nsqd 0.2.25+)

• user_agent – a string identifying the agent for this client in the spirit of HTTP (default:
<client_library_name>/<version>) (requires nsqd 0.2.25+)

• auth_secret – a string passed when using nsq auth (requires nsqd 1.0+)

• msg_timeout – the amount of time (in seconds) that nsqd will wait before considering
messages that have been delivered to this consumer timed out (requires nsqd 0.2.28+)

off(name, callback)
Stop listening for the named event via the specified callback.

Parameters

• name (string) – the name of the event

• callback (callable) – the callback that was originally used

on(name, callback)
Listen for the named event with the specified callback.

Parameters

• name (string) – the name of the event

• callback (callable) – the callback to execute when the event is triggered

trigger(name, *args, **kwargs)
Execute the callbacks for the listeners on the specified event with the supplied arguments.

All extra arguments are passed through to each callback.

Parameters name (string) – the name of the event

10 Chapter 3. AsyncConn – a connection to nsqd

http://docs.python.org/2/library/ssl.html#ssl.wrap_socket

CHAPTER 4

Message – an NSQ message

class nsq.Message(id, body, timestamp, attempts)
A class representing a message received from nsqd.

If you want to perform asynchronous message processing use the nsq.Message.enable_async()
method, pass the message around, and respond using the appropriate instance method.

Generates the following events that can be listened to with nsq.Message.on():

•finish

•requeue

•touch

NOTE: A calling a message’s nsq.Message.finish() and nsq.Message.requeue() methods posi-
tively and negatively impact the backoff state, respectively. However, sending the backoff=False keyword
argument to nsq.Message.requeue() is considered neutral and will not impact backoff state.

Parameters

• id (string) – the ID of the message

• body (string) – the raw message body

• timestamp (int) – the timestamp the message was produced

• attempts (int) – the number of times this message was attempted

Variables

• id – the ID of the message (from the parameter).

• body – the raw message body (from the parameter).

• timestamp – the timestamp the message was produced (from the parameter).

• attempts – the number of times this message was attempted (from the parameter).

enable_async()
Enables asynchronous processing for this message.

nsq.Reader will not automatically respond to the message upon return of message_handler.

finish()
Respond to nsqd that you’ve processed this message successfully (or would like to silently discard it).

has_responded()
Returns whether or not this message has been responded to.

11

pynsq Documentation, Release 0.7.0

is_async()
Returns whether or not asynchronous processing has been enabled.

off(name, callback)
Stop listening for the named event via the specified callback.

Parameters

• name (string) – the name of the event

• callback (callable) – the callback that was originally used

on(name, callback)
Listen for the named event with the specified callback.

Parameters

• name (string) – the name of the event

• callback (callable) – the callback to execute when the event is triggered

requeue(**kwargs)
Respond to nsqd that you’ve failed to process this message successfully (and would like it to be requeued).

Parameters

• backoff (bool) – whether or not nsq.Reader should apply backoff handling

• delay (int) – the amount of time (in seconds) that this message should be delayed if -1
it will be calculated based on # of attempts

touch()
Respond to nsqd that you need more time to process the message.

trigger(name, *args, **kwargs)
Execute the callbacks for the listeners on the specified event with the supplied arguments.

All extra arguments are passed through to each callback.

Parameters name (string) – the name of the event

12 Chapter 4. Message – an NSQ message

CHAPTER 5

LegacyReader – backwards compatible Reader

class nsq.LegacyReader(*args, **kwargs)
In v0.5.0 we dropped support for “tasks” in the nsq.Reader API in favor of a single message handler.

LegacyReader is a backwards compatible API for clients interacting with v0.5.0+ that want to continue
to use “tasks”.

Usage:

from nsq import LegacyReader as Reader

13

pynsq Documentation, Release 0.7.0

14 Chapter 5. LegacyReader – backwards compatible Reader

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

pynsq Documentation, Release 0.7.0

16 Chapter 6. Indices and tables

Index

A
AsyncConn (class in nsq), 9

C
close() (nsq.Reader method), 5
connect_to_nsqd() (nsq.Reader method), 5

D
disabled() (nsq.Reader class method), 5

E
enable_async() (nsq.Message method), 11

F
finish() (nsq.Message method), 11

G
giving_up() (nsq.Reader method), 5

H
has_responded() (nsq.Message method), 11
heartbeat() (nsq.Reader method), 5
heartbeat() (nsq.Writer method), 8

I
is_async() (nsq.Message method), 11
is_starved() (nsq.Reader method), 5

L
LegacyReader (class in nsq), 13

M
Message (class in nsq), 11

O
off() (nsq.AsyncConn method), 10
off() (nsq.Message method), 12
on() (nsq.AsyncConn method), 10
on() (nsq.Message method), 12

P
process_message() (nsq.Reader method), 5

Q
query_lookupd() (nsq.Reader method), 5

R
Reader (class in nsq), 3
requeue() (nsq.Message method), 12

S
set_max_in_flight() (nsq.Reader method), 6
set_message_handler() (nsq.Reader method), 6

T
touch() (nsq.Message method), 12
trigger() (nsq.AsyncConn method), 10
trigger() (nsq.Message method), 12

W
Writer (class in nsq), 7

17

	Reader – high-level consumer
	Writer – high-level producer
	AsyncConn – a connection to nsqd
	Message – an NSQ message
	LegacyReader – backwards compatible Reader
	Indices and tables

