

Welcome to PyNLO’s documentation!

Contents:

	pyNLO: Nonlinear optics modeling for Python
	Introduction

	Installation

	Documentation

	Example of use

	Contributing

	License

	References

	General information on PyNLO
	Package Organization

	References

	PyNLO package
	pynlo.light

	pynlo.interactions

	pynlo.media

	pynlo.util.ode_solve

	pynlo.devices

	Examples
	Supercontinuum generation example

Indices and tables

	Index

	Module Index

	Search Page

pyNLO: Nonlinear optics modeling for Python

This README is best viewed at http://pynlo.readthedocs.io/en/latest/readme_link.html

Complete documentation is available at http://pynlo.readthedocs.io/

[image: PyNLO]

Introduction

PyNLO provides an easy-to-use, object-oriented set of tools for modeling the nonlinear interaction of light with materials. It provides many functionalities for representing pulses of light, beams of light, and nonlinear materials, such as crystals and fibers. Also, it features methods for simulating both three-wave-mixing processes (such as DFG), as well as four-wave-mixing processes such as supercontinuum generation.

	Features:

	
	A solver for the propagation of light through a Chi-3 material, useful for simulation pulse compression and supercontinuum generation in an optical fiber. This solver is highly efficient, thanks to an adaptive-step-size implementation of the “Fourth-order Runge-Kutta in the Interaction Picture ” (RK4IP) method of Hult (2007) [https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-25-12-3770].

	A solver for simulating Chi-2 processes such as difference frequency generation.

	A flexible object-oriented system for treating laser pulses, beams, fibers, and crystals.

	…and much more!

Installation

PyNLO requires Python 2, and is tested on Python 2.7 (Python 3 compatibility is a work-in-progress). If you don’t already have Python, we recommend an “all in one” Python package such as the Anaconda Python Distribution [https://www.continuum.io/downloads], which is available for free.

With pip

The latest “official release” can be installed from PyPi with

pip install pynlo

The up-to-the-minute latest version can be installed from GitHub with

pip install git+https://github.com/pyNLO/PyNLO.git

With setuptools

Alternatively, you can download the latest version from the PyNLO Github site [https://github.com/pyNLO/PyNLO] (look for the “download zip” button), cd to the PyNLO directory, and use

python setup.py install

Or, if you wish to edit the PyNLO source code without re-installing each time

python setup.py develop

Documentation

The complete documentation for PyNLO is availabe at https://pynlo.readthedocs.org.

Example of use

The following example demonstrates how to use PyNLO to simulate the propagation of a 50 fs pulse through a nonlinear fiber using the split-step Fourier model (SSFM). Note that the actual propagation of the pulse takes up just a few lines of code. Most of the other code is simply plotting the results.

This example is contained in examples/simple_SSFM.py

import numpy as np
import matplotlib.pyplot as plt
import pynlo

FWHM = 0.050 # pulse duration (ps)
pulseWL = 1550 # pulse central wavelength (nm)
EPP = 50e-12 # Energy per pulse (J)
GDD = 0.0 # Group delay dispersion (ps^2)
TOD = 0.0 # Third order dispersion (ps^3)

Window = 10.0 # simulation window (ps)
Steps = 100 # simulation steps
Points = 2**13 # simulation points

beta2 = -120 # (ps^2/km)
beta3 = 0.00 # (ps^3/km)
beta4 = 0.005 # (ps^4/km)

Length = 20 # length in mm

Alpha = 0.0 # attentuation coefficient (dB/cm)
Gamma = 1000 # Gamma (1/(W km)

fibWL = pulseWL # Center WL of fiber (nm)

Raman = True # Enable Raman effect?
Steep = True # Enable self steepening?

alpha = np.log((10**(Alpha * 0.1))) * 100 # convert from dB/cm to 1/m

set up plots for the results:
fig = plt.figure(figsize=(8,8))
ax0 = plt.subplot2grid((3,2), (0, 0), rowspan=1)
ax1 = plt.subplot2grid((3,2), (0, 1), rowspan=1)
ax2 = plt.subplot2grid((3,2), (1, 0), rowspan=2, sharex=ax0)
ax3 = plt.subplot2grid((3,2), (1, 1), rowspan=2, sharex=ax1)

######## This is where the PyNLO magic happens! ############################

create the pulse!
pulse = pynlo.light.DerivedPulses.SechPulse(power = 1, # Power will be scaled by set_epp
 T0_ps = FWHM/1.76,
 center_wavelength_nm = pulseWL,
 time_window_ps = Window,
 GDD=GDD, TOD=TOD,
 NPTS = Points,
 frep_MHz = 100,
 power_is_avg = False)
set the pulse energy!
pulse.set_epp(EPP)

create the fiber!
fiber1 = pynlo.media.fibers.fiber.FiberInstance()
fiber1.generate_fiber(Length * 1e-3, center_wl_nm=fibWL, betas=(beta2, beta3, beta4),
 gamma_W_m=Gamma * 1e-3, gvd_units='ps^n/km', gain=-alpha)

Propagation
evol = pynlo.interactions.FourWaveMixing.SSFM.SSFM(local_error=0.005, USE_SIMPLE_RAMAN=True,
 disable_Raman = np.logical_not(Raman),
 disable_self_steepening = np.logical_not(Steep))

y, AW, AT, pulse_out = evol.propagate(pulse_in=pulse, fiber=fiber1, n_steps=Steps)

########## That's it! Physics complete. Just plotting commands from here! ################

F = pulse.F_THz # Frequency grid of pulse (THz)

def dB(num):
 return 10 * np.log10(np.abs(num)**2)

zW = dB(np.transpose(AW)[:, (F > 0)])
zT = dB(np.transpose(AT))

y_mm = y * 1e3 # convert distance to mm

ax0.plot(pulse_out.F_THz, dB(pulse_out.AW), color = 'r')
ax1.plot(pulse_out.T_ps, dB(pulse_out.AT), color = 'r')

ax0.plot(pulse.F_THz, dB(pulse.AW), color = 'b')
ax1.plot(pulse.T_ps, dB(pulse.AT), color = 'b')

extent = (np.min(F[F > 0]), np.max(F[F > 0]), 0, Length)
ax2.imshow(zW, extent=extent,
 vmin=np.max(zW) - 40.0, vmax=np.max(zW),
 aspect='auto', origin='lower')

extent = (np.min(pulse.T_ps), np.max(pulse.T_ps), np.min(y_mm), Length)
ax3.imshow(zT, extent=extent,
 vmin=np.max(zT) - 40.0, vmax=np.max(zT),
 aspect='auto', origin='lower')

ax0.set_ylabel('Intensity (dB)')
ax0.set_ylim(- 80, 0)
ax1.set_ylim(- 40, 40)

ax2.set_ylabel('Propagation distance (mm)')
ax2.set_xlabel('Frequency (THz)')
ax2.set_xlim(0,400)

ax3.set_xlabel('Time (ps)')

plt.show()

Here are the results:

[image: results]

Contributing

We welcome suggestions for improvement, questions, comments, etc. The best way to to open a new issue here: https://github.com/pyNLO/PyNLO/issues/.

License

PyNLO is licensed under the GPLv3 license [http://choosealicense.com/licenses/gpl-3.0/]. This means that you are free to use PyNLO for any open-source project. Of course, PyNLO is provided “as is” with absolutely no warrenty.

References

[1] Johan Hult, “A Fourth-Order Runge–Kutta in the Interaction Picture Method for Simulating Supercontinuum Generation in Optical Fibers,” J. Lightwave Technol. 25, 3770-3775 (2007) https://www.osapublishing.org/jlt/abstract.cfm?uri=jlt-25-12-3770

General information on PyNLO

Package Organization

In pyNLO, object-oriented programming is used to mimic the physics of nonlinear interactions. Whenever possible, each physical entity with intrinic properties – for example an optical pulse or nonlinear fiber – is mapped to a single Python class. These classes keep track of the objects’ properties, calculate interactions between them and other objects, and provide simple calculator-type helper functions.

