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pynsq

The official Python client library for NSQ [https://github.com/bitly/nsq]

It provides high-level nsq.Reader and nsq.Writer classes for building
consumers and producers and two low-level modules for both sync and async communication over the
NSQ Protocol [https://github.com/bitly/nsq/blob/master/docs/protocol.md] (if you wanted
to write your own high-level functionality).

The async module is built on top of the Tornado IOLoop [http://tornadoweb.org] and as
such requires tornado to be installed.
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Message – an NSQ message


	
class nsq.Message(id, body, timestamp, attempts)

	A class representing a message received from nsqd.

If you want to perform asynchronous message processing use the nsq.Message.enable_async() 
method, pass the message around, and respond using the appropriate instance method.





	Parameters:	
	id (string) – the ID of the message

	body (string) – the raw message body

	timestamp (int) – the timestamp the message was produced

	attempts (int) – the number of times this message was attempted










	
enable_async()

	Enables asynchronous processing for this message.

nsq.Reader will not automatically respond to the message upon return of message_handler.






	
finish()

	Respond to nsqd that you’ve processed this message successfully (or would like
to silently discard it).






	
has_responded()

	Returns whether or not this message has been responded to.






	
is_async()

	Returns whether or not asynchronous processing has been enabled.






	
requeue(**kwargs)

	Respond to nsqd that you’ve failed to process this message successfully (and would
like it to be requeued).





	Parameters:	
	backoff (bool) – whether or not nsq.Reader should apply backoff handling

	delay (int) – the amount of time (in seconds) that this message should be delayed














	
touch()

	Respond to nsqd that you need more time to process the message.
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Consumers


	
nsq.run()

	Starts any instantiated nsq.Reader or nsq.Writer






Reader – high-level consumer


	
class nsq.Reader(topic, channel, message_handler=None, name=None, nsqd_tcp_addresses=None, lookupd_http_addresses=None, max_tries=5, max_in_flight=1, requeue_delay=90, lookupd_poll_interval=60, low_rdy_idle_timeout=10, heartbeat_interval=30, max_backoff_duration=128, lookupd_poll_jitter=0.3, tls_v1=False, tls_options=None)

	Reader provides high-level functionality for building robust NSQ consumers in Python
on top of the async module.

Reader receives messages over the specified topic/channel and calls message_handler 
for each message (up to max_tries).

Multiple readers can be instantiated in a single process (to consume from multiple
topics/channels at once).

Supports various hooks to modify behavior when heartbeats are received, to temporarily
disable the reader, and pre-process/validate messages.

When supplied a list of nsqlookupd addresses, it will periodically poll those
addresses to discover new producers of the specified topic.

It maintains a sufficient RDY count based on the # of producers and your configured
max_in_flight.

Handlers should be defined as shown in the examples below. The handler receives a
nsq.Message object that has instance methods nsq.Message.finish(), 
nsq.Message.requeue(), and nsq.Message.touch() to respond to nsqd.

It is responsible for sending FIN or REQ commands based on return value of 
message_handler. When re-queueing, an increasing delay will be calculated automatically.

Additionally, when message processing fails, it will backoff in increasing multiples of 
requeue_delay between updating of RDY count.

Synchronous example:

import nsq

def handler(message):
    print message
    return True

r = nsq.Reader(message_handler=handler,
        lookupd_http_addresses=['http://127.0.0.1:4161'],
        topic="nsq_reader", channel="asdf", lookupd_poll_interval=15)
nsq.run()





Asynchronous example:

import nsq

buf = []

def process_message(message):
    global buf
    message.enable_async()
    # cache the message for later processing
    buf.append(message)
    if len(buf) >= 3:
        for msg in buf:
            print msg
            msg.finish()
        buf = []
    else:
        print 'deferring processing'

r = nsq.Reader(message_handler=process_message,
        lookupd_http_addresses=['http://127.0.0.1:4161'],
        topic="nsq_reader", channel="async", max_in_flight=9)
nsq.run()









	Parameters:	
	message_handler – the callable that will be executed for each message received

	topic – specifies the desired NSQ topic

	channel – specifies the desired NSQ channel

	name – a string that is used for logging messages (defaults to “topic:channel”)

	nsqd_tcp_addresses – a sequence of string addresses of the nsqd instances this reader
should connect to

	lookupd_http_addresses – a sequence of string addresses of the nsqlookupd instances this
reader should query for producers of the specified topic

	max_tries – the maximum number of attempts the reader will make to process a message after
which messages will be automatically discarded

	max_in_flight – the maximum number of messages this reader will pipeline for processing.
this value will be divided evenly amongst the configured/discovered nsqd producers

	requeue_delay – the base multiple used when re-queueing (multiplied by # of attempts)

	lookupd_poll_interval – the amount of time in seconds between querying all of the supplied
nsqlookupd instances.  a random amount of time based on thie value will be initially
introduced in order to add jitter when multiple readers are running

	low_rdy_idle_timeout – the amount of time in seconds to wait for a message from a producer
when in a state where RDY counts are re-distributed (ie. max_in_flight < num_producers)

	heartbeat_interval – the amount of time in seconds to negotiate with the connected
producers to send heartbeats (requires nsqd 0.2.19+)

	max_backoff_duration – the maximum time we will allow a backoff state to last in seconds

	lookupd_poll_jitter – The maximum fractional amount of jitter to add to the lookupd pool loop.
This helps evenly distribute requests even if multiple consumers restart at the same time.

