

 Navigation

 	
 index

 	
 next |

 	pynsq 0.5.0 documentation

pynsq

The official Python client library for NSQ [https://github.com/bitly/nsq]

It provides high-level nsq.Reader and nsq.Writer classes for building
consumers and producers and two low-level modules for both sync and async communication over the
NSQ Protocol [https://github.com/bitly/nsq/blob/master/docs/protocol.md] (if you wanted
to write your own high-level functionality).

The async module is built on top of the Tornado IOLoop [http://tornadoweb.org] and as
such requires tornado to be installed.

Contents:

	Message – an NSQ message

	Consumers
	Reader – high-level consumer

	Producers
	Writer – high-level producer

	LegacyReader – backwards compatible Reader

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Matt Reiferson and Jehiah Czebotar.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pynsq 0.5.0 documentation

Message – an NSQ message

	
class nsq.Message(id, body, timestamp, attempts)

	A class representing a message received from nsqd.

If you want to perform asynchronous message processing use the nsq.Message.enable_async()
method, pass the message around, and respond using the appropriate instance method.

	Parameters:	
	id (string) – the ID of the message

	body (string) – the raw message body

	timestamp (int) – the timestamp the message was produced

	attempts (int) – the number of times this message was attempted

	
enable_async()

	Enables asynchronous processing for this message.

nsq.Reader will not automatically respond to the message upon return of message_handler.

	
finish()

	Respond to nsqd that you’ve processed this message successfully (or would like
to silently discard it).

	
has_responded()

	Returns whether or not this message has been responded to.

	
is_async()

	Returns whether or not asynchronous processing has been enabled.

	
requeue(**kwargs)

	Respond to nsqd that you’ve failed to process this message successfully (and would
like it to be requeued).

	Parameters:	
	backoff (bool) – whether or not nsq.Reader should apply backoff handling

	delay (int) – the amount of time (in seconds) that this message should be delayed

	
touch()

	Respond to nsqd that you need more time to process the message.

 Copyright 2013, Matt Reiferson and Jehiah Czebotar.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pynsq 0.5.0 documentation

Consumers

	
nsq.run()

	Starts any instantiated nsq.Reader or nsq.Writer

Reader – high-level consumer

	
class nsq.Reader(topic, channel, message_handler=None, name=None, nsqd_tcp_addresses=None, lookupd_http_addresses=None, max_tries=5, max_in_flight=1, requeue_delay=90, lookupd_poll_interval=60, low_rdy_idle_timeout=10, heartbeat_interval=30, max_backoff_duration=128, lookupd_poll_jitter=0.3, tls_v1=False, tls_options=None)

	Reader provides high-level functionality for building robust NSQ consumers in Python
on top of the async module.

Reader receives messages over the specified topic/channel and calls message_handler
for each message (up to max_tries).

Multiple readers can be instantiated in a single process (to consume from multiple
topics/channels at once).

Supports various hooks to modify behavior when heartbeats are received, to temporarily
disable the reader, and pre-process/validate messages.

When supplied a list of nsqlookupd addresses, it will periodically poll those
addresses to discover new producers of the specified topic.

It maintains a sufficient RDY count based on the # of producers and your configured
max_in_flight.

Handlers should be defined as shown in the examples below. The handler receives a
nsq.Message object that has instance methods nsq.Message.finish(),
nsq.Message.requeue(), and nsq.Message.touch() to respond to nsqd.

It is responsible for sending FIN or REQ commands based on return value of
message_handler. When re-queueing, an increasing delay will be calculated automatically.

Additionally, when message processing fails, it will backoff in increasing multiples of
requeue_delay between updating of RDY count.