References

PyNLO package

pynlo.light

The light module contains modules to model light pulses.

pynlo.light.PulseBase

	
class pynlo.light.PulseBase.Pulse(frep_MHz=None, n=None)

	Class which carried all information about the light field. This class
is a base upon which various cases are built (eg analytic pulses,
CW fields, or pulses generated from experimental data.)

	
AT

	Property – time-domain electric field grid

	Returns

	AT – Complex electric field in time domain.

	Return type

	ndarray, shape NPTS

	
AW

	Property – frequency-domain electric field grid

	Returns

	AW – Complex electric field in frequency domain.

	Return type

	ndarray, shape NPTS

	
F_THz

	Property – frequency grid

	Returns

	F_THz – Frequency grid corresponding to AW [THz]

	Return type

	ndarray, shape NPTS

	
F_mks

	Property – frequency grid

	Returns

	F_mks – Frequency grid corresponding to AW [Hz]

	Return type

	ndarray, shape NPTS

	
T_mks

	Property – time grid

	Returns

	T_mks – Time grid corresponding to AT [s]

	Return type

	ndarray, shape NPTS

	
T_ps

	Property – time grid

	Returns

	T_ps – Time grid corresponding to AT [ps]

	Return type

	ndarray, shape NPTS

	
V_THz

	Property – relative angular frequency grid

	Returns

	V_THz – Relative angular frequency grid corresponding to AW [THz]

	Return type

	ndarray, shape NPTS

	
V_mks

	Property – relative angular frequency grid

	Returns

	V_mks – Relative angular frequency grid corresponding to AW [Hz]

	Return type

	ndarray, shape NPTS

	
W_THz

	Property – angular frequency grid

	Returns

	W_THz – Angular frequency grid corresponding to AW [THz]

	Return type

	ndarray, shape NPTS

	
W_mks

	Property – angular frequency grid

	Returns

	W_mks – Angular frequency grid corresponding to AW [Hz]

	Return type

	ndarray, shape NPTS

	
add_noise(noise_type='sqrt_N_freq')

	
Adds random intensity and phase noise to a pulse.

	Parameters

	noise_type (string) – The method used to add noise. The options are:

sqrt_N_freq : which adds noise to each bin in the frequency domain,
where the sigma is proportional to sqrt(N), and where N
is the number of photons in each frequency bin.

one_photon_freq` : which adds one photon of noise to each frequency bin, regardless of
the previous value of the electric field in that bin.

	Returns

	

	Return type

	nothing

	
add_time_offset(offset_ps)

	Shift field in time domain by offset_ps picoseconds. A positive offset
moves the pulse forward in time.

	
calc_epp()

	Calculate and return energy per pulse via numerical integration
of \(A^2 dt\)

	Returns

	x – Pulse energy [J]

	Return type

	float

	
calculate_intensity_autocorrelation()

	Calculates and returns the intensity autocorrelation,
\(\int P(t)P(t+\tau) dt\)

	Returns

	x – Intensity autocorrelation. The grid is the same as the pulse class’
time grid.

	Return type

	ndarray, shape N_pts

	
center_frequency_THz

	Property – center frequency

	Returns

	center_frequency_THz – Frequency of center point in AW grid [THz]

	Return type

	float

	
center_frequency_mks

	Property – center frequency

	Returns

	center_frequency_mks – Frequency of center point in AW grid [Hz]

	Return type

	float

	
center_wavelength_mks

	Property – center wavelength

	Returns

	center_wavelength_mks – Wavelength of center point in AW grid [m]

	Return type

	float

	
center_wavelength_nm

	Property – center wavelength

	Returns

	center_wavelength_nm – Wavelength of center point in AW grid [nm]

	Return type

	float

	
chirp_pulse_W(GDD, TOD=0, FOD=0.0, w0_THz=None)

	Alter the phase of the pulse

Apply the dispersion coefficients \(\beta_2, \beta_3, \beta_4\)
expanded around frequency \(\omega_0\).

	Parameters

	
	GDD (float) – Group delay dispersion (\(\beta_2\)) [ps^2]

	TOD (float, optional) – Group delay dispersion (\(\beta_3\)) [ps^3], defaults to 0.

	FOD (float, optional) – Group delay dispersion (\(\beta_4\)) [ps^4], defaults to 0.

	w0_THz (float, optional) – Center frequency of dispersion expansion, defaults to grid center frequency.

Notes

The convention used for dispersion is

\[E_{new} (\omega) = \exp\left(i \left(
\frac{1}{2} GDD\, \omega^2 +
\frac{1}{6}\, TOD \omega^3 +
\frac{1}{24} FOD\, \omega^4 \right)\right)
E(\omega)\]

	
clone_pulse(p)

	Copy all parameters of pulse_instance into this one

	
create_cloned_pulse()

	Create and return new pulse instance identical to this instance.

	
create_subset_pulse(center_wl_nm, NPTS)

	Create new pulse with smaller frequency span, centered at closest
grid point to center_wl_nm, with NPTS grid points and
frequency-grid values from this pulse.

	
dF_THz

	Property – frequency grid spacing

	Returns

	dF_ps – Frequency grid spacing [ps]

	Return type

	float

	
dF_mks

	Property – frequency grid spacing

	Returns

	dF_mks – Frequency grid spacing [s]

	Return type

	float

	
dT_mks

	Property – time grid spacing

	Returns

	dT_mks – Time grid spacing [s]

	Return type

	float

	
dT_ps

	Property – time grid spacing

	Returns

	dT_ps – Time grid spacing [ps]

	Return type

	float

	
expand_time_window(factor_log2, new_pts_loc='before')

	Expand the time window by zero padding.
:param factor_log2: Factor by which to expand the time window (1 = 2x, 2 = 4x, etc.)
:type factor_log2: integer
:param new_pts_loc: Where to put the new points. Valid options are “before”, “even”,

“after

	
frep_MHz

	Property – Repetition rate. Used for calculating average beam power.

	Returns

	frep_MHz – Pulse repetition frequency [MHz]

	Return type

	float

	
frep_mks

	Property – Repetition rate. Used for calculating average beam power.

	Returns

	frep_mks – Pulse repetition frequency [Hz]

	Return type

	float

	
interpolate_to_new_center_wl(new_wavelength_nm)

	Change grids by interpolating the electric field onto a new
frequency grid, defined by the new center wavelength and the current
pulse parameters. This is useful when grid overlaps must be avoided,
for example in difference or sum frequency generation.

	Parameters

	new_wavelength_nm (float) – New center wavelength [nm]

	Returns

	

	Return type

	Pulse instance

	
load_consts()

	Load constants, needed after unpickling in some cases

	
rotate_spectrum_to_new_center_wl(new_center_wl_nm)

	Change center wavelength of pulse by rotating the electric field in
the frequency domain. Designed for creating multiple pulses with same
gridding but of different colors. Rotations is by integer and to
the closest omega.

	
set_AT(AT_new)

	Set the value of the time-domain electric field.

	Parameters

	AW_new (array_like) – New electric field values.

	
set_AW(AW_new)

	Set the value of the frequency-domain electric field.

	Parameters

	AW_new (array_like) – New electric field values.

	
set_NPTS(NPTS)

	Set the grid size.

The actual grid arrays are not altered
automatically to reflect a change.

	Parameters

	NPTS (int) – Number of points in grid

	
set_center_wavelength_m(wl)

	Set the center wavelength of the grid in units of meters.

	Parameters

	wl (float) – New center wavelength [m]

	
set_center_wavelength_nm(wl)

	Set the center wavelength of the grid in units of nanometers.

	Parameters

	wl (float) – New center wavelength [nm]

	
set_epp(desired_epp_J)

	Set the energy per pulse (in Joules)

	Parameters

	desired_epp_J (float) – the value to set the pulse energy [J]

	Returns

	

	Return type

	nothing

	
set_frep_MHz(fr_MHz)

	Set the pulse repetition frequency.