	tls_v1 – enable TLS v1 encryption (requires nsqd 0.2.22+)

	tls_options – dictionary of options to pass to ssl.wrap_socket() [http://docs.python.org/2/library/ssl.html#ssl.wrap_socket] as **kwargs










	
connect_to_nsqd(host, port)

	Adds a connection to nsqd at the specified address.





	Parameters:	
	host – the address to connect to

	port – the port to connect to














	
disabled()

	Called as part of RDY handling to identify whether this Reader has been disabled

This is useful to subclass and override to examine a file on disk or a key in cache
to identify if this reader should pause execution (during a deploy, etc.).






	
giving_up(message)

	Called when a message has been received where msg.attempts > max_tries

This is useful to subclass and override to perform a task (such as writing to disk, etc.)





	Parameters:	message – the nsq.Message received










	
heartbeat(conn)

	Called whenever a heartbeat has been received

This is useful to subclass and override to perform an action based on liveness (for
monitoring, etc.)





	Parameters:	conn – the nsq.AsyncConn over which the heartbeat was received










	
is_starved()

	Used to identify when buffered messages should be processed and responded to.

When max_in_flight > 1 and you’re batching messages together to perform work
is isn’t possible to just compare the len of your list of buffered messages against
your configured max_in_flight (because max_in_flight may not be evenly divisible
by the number of producers you’re connected to, ie. you might never get that many
messages... it’s a max).

Example:

def message_handler(self, nsq_msg, reader):
    # buffer messages
    if reader.is_starved():
        # perform work

reader = nsq.Reader(...)
reader.set_message_handler(functools.partial(message_handler, reader=reader))
nsq.run()










	
process_message(message)

	Called when a message is received in order to execute the configured message_handler

This is useful to subclass and override if you want to change how your
message handlers are called.





	Parameters:	message – the nsq.Message received










	
query_lookupd()

	Trigger a query of the configured nsq_lookupd_http_addresses.






	
set_message_handler(message_handler)

	Assigns the callback method to be executed for each message received





	Parameters:	message_handler – a callable that takes a single argument
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Producers


	
nsq.run()

	Starts any instantiated nsq.Reader or nsq.Writer






Writer – high-level producer


	
class nsq.Writer(nsqd_tcp_addresses, heartbeat_interval=30)

	A high-level producer class built on top of the Tornado IOLoop [http://tornadoweb.org]
supporting async publishing (PUB & MPUB) of messages to nsqd over the TCP protocol.

Example publishing a message repeatedly using a Tornado IOLoop periodic callback:

import nsq
import tornado.ioloop
import time

def pub_message():
    writer.pub('test', time.strftime('%H:%M:%S'), finish_pub)

def finish_pub(conn, data):
    print data

writer = nsq.Writer(["127.0.0.1:4150"])
tornado.ioloop.PeriodicCallback(pub_message, 1000).start()
nsq.run()





Example publshing a message from a Tornado HTTP request handler:

import functools
import tornado.httpserver
import tornado.ioloop
import tornado.options
import tornado.web
from nsq import Writer, Error
from tornado.options import define, options

class MainHandler(tornado.web.RequestHandler):
    @property
    def nsq(self):
        return self.application.nsq
    
    def get(self):
        topic = "log"
        msg = "Hello world"
        msg_cn = "Hello 世界"
        
        self.nsq.pub(topic, msg) # pub
        self.nsq.mpub(topic, [msg, msg_cn]) # mpub
        
        # customize callback
        callback = functools.partial(self.finish_pub, topic=topic, msg=msg)
        self.nsq.pub(topic, msg, callback=callback)
        
        self.write(msg)
    
    def finish_pub(self, conn, data, topic, msg):
        if isinstance(data, Error):
            # try to re-pub message again if pub failed
            self.nsq.pub(topic, msg)

class Application(tornado.web.Application):
    def __init__(self, handlers, **settings):
        self.nsq = Writer(["127.0.0.1:4150"])
        super(Application, self).__init__(handlers, **settings)









	Parameters:	
	nsqd_tcp_addresses – a sequence of (addresses, port) of the nsqd instances this writer
should publish to

	heartbeat_interval – the interval in seconds to configure heartbeats w/ nsqd
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LegacyReader – backwards compatible Reader


	
class nsq.LegacyReader(*args, **kwargs)

	In v0.5.0 we dropped support for “tasks” in the nsq.Reader API in 
favor of a single message handler.

LegacyReader is a backwards compatible API for clients interacting with v0.5.0+ that
want to continue to use “tasks”.

Usage:

from nsq import LegacyReader as Reader
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