Synchronous example:

import nsq

def handler(message):
 print message
 return True

r = nsq.Reader(message_handler=handler,
 lookupd_http_addresses=['http://127.0.0.1:4161'],
 topic="nsq_reader", channel="asdf", lookupd_poll_interval=15)
nsq.run()

Asynchronous example:

import nsq

buf = []

def process_message(message):
 global buf
 message.enable_async()
 # cache the message for later processing
 buf.append(message)
 if len(buf) >= 3:
 for msg in buf:
 print msg
 msg.finish()
 buf = []
 else:
 print 'deferring processing'

r = nsq.Reader(message_handler=process_message,
 lookupd_http_addresses=['http://127.0.0.1:4161'],
 topic="nsq_reader", channel="async", max_in_flight=9)
nsq.run()

	Parameters:	
	message_handler – the callable that will be executed for each message received

	topic – specifies the desired NSQ topic

	channel – specifies the desired NSQ channel

	name – a string that is used for logging messages (defaults to “topic:channel”)

	nsqd_tcp_addresses – a sequence of string addresses of the nsqd instances this reader
should connect to

	lookupd_http_addresses – a sequence of string addresses of the nsqlookupd instances this
reader should query for producers of the specified topic

	max_tries – the maximum number of attempts the reader will make to process a message after
which messages will be automatically discarded

	max_in_flight – the maximum number of messages this reader will pipeline for processing.
this value will be divided evenly amongst the configured/discovered nsqd producers

	requeue_delay – the base multiple used when re-queueing (multiplied by # of attempts)

	lookupd_poll_interval – the amount of time in seconds between querying all of the supplied
nsqlookupd instances. a random amount of time based on thie value will be initially
introduced in order to add jitter when multiple readers are running

	low_rdy_idle_timeout – the amount of time in seconds to wait for a message from a producer
when in a state where RDY counts are re-distributed (ie. max_in_flight < num_producers)

	heartbeat_interval – the amount of time in seconds to negotiate with the connected
producers to send heartbeats (requires nsqd 0.2.19+)

	max_backoff_duration – the maximum time we will allow a backoff state to last in seconds

	lookupd_poll_jitter – The maximum fractional amount of jitter to add to the lookupd pool loop.
This helps evenly distribute requests even if multiple consumers restart at the same time.

	tls_v1 – enable TLS v1 encryption (requires nsqd 0.2.22+)

	tls_options – dictionary of options to pass to ssl.wrap_socket() [http://docs.python.org/2/library/ssl.html#ssl.wrap_socket] as **kwargs

	
connect_to_nsqd(host, port)

	Adds a connection to nsqd at the specified address.

	Parameters:	
	host – the address to connect to

	port – the port to connect to

	
disabled()

	Called as part of RDY handling to identify whether this Reader has been disabled

This is useful to subclass and override to examine a file on disk or a key in cache
to identify if this reader should pause execution (during a deploy, etc.).

	
giving_up(message)

	Called when a message has been received where msg.attempts > max_tries

This is useful to subclass and override to perform a task (such as writing to disk, etc.)

	Parameters:	message – the nsq.Message received

	
heartbeat(conn)

	Called whenever a heartbeat has been received

This is useful to subclass and override to perform an action based on liveness (for
monitoring, etc.)

	Parameters:	conn – the nsq.AsyncConn over which the heartbeat was received

	
is_starved()

	Used to identify when buffered messages should be processed and responded to.

When max_in_flight > 1 and you’re batching messages together to perform work
is isn’t possible to just compare the len of your list of buffered messages against
your configured max_in_flight (because max_in_flight may not be evenly divisible
by the number of producers you’re connected to, ie. you might never get that many
messages... it’s a max).

Example:

def message_handler(self, nsq_msg, reader):
 # buffer messages
 if reader.is_starved():
 # perform work

reader = nsq.Reader(...)
reader.set_message_handler(functools.partial(message_handler, reader=reader))
nsq.run()

	
process_message(message)

	Called when a message is received in order to execute the configured message_handler

This is useful to subclass and override if you want to change how your
message handlers are called.

	Parameters:	message – the nsq.Message received

	
query_lookupd()

	Trigger a query of the configured nsq_lookupd_http_addresses.

	
set_message_handler(message_handler)

	Assigns the callback method to be executed for each message received

	Parameters:	message_handler – a callable that takes a single argument

 Copyright 2013, Matt Reiferson and Jehiah Czebotar.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pynsq 0.5.0 documentation

Producers

	
nsq.run()

	Starts any instantiated nsq.Reader or nsq.Writer

Writer – high-level producer

	
class nsq.Writer(nsqd_tcp_addresses, heartbeat_interval=30)

	A high-level producer class built on top of the Tornado IOLoop [http://tornadoweb.org]
supporting async publishing (PUB & MPUB) of messages to nsqd over the TCP protocol.