This parameter used internally to convert between pulse energy and
average power.

	Parameters

	fr_MHz (float) – New repetition frequency [MHz]

	
set_frequency_window_THz(DF)

	Set the total frequency window of the grid.

This sets the grid dF, and
implicitly changes the temporal span (~1/dF).

	Parameters

	DF (float) – New grid time span [THz]

	
set_frequency_window_mks(DF)

	Set the total frequency window of the grid.

This sets the grid dF, and
implicitly changes the temporal span (~1/dF).

	Parameters

	DF (float) – New grid time span [Hz]

	
set_time_window_ps(T)

	Set the total time window of the grid.

This sets the grid dT, and
implicitly changes the frequency span (~1/dT).

	Parameters

	T (float) – New grid time span [ps]

	
set_time_window_s(T)

	Set the total time window of the grid.

This sets the grid dT, and
implicitly changes the frequency span (~1/dT).

	Parameters

	T (float) – New grid time span [s]

	
spectrogram(gate_type='xfrog', gate_function_width_ps=0.02, time_steps=500)

	This calculates a spectrogram, essentially the spectrally-resolved cross-correlation of the pulse.

Generally, the gate_type should set to ‘xfrog’, which performs a cross-correlation similar to the XFROG
experiment, where the pulse is probed by a short, reference pulse. The temporal width of this pulse
is set by the “gate_function_width_ps” parameter.

See Dudley Fig. 10, on p1153 for a description
of the spectrogram in the context of supercontinuum generaiton.
(http://dx.doi.org/10.1103/RevModPhys.78.1135)

Alternatively, the gate_type can be set to ‘frog’, which simulates a SHG-FROG measurement,
where the pulse is probed with a copy of itself, in an autocorrelation fashion.
Interpreting this FROG spectrogram is less intuitive, so this is mainly useful for comparison
with experimentally recorded FROG spectra (which are often easier to acquire than XFROG measurements.)

A nice discussion of various FROG “species” is available here: http://frog.gatech.edu/tutorial.html

	Parameters

	
	gate_type (string) – Determines the type of gate function. Can be either ‘xfrog’ or ‘frog’.
Should likely be set to ‘xfrog’ unless comparing with experiments.
See discussion above. Default is ‘xfrog’.

	gate_function_width (float) – the width of the gate function in seconds. Only applies when gate_type=’xfrog’.
A shorter duration provides better temporal resolution, but worse spectral resolution,
so this is a trade-off. Typically, 0.01 to 0.1 ps works well.

	time_steps (int) – the number of delay time steps to use. More steps makes a higher
resolution spectrogram, but takes longer to process and plot.
Default is 500

	Returns

	
	DELAYS (2D numpy meshgrid) – the columns have increasing delay (in ps)

	FREQS (2D numpy meshgrid) – the rows have increasing frequency (in THz)

	spectrogram (2D numpy array) – Following the convention of Dudley, the frequency runs along the y-axis
(axis 0) and the time runs alon the x-axis (axis 1)

Example

The spectrogram can be visualized using something like this:

import matplotlib.pyplot as plt
plt.figure()
DELAYS, FREQS, extent, spectrogram = pulse.spectrogram()
plt.imshow(spectrogram, aspect='auto', extent=extent)
plt.xlabel('Time (ps)')
plt.ylabel('Frequency (THz)')
plt.tight_layout

plt.show()

output:

[image: example_result]

	
time_window_mks

	Property – time grid span

	Returns

	time_window_mks – Time grid span [ps]

	Return type

	float

	
time_window_ps

	Property – time grid span

	Returns

	time_window_ps – Time grid span [ps]

	Return type

	float

	
wl_mks

	Property – Wavelength grid

	Returns

	wl_mks – Wavelength grid corresponding to AW [m]

	Return type

	ndarray, shape NPTS

	
wl_nm

	Property – Wavelength grid

	Returns

	wl_nm – Wavelength grid corresponding to AW [nm]

	Return type

	ndarray, shape NPTS

	
write_frog(fileloc='broadened_er_pulse.dat', flip_phase=True)

	Save pulse in FROG data format. Grid is centered at wavelength
center_wavelength (nm), but pulse properties are loaded from data
file. If flip_phase is true, all phase is multiplied by -1 [useful
for correcting direction of time ambiguity]. time_window (ps) sets
temporal grid size.

power sets the pulse energy:
if power_is_epp is True then the number is pulse energy [J]
if power_is_epp is False then the power is average power [W], and
is multiplied by frep to calculate pulse energy

pynlo.light.DerivedPulses

	
class pynlo.light.DerivedPulses.SechPulse(power, T0_ps, center_wavelength_nm, time_window_ps=10.0, frep_MHz=100.0, NPTS=1024, GDD=0, TOD=0, chirp2=0, chirp3=0, power_is_avg=False)

	
	
__init__(power, T0_ps, center_wavelength_nm, time_window_ps=10.0, frep_MHz=100.0, NPTS=1024, GDD=0, TOD=0, chirp2=0, chirp3=0, power_is_avg=False)

	
	Generate a squared-hyperbolic secant “sech” pulse

	A(t) = sqrt(P0 [W]) * sech(t/T0 [ps])

centered at wavelength center_wavelength_nm (nm).
time_window (ps) sets temporal grid size.

Optional GDD and TOD are in ps^2 and ps^3.

	Note: The full-width-at-half-maximum (FWHM) is given by

	T0_ps * 1.76

	
class pynlo.light.DerivedPulses.GaussianPulse(power, T0_ps, center_wavelength_nm, time_window_ps=10.0, frep_MHz=100.0, NPTS=1024, GDD=0, TOD=0, chirp2=0, chirp3=0, power_is_avg=False)

	Bases: pynlo.light.PulseBase.Pulse

	
__init__(power, T0_ps, center_wavelength_nm, time_window_ps=10.0, frep_MHz=100.0, NPTS=1024, GDD=0, TOD=0, chirp2=0, chirp3=0, power_is_avg=False)

	
	Generate Gaussian pulse A(t) = sqrt(peak_power[W]) *

	exp(-(t/T0 [ps])^2 / 2) centered at wavelength
center_wavelength_nm (nm). time_window (ps) sets temporal grid
size. Optional GDD and TOD are in ps^2 and ps^3.

	Note: For this definition of a Gaussian pulse, T0_ps is the

	full-width-at-half-maximum (FWHM) of the pulse.

	
class pynlo.light.DerivedPulses.FROGPulse(time_window_ps, center_wavelength_nm, power, frep_MHz=100.0, NPTS=1024, power_is_avg=False, fileloc='', flip_phase=True)

	Bases: pynlo.light.PulseBase.Pulse

	
__init__(time_window_ps, center_wavelength_nm, power, frep_MHz=100.0, NPTS=1024, power_is_avg=False, fileloc='', flip_phase=True)

	Generate pulse from FROG data. Grid is centered at wavelength
center_wavelength_nm (nm), but pulse properties are loaded from data
file. If flip_phase is true, all phase is multiplied by -1 [useful
for correcting direction of time ambiguity]. time_window (ps) sets
temporal grid size.

power sets the pulse energy:
if power_is_epp is True then the number is pulse energy [J]
if power_is_epp is False then the power is average power [W], and
is multiplied by frep to calculate pulse energy

	
class pynlo.light.DerivedPulses.NoisePulse(center_wavelength_nm, time_window_ps=10.0, NPTS=256, frep_MHz=None)

	Bases: pynlo.light.PulseBase.Pulse

	
class pynlo.light.DerivedPulses.CWPulse(avg_power, center_wavelength_nm, time_window_ps=10.0, NPTS=256, offset_from_center_THz=None)

	Bases: pynlo.light.PulseBase.Pulse

	
gen_OSA(time_window_ps, center_wavelength_nm, power, power_is_epp=False, fileloc='O:\\OFM\\Maser\\Dual-Comb 100 MHz System\\Pump spectrum-Yb-101614.csv', log=True, rows=30)

	Generate pulse from OSA data. Grid is centered at wavelength
center_wavelength_nm (nm), but pulse properties are loaded from data
file. time_window (ps) sets temporal grid size. Switch in place for
importing log vs. linear data.

power sets the pulse energy:
if power_is_epp is True then the number is pulse energy [J]
if power_is_epp is False then the power is average power [W], and
is multiplied by frep to calculate pulse energy

pynlo.light.beam

	
class pynlo.light.beam.OneDBeam(waist_meters=1.0, this_pulse=None, axis=None)

	Simple Gaussian beam class for propagation and calculating field
intensities. Contains beam shape and propagation axis information. The
beam waist is held independent of index of refraction, from which the
confocal parameter and beam geometry can be calculated.

According to Boyd, who cites Klienman (1966) and Ward and New (1969),
it is generally true that the confocal parameter is conserved in
harmonic generation and DFG. This parameter is
b = 2 pi w0**2 / lambda.

	
__init__(waist_meters=1.0, this_pulse=None, axis=None)

	Initialize class instance. From waist, confocal parameter is derived.
A Pulse class is input, and it is assumed that each color focuses to
the same waist size at the same point. From this, the (chromatic) confocal
parameter b(lambda) is calculated

	
calc_optimal_beam_overlap_in_crystal(this_pulse, othr_pulse, othr_beam, crystal_instance, L=None)

	Calculate waist w0 for a beam to maximuze the integral (field-square)
between it beam and Beam instance second_beam integrated along the
length of a crystal. If L is not specified, then the crystal length
is used.

	
calc_overlap_integral(z, this_pulse, othr_pulse, othr_beam, crystal_instance, reverse_order=False)

	Calculate overlap integral (field-square) between this beam and Beam instance
second_beam inside of a crystal. If reverse_order is true, then the
order of second_beam will be reversed.

	
calculate_R(z, n_s=1.0)

	Calculate beam curvature. :
R(z) = z * [1 + (z_R/ z)**2]

	
calculate_gouy_phase(z, n_s)

	Return the Gouy phase shift due to focusing a distance z in a crystal,
where it is assumed that the focus is at crystal_length / 2.0. Return
is exp(i psi), as in eq 37 in Siegman Ch 17.4, where A ~ exp(-ikz + i psi).

	
calculate_waist(z, n_s=1.0)

	Calculate the beam waist a distance z from the focus. The expression
is :

w(z) = w0 (1+ (2z/b)**2)**1/2

	
calculate_zR(n_s=1.0)

	Calculate Rayleigh range, accounting for index of refraction.

	
rtP_to_a(n_s, z=None)

	Calculate conversion constant from electric field to average power from
pulse and crystal class instances: A ** 2 = rtP_to_a**2 * P

	
rtP_to_a_2(pulse_instance, crystal_instance, z=None, waist=None)

	Calculate conversion constant from electric field to average power from
pulse and crystal class instances: A ** 2 = rtP_to_a**2 * P

	
set_waist_to_match_central_waist(this_pulse, w0_center, crystal_instance)

	Calculate waist w0 for a beam match so that all confocal parameters
are equal while matching waist w0_center at center color of this beam

	
set_waist_to_match_confocal(this_pulse, othr_pulse, othr_beam, crystal_instance)

	Calculate waist w0 for a beam match confocal parameters with othr_beam

pynlo.interactions

The pynlo.interactions module contains sub-modules to simulate the interaction in both three-wave-mixing (like DFG) and four-wave mixing (like supercontinuum generation).

pynlo.interactions.FourWaveMixing

This module implements the Split-step Fourier Method to solve the Generalized Nonlinear Schrodiner Equation and simulate the propagation of pulses in a Chi-3 nonlinear medium.

	
class pynlo.interactions.FourWaveMixing.SSFM.SSFM(local_error=0.001, dz=1e-05, disable_Raman=False, disable_self_steepening=False, suppress_iteration=True, USE_SIMPLE_RAMAN=False, f_R=0.18, f_R0=0.18, tau_1=0.0122, tau_2=0.032)

	
	
__init__(local_error=0.001, dz=1e-05, disable_Raman=False, disable_self_steepening=False, suppress_iteration=True, USE_SIMPLE_RAMAN=False, f_R=0.18, f_R0=0.18, tau_1=0.0122, tau_2=0.032)

	This initialization function sets up the parameters of the SSFM.

	
calculate_coherence(pulse_in, fiber, num_trials=5, random_seed=None, noise_type='one_photon_freq', n_steps=50, output_power=None, reload_fiber_each_step=False)

	This function runs pynlo.interactions.FourWaveMixing.SSFM.propagate() several times (given by num_trials),
each time adding random noise to the pulse. By comparing the electric fields of the different pulses,
and estimate of the coherence can be made.

The parameters are the same as for pynlo.interactions.FourWaveMixing.SSFM.propagate(), except as listed below

	Parameters

	
	num_trials (int) – this determines the number of trials to be run.

	random_seed (int) – this is the seed for the random noise generation. Default is None, which does not set a seed for the random
number generator, which means that the numbers will be completely randomized.
Setting the seed to a number (i.e., random_seed=0) will still generate random numbers for each trial,
but the results from calculate_coherence will be completely repeatable.

	noise_type (str) – this specifies the method for including random noise onto the pulse.
see pynlo.light.PulseBase.Pulse.add_noise() for the different methods.

	Returns

	
	g12W (2D numpy array) – This 2D array gives the g12 parameter as a function of propagation distance and the frequency.
g12 gives a measure of the coherence of the pulse by comparing several different trials.

	results (list of results for each trial) – This is a list, where each item of the list contains (z_positions, AW, AT, pulse_out), the results
obtained from pynlo.interactions.FourWaveMixing.SSFM.propagate().

	
propagate(pulse_in, fiber, n_steps, output_power=None, reload_fiber_each_step=False)

	This is the main user-facing function that allows a pulse to be
propagated along a fiber (or other nonlinear medium).

	Parameters

	
	pulse_in (pulse object) – this is an instance of the pynlo.light.PulseBase.Pulse class.

	fiber (fiber object) – this is an instance of the pynlo.media.fibers.fiber.FiberInstance class.

	n_steps (int) – the number of steps requested in the integrator output. Note: the RK4IP integrator
uses an adaptive step size. It should pick the correct step size automatically,
so setting n_steps should not affect the accuracy, just the number of points that
are returned by this funciton.

	output_power – This parameter is a mystery

	reload_fiber_each_step (boolean) – This flag determines if the fiber parameters should be reloaded every step. It is
necessary if the fiber dispersion or gamma changes along the fiber length.
pynlo.media.fibers.fiber.FiberInstance.set_dispersion_function() and
pynlo.media.fibers.fiber.FiberInstance.set_dispersion_function() should be used
to specify how the dispersion and gamma change with the fiber length

	Returns

	
	z_positions (array of float) – an array of z-positions along the fiber (in meters)

	AW (2D array of complex128) – A 2D numpy array corresponding to the intensities in each frequency bin for each
step in the z-direction of the fiber.

	AT (2D array of complex128) – A 2D numpy array corresponding to the intensities in each time bin for each
step in the z-direction of the fiber.

	pulse_out (PulseBase object) – the pulse after it has propagated through the fiber. This object is suitable for propagation
through the next fiber!

	
propagate_to_gain_goal(pulse_in, fiber, n_steps, power_goal=1, scalefactor_guess=None, powertol=0.05)

	
Integrate over length of gain fiber such that the average output
power is power_goal [W]. For this to work, fiber must have spectroscopic
gain data from an amplifier model or measurement. If the approximate
scalefactor needed to adjust the gain is known it can be passed as
scalefactor_guess.