Example publishing a message repeatedly using a Tornado IOLoop periodic callback:

import nsq
import tornado.ioloop
import time

def pub_message():
 writer.pub('test', time.strftime('%H:%M:%S'), finish_pub)

def finish_pub(conn, data):
 print data

writer = nsq.Writer(["127.0.0.1:4150"])
tornado.ioloop.PeriodicCallback(pub_message, 1000).start()
nsq.run()

Example publshing a message from a Tornado HTTP request handler:

import functools
import tornado.httpserver
import tornado.ioloop
import tornado.options
import tornado.web
from nsq import Writer, Error
from tornado.options import define, options

class MainHandler(tornado.web.RequestHandler):
 @property
 def nsq(self):
 return self.application.nsq

 def get(self):
 topic = "log"
 msg = "Hello world"
 msg_cn = "Hello 世界"

 self.nsq.pub(topic, msg) # pub
 self.nsq.mpub(topic, [msg, msg_cn]) # mpub

 # customize callback
 callback = functools.partial(self.finish_pub, topic=topic, msg=msg)
 self.nsq.pub(topic, msg, callback=callback)

 self.write(msg)

 def finish_pub(self, conn, data, topic, msg):
 if isinstance(data, Error):
 # try to re-pub message again if pub failed
 self.nsq.pub(topic, msg)

class Application(tornado.web.Application):
 def __init__(self, handlers, **settings):
 self.nsq = Writer(["127.0.0.1:4150"])
 super(Application, self).__init__(handlers, **settings)

	Parameters:	
	nsqd_tcp_addresses – a sequence of (addresses, port) of the nsqd instances this writer
should publish to

	heartbeat_interval – the interval in seconds to configure heartbeats w/ nsqd

 Copyright 2013, Matt Reiferson and Jehiah Czebotar.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	pynsq 0.5.0 documentation

LegacyReader – backwards compatible Reader

	
class nsq.LegacyReader(*args, **kwargs)

	In v0.5.0 we dropped support for “tasks” in the nsq.Reader API in
favor of a single message handler.

LegacyReader is a backwards compatible API for clients interacting with v0.5.0+ that
want to continue to use “tasks”.

Usage:

from nsq import LegacyReader as Reader

 Copyright 2013, Matt Reiferson and Jehiah Czebotar.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	pynsq 0.5.0 documentation

Index

 C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | P
 | Q
 | R
 | S
 | T
 | W

C

 	

 	connect_to_nsqd() (nsq.Reader method)

D

 	

 	disabled() (nsq.Reader method)

E

 	

 	enable_async() (nsq.Message method)

F

 	

 	finish() (nsq.Message method)

G

 	

 	giving_up() (nsq.Reader method)

H

 	

 	has_responded() (nsq.Message method)

 	

 	heartbeat() (nsq.Reader method)

I

 	

 	is_async() (nsq.Message method)

 	

 	is_starved() (nsq.Reader method)

L

 	

 	LegacyReader (class in nsq)

M

 	

 	Message (class in nsq)

P

 	

 	process_message() (nsq.Reader method)

Q

 	

 	query_lookupd() (nsq.Reader method)

R

 	

 	Reader (class in nsq)

 	

 	requeue() (nsq.Message method)

S

 	

 	set_message_handler() (nsq.Reader method)

T

 	

 	touch() (nsq.Message method)

W

 	

 	Writer (class in nsq)

 Copyright 2013, Matt Reiferson and Jehiah Czebotar.
 Created using Sphinx 1.2.2.

 _static/down.png

_static/comment-close.png

_static/minus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		pynsq 0.5.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Matt Reiferson and Jehiah Czebotar.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/up.png

_static/plus.png

_static/up-pressed.png

_static/down-pressed.png