This function returns a tuple of tuples:

((ys,AWs,ATs,pulse_out), scale_factor)

pynlo.interactions.ThreeWaveMixing

This module simulated DFG in a Chi-2 medium.

	
class pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem(pump_in, sgnl_in, crystal_in, disable_SPM=False, pump_waist=1e-05, apply_gouy_phase=False, plot_beam_overlaps=False, wg_mode=False, Aeff_squm=None)

	This class defines the integrand for a DFG or OPO parametric inteaction.
Following Eqn (8) in Seres & Hebling, “Nonstationary theory of synchronously pumped femtosecond optical parametric oscillators”, JOSA B Vol 17 No 5, 2000.

	
Ai(y)

	

	
Ap(y)

	

	
As(y)

	

	
deriv(z, y, dydx)

	

	
format_overlap_plots()

	

	
gen_jl(y)

	Following Eqn (8) in Seres & Hebling, “Nonstationary theory of
synchronously pumped femtosecond optical parametric oscillators”,
JOSA B Vol 17 No 5, 2000. A call to this function updates the
:math: chi_3 mixing terms used for four-wave mixing.

	Parameters

	y (array-like, shape is 3 * NPTS) – Concatenated pump, signal, and idler fields

	
helper_dxdy(x, y)

	

	
idlr_P_to_a = None

	

	
last_calc_z = -1000000.0

	

	
overlap_idlr = None

	

	
overlap_pump = None

	

	
overlap_sgnl = None

	

	
poling(x)

	Helper function to get sign of :math: d_ extrm{eff} at position
:math: x in the crystal. Uses self.crystal’s pp function.

For APPLN this is somewhat complicated. The input position x could
be many periods away from the previous value, and in either
direction. One solution would be carefully stepping back and forth,
but this needs to be perfect to prevent numerical errors.

Instead, precompute the domain boundaries and use a big comparison
to check the poling(z)

	Returns

	x – Sign (+1 or -1) of :math: d_ extrm{eff}.

	Return type

	int

	
precompute_poling()

	

	
process_stepper_output(solver_out)

	Post-process output of ODE solver.

The saved data from an ODE solved are the pump, signal, and idler in
the dispersionless reference frame. To see the pulses “as they really
are”, this dispersion must be added back in.

	Parameters

	solver_out – Output class instance from ODESolve

	Returns

	Instance of dfg_results_interface class

	Return type

	dfg_results

	
pump_P_to_a = None

	

	
sgnl_P_to_a = None

	

	
vg(n, wl)

	

pynlo.media

The media module contains sub-modules for modeling fibers and crystals.

pynlo.media.fibers

These classes are used to model fibers or fiber-like waveguides.

	
class pynlo.media.fibers.fiber.FiberInstance(fiber_db='general_fibers', fiber_db_dir=None)

	This is a class that contains the information about a fiber.

	
Beta2(pulse)

	This provides the beta_2 (in ps^2 / meter).

	
Beta2_to_D(pulse)

	This provides the dispersion parameter D (in ps / nm / km) at each frequency of the supplied pulse

	
betas = None

	

	
fiberspecs = {}

	

	
fibertype = None

	

	
gamma = None

	

	
generate_fiber(length, center_wl_nm, betas, gamma_W_m, gain=0, gvd_units='ps^n/m', label='Simple Fiber')

	This generates a fiber instance using the beta-coefficients.

	
get_betas(pulse, z=0)

	This provides the propagation constant (beta) at the frequencies of the supplied pulse grid.
The units are 1/meters.

Two different methods are used,

If fiberspecs[“dispersion_format”] == “D”, then the DTabulationToBetas function is used to
fit the datapoints in terms of the Beta2, Beta3, etc. coefficients expanded around the pulse
central frequency.

If fiberspecs[“dispersion_format”] == “GVD”, then the betas are calculated as a Taylor expansion
using the Beta2, Beta3, etc. coefficients around the fiber central frequency.
However, since this expansion is done without the lower order coefficients, the first two
terms of the Taylor expansion are not defined. In order to provide a nice input for the SSFM,
which assumes that the group velocity will be zero at the pulse central frequency,
the slope and offset at the pump central frequency are set to zero.

If fiberspecs[“dispersion_format”] == “n”, then the betas are calculated directly from
the effective refractive index (n_eff) as beta = n_eff * 2 * pi / lambda, where lambda is the wavelength
of the light. In this case, self.x should be the wavelength (in nm) and self.y should be n_eff (unitless).

	Parameters

	pulse (an instance of the pynlo.light.pulse.PulseBase class) – the pulse must be supplied in order for the frequency grid to be known

	Returns

	B – the propagation constant (beta) at the frequency gridpoints of the supplied pulse
(units of 1/meters).

	Return type

	1D array of floats

	
get_gain(pulse, output_power=1)

	Retrieve gain spectrum for fiber. If fiber has ‘simple gain’, this
is a scalar. If the fiber has a gain spectrum (eg EDF or YDF), this will
return this spectrum as a vector corresponding to the Pulse class
frequency axis. In this second case, the output power must be specified, from
which the gain/length is calculated.

	
get_gamma(z=0)

	Allows the gamma (effective nonlinearity) to be queried at a specific z-position

	Parameters

	z (float) – the position along the fiber (in meters)

	Returns

	gamma – the effective nonlinearity (in units of 1/(Watts * meters))

	Return type

	float

	
length = None

	

	
load_dispersion()

	This is typically called by the “load_from_db” function.
It takes the values from the self.fiberspecs dict and transfers them into the appropriate variables.

	
load_from_db(length, fibertype, poly_order=2)

	This loads a fiber from the database.

	
load_from_file(filename, length=0.1, fiberName=None, gamma_W_m=0, gain=0, alpha=0, delimiter=', ', skiprows=0, poly_order=3)

	This loads dispersion give the path of a file.
The file is expected to be in the format
wavelength (nm), D (ps/nm/km).

	
poly_order = None

	

	
set_dispersion_function(dispersion_function, dispersion_format='GVD')

	This allows the user to provide a function for the fiber dispersion that can vary as a function
of z, the length along the fiber. The function can either provide beta2, beta3, beta4, etc.
coefficients, or provide two arrays, wavelength (nm) and D (ps/nm/km)

	Parameters

	
	dispersion_function (function) – returning D or Beta coefficients as a function of z

	dispersion_formats ('GVD' or 'D' or 'n') – determines if the dispersion will be identified in terms of Beta coefficients
(GVD, in units of ps^2/m, not ps^2/km) or
D (ps/nm/km)
n (effective refractive index)

Notes

For example, this code will create a fiber where Beta2 changes from anomalous
to zero along the fiber:

Length = 1.5

def myDispersion(z):

 frac = 1 - z/(Length)

 beta2 = frac * -50e-3
 beta3 = 0
 beta4 = 1e-7

 return beta2, beta3, beta4

fiber1 = fiber.FiberInstance()
fiber1.generate_fiber(Length, center_wl_nm=800, betas=myDispersion(0), gamma_W_m=1)

fiber.set_dispersion_function(myDisperion, dispersion_format=’GVD’)

	
set_gamma_function(gamma_function)

	This allows the user to provide a function for gamma (the effective nonlinearity, in units
of 1/(Watts * meters)) that
can vary as a function of z, the length along the fiber.

	Parameters

	gamma_function (function) – returning gamma function of z

Created on Tue Jan 28 13:56:17 2014
This file is part of pyNLO.

pyNLO is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public gLicense as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

pyNLO is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with pyNLO. If not, see <http://www.gnu.org/licenses/>.

@author: dim1

	
pynlo.media.fibers.calculators.DTabulationToBetas(lambda0, DData, polyOrder, DDataIsFile=True, return_diagnostics=False)

	Read in a tabulation of D vs Lambda. Returns betas in array
[beta2, beta3, …]. If return_diagnostics is True, then return
(betas, fit_x_axis (omega in THz), data (ps^2), fit (ps^2))

pynlo.crystals

These classes are used to model various nonlinear crystals.

	
class pynlo.media.crystals.CrystalContainer.Crystal(params)

	Container for chi-2 nonlinear crystals. Actual crystal refractive index,
dispersion, and nonlinearity information is stored in modular files. Read these
in by calling <crystal>.load(crystal_instance, params).

	
calculate_D_fs_um_mm(wavelengths_nm, axis=None)

	Calculate crystal dispersion at ‘wavelengths_nm’ along ‘axis’ in
short crystal, broad bandwidth units of fs/um/mm

	
calculate_D_ps_nm_km(wavelengths_nm, axis=None)

	Calculate crystal dispersion at ‘wavelengths_nm’ [nm] along ‘axis’ in
standard photonic engineering units ps/nm/km

	
calculate_group_velocity_nm_ps(wavelengths_nm, axis=None)

	Calculate group velocity vg at ‘wavelengths_nm’ [nm] along ‘axis’
in units of nm/ps

	
calculate_mix_phasematching_bw(pump_wl_nm, signal_wl_nm, axis=None)

	
	Calculate the phase matching bandwidth in the case of mixing

	between narrowband pump (highest photon energy) with a signal field.
The bandwidths of mixing between pump-signal and pump-idler are
calculated, and the smaller of the two is returned.

	Parameters

	
	pump_wl_nm (float) – Wavelength of pump field, bandwidth assumed to be 0 [nm]

	signal_wl_nm (array-like) – Wavelength of signal field [nm]

	Returns

	acceptance bandwidth – Phasematching bandwidth [m^-1 * m]

	Return type

	float

References

Peter E Powers, “Fundamentals of Nonlinear Optics”, pp 106

	
calculate_pulse_delay_ps(wl1_nm, wl2_nm, crystal_length_mks=None, axis=None)

	Calculate the pulse delay between pulses at wl1 and wl2 after
crystal. Be default, crystal instance’s length is used.

	
get_pulse_k(pulse_instance, axis=None)

	Return vector of angular wavenumbers (m^-1) for the pulse_instance’s
frequency grid inside the crystal

	
get_pulse_n(pulse_instance, axis=None)

	Return vector of indices of refraction for the pulse_instance’s
frequency grid inside the crystal

	
invert_dfg_qpm_to_signal_wl(pump_wl_nm, poling_period_mks, max_signal_wl_nm=2000)

	
	Calculate the signal wavelength phasematched in QPM by the given

	poing period for the specified pump wavelength.

	Parameters

	
	pump_wl_nm (float) – Wavelength of pump field, bandwidth assumed to be 0 [nm]

	poling_period_mks (float) – Period length of the QPM grating

	Returns

	Signal wavelength [nm]

	Return type

	float

	
set_caching(cache_enable=True)

	Enable or disable caching of refractive indices. Enabling this uses
more memory, but can save costly recomputations

	Parameters

	cache_enable (bool) –

…..More undocumented crystals here….

pynlo.util.ode_solve

These classes are an adaptation of the very nice Numerical Recipes ODE solvers into Python. The solver is divided into two parts: specific step iterators (eg Dopri853) and the framework for stepping through the ODE (steppers)

Dormand-Prince 853 Stepper

	
class pynlo.util.ode_solve.dopr853.StepperDopr853(yy, dydxx, xx, atoll, rtoll, dens)

	Bases: pynlo.util.ode_solve.steppers.StepperBase

Steppers and helpers

	
class pynlo.util.ode_solve.steppers.Output(nsaves=None)

	The output class is used by the ode solver to store the integrated output
at specified x values. In addition to housing the matrices containing the
x and y data, the class also provides a simple function call to store
new data and resizes the output grids dynamically.

	Parameters

	nsaves – Number of anticipated save points, used for calculating value of x
at which integrand will be evaluted and saved.

	
init(neqn, xlo, xhi, dtype=<type 'numpy.float64'>)

	Setup routine, which creates the output arrays. If nsaves was provided
at class initialization, the positions at which the integrand will be
saved are also calculated.

	Parameters

	
	neqn – Number of equations, or the number of y values at each x.

	xlo – Lower bound of integration (start point.)

	xhi – Upper bound of integration (stop point.)

	dtype – Data type of each y. Any Python data type is acceptable.

	
out(nstp, x, y, s, h)

	nstp is current step number, current values are x & y, Stepper is s
and step size is h

	
class pynlo.util.ode_solve.steppers.StepperBase(yy, dydxx, xx, atoll, rtoll, dense)

	

	
class pynlo.util.ode_solve.steppers.ODEint(ystartt, xx1, xx2, atol, rtol, h1, hminn, outt, stepper_class, RHS_class, dense=True, dtype=None)

	
	
__init__(ystartt, xx1, xx2, atol, rtol, h1, hminn, outt, stepper_class, RHS_class, dense=True, dtype=None)

	Class for integrating ODEs.

Notes

This code is based upon Numerical Recipes 3rd edition’s
imlementation, but with some changes due to the translation:
1.) The ODE is passed as a class instance ‘RHS_class’. This class must

have a member function deriv(x,y,dydx) which calculates the RHS
and writes the value into dydx.

	2.) Unlike the NR version, ODEint is not derived from the stepper.

	instead, the stepper class to be used is passed to the ODEint
constructor (stepper_class).

	3.) As a consequence of (2), x and y are stored in the stepper instance

	(ODEint.s) and not in ODEint iteself.

pynlo.devices

	
class pynlo.devices.grating_compressor.TreacyCompressor(lines_per_mm, incident_angle_degrees)

	This class calculates the effects of a grating-based pulse compressor,
as described in
E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings”,
IEEE Journal of Quantum Electronics QE5(9), p454 (1969):
http://dx.doi.org/10.1109/JQE.1969.1076303

It implements eqn 5b from Treacy1969:

-4 pi^2 c b

	{1} dt/dw = ————————————-

	w^3 d^2 (1- (2 pi c/ wd - sin gamma)^2)

where gamma is the diffraction angle, w is the angular frequency, d is
the grating ruling period, and b is the slant distance between gratings,

{1b} b = G sec(gamma - theta)

where G is the grating separation and theta is the acute angle between
indicent and diffracted rays (text before eq 4). The grating equation ::
relates the angles (generalized eq 3):

{2} sin(gamma - theta) + sin(gamma) = m lambda / d

More conventionally, the grating equation is cast in terms of the
incident and diffracted ray angles,

{3} sin(alpha) + sin(beta) = m lambda / d.

It makes sense to solve {3} using the grating specifications (eg for
optimum incident angle a) and then derive Treacy’s theta and gamma:

{4} gamma = alpha theta = gamma - alpha

This code only considers first order diffraction, as most gratings are
designed for this (eg LightSmyth transmission gratings.)

	
apply_phase_to_pulse(grating_separation_meters, pulse)

	Apply grating disersion (all orders) to a Pulse instance. Phase is
computed by numerical integration of dphi/domega (from Treacy)

	
calc_compressor_HOD(wavelength_nm, grating_separation_meters, dispersion_order)

	Calculate higher order dispersion by taking w - derivatives of
dt/dw

	
calc_compressor_dnphi_domega_n(wavelength_nm, grating_separation_meters, dispersion_order)

	Calculate higher order dispersion by taking w - derivatives of
dt/dw

Examples

	Supercontinuum generation example

Supercontinuum generation example

Here is an example of supercontinuum generation in a fiber

import numpy as np
import matplotlib.pyplot as plt
import pynlo

FWHM = 0.050 # pulse duration (ps)
pulseWL = 1550 # pulse central wavelength (nm)
EPP = 50e-12 # Energy per pulse (J)
GDD = 0.0 # Group delay dispersion (ps^2)
TOD = 0.0 # Third order dispersion (ps^3)

Window = 10.0 # simulation window (ps)
Steps = 50 # simulation steps
Points = 2**13 # simulation points

beta2 = -120 # (ps^2/km)
beta3 = 0.00 # (ps^3/km)
beta4 = 0.005 # (ps^4/km)

Length = 20 # length in mm

Alpha = 0.0 # attentuation coefficient (dB/cm)
Gamma = 1000 # Gamma (1/(W km)

fibWL = pulseWL # Center WL of fiber (nm)

Raman = True # Enable Raman effect?
Steep = True # Enable self steepening?

alpha = np.log((10**(Alpha * 0.1))) * 100 # convert from dB/cm to 1/m

set up plots for the results:
fig = plt.figure(figsize=(10,10))
ax0 = plt.subplot2grid((3,2), (0, 0), rowspan=1)
ax1 = plt.subplot2grid((3,2), (0, 1), rowspan=1)
ax2 = plt.subplot2grid((3,2), (1, 0), rowspan=2, sharex=ax0)
ax3 = plt.subplot2grid((3,2), (1, 1), rowspan=2, sharex=ax1)

######## This is where the PyNLO magic happens! ############################

create the pulse!
pulse = pynlo.light.DerivedPulses.SechPulse(1, FWHM/1.76, pulseWL, time_window_ps=Window,
 GDD=GDD, TOD=TOD, NPTS=Points, frep_MHz=100, power_is_avg=False)
pulse.set_epp(EPP) # set the pulse energy

create the fiber!
fiber1 = pynlo.media.fibers.fiber.FiberInstance()
fiber1.generate_fiber(Length * 1e-3, center_wl_nm=fibWL, betas=(beta2, beta3, beta4),
 gamma_W_m=Gamma * 1e-3, gvd_units='ps^n/km', gain=-alpha)

Propagation
evol = pynlo.interactions.FourWaveMixing.SSFM.SSFM(local_error=0.001, USE_SIMPLE_RAMAN=True,
 disable_Raman=np.logical_not(Raman),
 disable_self_steepening=np.logical_not(Steep))

y, AW, AT, pulse_out = evol.propagate(pulse_in=pulse, fiber=fiber1, n_steps=Steps)

########## That's it! Physic done. Just boring plots from here! ################

F = pulse.W_mks / (2 * np.pi) * 1e-12 # convert to THz

def dB(num):
 return 10 * np.log10(np.abs(num)**2)

zW = dB(np.transpose(AW)[:, (F > 0)])
zT = dB(np.transpose(AT))

y = y * 1e3 # convert distance to mm

ax0.plot(F[F > 0], zW[-1], color='r')
ax1.plot(pulse.T_ps,zT[-1], color='r')

ax0.plot(F[F > 0], zW[0], color='b')
ax1.plot(pulse.T_ps, zT[0], color='b')

extent = (np.min(F[F > 0]), np.max(F[F > 0]), 0, Length)
ax2.imshow(zW, extent=extent, vmin=np.max(zW) - 60.0,
 vmax=np.max(zW), aspect='auto', origin='lower')

extent = (np.min(pulse.T_ps), np.max(pulse.T_ps), np.min(y), Length)
ax3.imshow(zT, extent=extent, vmin=np.max(zT) - 60.0,
 vmax=np.max(zT), aspect='auto', origin='lower')

ax0.set_ylabel('Intensity (dB)')

ax2.set_xlabel('Frequency (THz)')
ax3.set_xlabel('Time (ps)')

ax2.set_ylabel('Propagation distance (mm)')

ax2.set_xlim(0,400)

ax0.set_ylim(-80,0)
ax1.set_ylim(-40,40)

plt.show()

Output:

[image: example_result]

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pynlo	

 	
 	
 pynlo.media.fibers.calculators	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	__init__() (pynlo.interactions.FourWaveMixing.SSFM.SSFM method)

 	(pynlo.light.DerivedPulses.FROGPulse method)

 	(pynlo.light.DerivedPulses.GaussianPulse method)

 	(pynlo.light.DerivedPulses.SechPulse method)

 	(pynlo.light.beam.OneDBeam method)

 	(pynlo.util.ode_solve.steppers.ODEint method)

A

 	
 	add_noise() (pynlo.light.PulseBase.Pulse method)

 	add_time_offset() (pynlo.light.PulseBase.Pulse method)

 	Ai() (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem method)

 	Ap() (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem method)

 	
 	apply_phase_to_pulse() (pynlo.devices.grating_compressor.TreacyCompressor method)

 	As() (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem method)

 	AT (pynlo.light.PulseBase.Pulse attribute)

 	AW (pynlo.light.PulseBase.Pulse attribute)

B

 	
 	Beta2() (pynlo.media.fibers.fiber.FiberInstance method)

 	
 	Beta2_to_D() (pynlo.media.fibers.fiber.FiberInstance method)

 	betas (pynlo.media.fibers.fiber.FiberInstance attribute)

C

 	
 	calc_compressor_dnphi_domega_n() (pynlo.devices.grating_compressor.TreacyCompressor method)

 	calc_compressor_HOD() (pynlo.devices.grating_compressor.TreacyCompressor method)

 	calc_epp() (pynlo.light.PulseBase.Pulse method)

 	calc_optimal_beam_overlap_in_crystal() (pynlo.light.beam.OneDBeam method)

 	calc_overlap_integral() (pynlo.light.beam.OneDBeam method)

 	calculate_coherence() (pynlo.interactions.FourWaveMixing.SSFM.SSFM method)

 	calculate_D_fs_um_mm() (pynlo.media.crystals.CrystalContainer.Crystal method)

 	calculate_D_ps_nm_km() (pynlo.media.crystals.CrystalContainer.Crystal method)

 	calculate_gouy_phase() (pynlo.light.beam.OneDBeam method)

 	calculate_group_velocity_nm_ps() (pynlo.media.crystals.CrystalContainer.Crystal method)

 	calculate_intensity_autocorrelation() (pynlo.light.PulseBase.Pulse method)

 	calculate_mix_phasematching_bw() (pynlo.media.crystals.CrystalContainer.Crystal method)

 	calculate_pulse_delay_ps() (pynlo.media.crystals.CrystalContainer.Crystal method)

 	
 	calculate_R() (pynlo.light.beam.OneDBeam method)

 	calculate_waist() (pynlo.light.beam.OneDBeam method)

 	calculate_zR() (pynlo.light.beam.OneDBeam method)

 	center_frequency_mks (pynlo.light.PulseBase.Pulse attribute)

 	center_frequency_THz (pynlo.light.PulseBase.Pulse attribute)

 	center_wavelength_mks (pynlo.light.PulseBase.Pulse attribute)

 	center_wavelength_nm (pynlo.light.PulseBase.Pulse attribute)

 	chirp_pulse_W() (pynlo.light.PulseBase.Pulse method)

 	clone_pulse() (pynlo.light.PulseBase.Pulse method)

 	create_cloned_pulse() (pynlo.light.PulseBase.Pulse method)

 	create_subset_pulse() (pynlo.light.PulseBase.Pulse method)

 	Crystal (class in pynlo.media.crystals.CrystalContainer)

 	CWPulse (class in pynlo.light.DerivedPulses)

D

 	
 	deriv() (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem method)

 	dF_mks (pynlo.light.PulseBase.Pulse attribute)

 	dF_THz (pynlo.light.PulseBase.Pulse attribute)

 	
 	dfg_problem (class in pynlo.interactions.ThreeWaveMixing.DFG_integrand)

 	dT_mks (pynlo.light.PulseBase.Pulse attribute)

 	dT_ps (pynlo.light.PulseBase.Pulse attribute)

 	DTabulationToBetas() (in module pynlo.media.fibers.calculators)

E

 	
 	expand_time_window() (pynlo.light.PulseBase.Pulse method)

F

 	
 	F_mks (pynlo.light.PulseBase.Pulse attribute)

 	F_THz (pynlo.light.PulseBase.Pulse attribute)

 	FiberInstance (class in pynlo.media.fibers.fiber)

 	fiberspecs (pynlo.media.fibers.fiber.FiberInstance attribute)

 	
 	fibertype (pynlo.media.fibers.fiber.FiberInstance attribute)

 	format_overlap_plots() (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem method)

 	frep_MHz (pynlo.light.PulseBase.Pulse attribute)

 	frep_mks (pynlo.light.PulseBase.Pulse attribute)

 	FROGPulse (class in pynlo.light.DerivedPulses)

G

 	
 	gamma (pynlo.media.fibers.fiber.FiberInstance attribute)

 	GaussianPulse (class in pynlo.light.DerivedPulses)

 	gen_jl() (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem method)

 	gen_OSA() (pynlo.light.DerivedPulses.CWPulse method)

 	generate_fiber() (pynlo.media.fibers.fiber.FiberInstance method)

 	
 	get_betas() (pynlo.media.fibers.fiber.FiberInstance method)

 	get_gain() (pynlo.media.fibers.fiber.FiberInstance method)

 	get_gamma() (pynlo.media.fibers.fiber.FiberInstance method)

 	get_pulse_k() (pynlo.media.crystals.CrystalContainer.Crystal method)

 	get_pulse_n() (pynlo.media.crystals.CrystalContainer.Crystal method)

H

 	
 	helper_dxdy() (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem method)

I

 	
 	idlr_P_to_a (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem attribute)

 	init() (pynlo.util.ode_solve.steppers.Output method)

 	
 	interpolate_to_new_center_wl() (pynlo.light.PulseBase.Pulse method)

 	invert_dfg_qpm_to_signal_wl() (pynlo.media.crystals.CrystalContainer.Crystal method)

L

 	
 	last_calc_z (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem attribute)

 	length (pynlo.media.fibers.fiber.FiberInstance attribute)

 	load_consts() (pynlo.light.PulseBase.Pulse method)

 	
 	load_dispersion() (pynlo.media.fibers.fiber.FiberInstance method)

 	load_from_db() (pynlo.media.fibers.fiber.FiberInstance method)

 	load_from_file() (pynlo.media.fibers.fiber.FiberInstance method)

N

 	
 	NoisePulse (class in pynlo.light.DerivedPulses)

O

 	
 	ODEint (class in pynlo.util.ode_solve.steppers)

 	OneDBeam (class in pynlo.light.beam)

 	out() (pynlo.util.ode_solve.steppers.Output method)

 	
 	Output (class in pynlo.util.ode_solve.steppers)

 	overlap_idlr (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem attribute)

 	overlap_pump (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem attribute)

 	overlap_sgnl (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem attribute)

P

 	
 	poling() (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem method)

 	poly_order (pynlo.media.fibers.fiber.FiberInstance attribute)

 	precompute_poling() (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem method)

 	process_stepper_output() (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem method)

 	
 	propagate() (pynlo.interactions.FourWaveMixing.SSFM.SSFM method)

 	propagate_to_gain_goal() (pynlo.interactions.FourWaveMixing.SSFM.SSFM method)

 	Pulse (class in pynlo.light.PulseBase)

 	pump_P_to_a (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem attribute)

 	pynlo.media.fibers.calculators (module)

R

 	
 	rotate_spectrum_to_new_center_wl() (pynlo.light.PulseBase.Pulse method)

 	
 	rtP_to_a() (pynlo.light.beam.OneDBeam method)

 	rtP_to_a_2() (pynlo.light.beam.OneDBeam method)

S

 	
 	SechPulse (class in pynlo.light.DerivedPulses)

 	set_AT() (pynlo.light.PulseBase.Pulse method)

 	set_AW() (pynlo.light.PulseBase.Pulse method)

 	set_caching() (pynlo.media.crystals.CrystalContainer.Crystal method)

 	set_center_wavelength_m() (pynlo.light.PulseBase.Pulse method)

 	set_center_wavelength_nm() (pynlo.light.PulseBase.Pulse method)

 	set_dispersion_function() (pynlo.media.fibers.fiber.FiberInstance method)

 	set_epp() (pynlo.light.PulseBase.Pulse method)

 	set_frep_MHz() (pynlo.light.PulseBase.Pulse method)

 	set_frequency_window_mks() (pynlo.light.PulseBase.Pulse method)

 	set_frequency_window_THz() (pynlo.light.PulseBase.Pulse method)

 	
 	set_gamma_function() (pynlo.media.fibers.fiber.FiberInstance method)

 	set_NPTS() (pynlo.light.PulseBase.Pulse method)

 	set_time_window_ps() (pynlo.light.PulseBase.Pulse method)

 	set_time_window_s() (pynlo.light.PulseBase.Pulse method)

 	set_waist_to_match_central_waist() (pynlo.light.beam.OneDBeam method)

 	set_waist_to_match_confocal() (pynlo.light.beam.OneDBeam method)

 	sgnl_P_to_a (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem attribute)

 	spectrogram() (pynlo.light.PulseBase.Pulse method)

 	SSFM (class in pynlo.interactions.FourWaveMixing.SSFM)

 	StepperBase (class in pynlo.util.ode_solve.steppers)

 	StepperDopr853 (class in pynlo.util.ode_solve.dopr853)

T

 	
 	T_mks (pynlo.light.PulseBase.Pulse attribute)

 	T_ps (pynlo.light.PulseBase.Pulse attribute)

 	
 	time_window_mks (pynlo.light.PulseBase.Pulse attribute)

 	time_window_ps (pynlo.light.PulseBase.Pulse attribute)

 	TreacyCompressor (class in pynlo.devices.grating_compressor)

V

 	
 	V_mks (pynlo.light.PulseBase.Pulse attribute)

 	
 	V_THz (pynlo.light.PulseBase.Pulse attribute)

 	vg() (pynlo.interactions.ThreeWaveMixing.DFG_integrand.dfg_problem method)

W

 	
 	W_mks (pynlo.light.PulseBase.Pulse attribute)

 	W_THz (pynlo.light.PulseBase.Pulse attribute)

 	
 	wl_mks (pynlo.light.PulseBase.Pulse attribute)

 	wl_nm (pynlo.light.PulseBase.Pulse attribute)

 	write_frog() (pynlo.light.PulseBase.Pulse method)

 _static/ajax-loader.gif

_images/8d3952a3960c030176cfb3c07555c25b36da864b.png
9
o
E

_images/f68ebb270b7caa643fcb7c5a5857f952e8af8192.png
Propagation distance (mm)

Intensity (dB)
A
3

20

15

10

0
0

0

50 100 150 200 250 300 350 400
Frequency (THz)

20

15

10

-2

0
Time (ps)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/02189cbbe7f458ab5bba25b4cf99bd1f93b8c792.png

_images/876ea281256e3728d7caa55caec7c72f9612dd4e.png
0
-10
-20
-30
-40
=50
-60
=70

Intensity (dB)

20

15

10

Propagation distance (mm)

40

0
0 50 100 150200 250 300 350 400

Frequency (THz)

30
20
10

0
-10
-20
-30

—40
0 50 100 150200 250 300 350 400

20

15

10

-4

-2

0
Time (ps)

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to PyNLO’s documentation!

 		
 pyNLO: Nonlinear optics modeling for Python

 		
 Introduction

 		
 Installation

 		
 With pip

 		
 With setuptools

 		
 Documentation

 		
 Example of use

 		
 Contributing

 		
 License

 		
 References

 		
 General information on PyNLO

 		
 Package Organization

 		
 References

 		
 PyNLO package

 		
 pynlo.light

 		
 pynlo.light.PulseBase

 		
 pynlo.light.DerivedPulses

 		
 pynlo.light.beam

 		
 pynlo.interactions

 		
 pynlo.interactions.FourWaveMixing

 		
 pynlo.interactions.ThreeWaveMixing

 		
 pynlo.media

 		
 pynlo.media.fibers

 		
 pynlo.crystals

 		
 pynlo.util.ode_solve

 		
 Dormand-Prince 853 Stepper

 		
 Steppers and helpers

 		
 pynlo.devices

 		
 Examples

 		
 Supercontinuum generation example

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

